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Abstract In this work we study the impact that the ghost
sector of pure Yang–Mills theories may have on the gener-
ation of a dynamical gauge boson mass scale, which hinges
on the appearance of massless poles in the fundamental ver-
tices of the theory, and the subsequent realization of the
well-known Schwinger mechanism. The process responsi-
ble for the formation of such structures is itself dynamical
in nature, and is governed by a set of Bethe–Salpeter type
of integral equations. While in previous studies the presence
of massless poles was assumed to be exclusively associated
with the background-gauge three-gluon vertex, in the present
analysis we allow them to appear also in the correspond-
ing ghost-gluon vertex. The full analysis of the resulting
Bethe–Salpeter system reveals that the contribution of the
poles associated with the ghost-gluon vertex are particularly
suppressed, their sole discernible effect being a slight modi-
fication in the running of the gluon mass scale, for momenta
larger than a few GeV. In addition, we examine the behavior
of the (background-gauge) ghost-gluon vertex in the limit of
vanishing ghost momentum, and derive the corresponding
version of Taylor’s theorem. These considerations, together
with a suitable Ansatz, permit us the full reconstruction of
the pole sector of the two vertices involved.

1 Introduction

The nonperturbative generation of an effective gluon mass
scale has attracted particular attention in the last decade,
being identified as one of the fundamental emergent phe-
nomena produced by the intricate gauge-sector dynam-
ics of QCD [1–3]. As has been advocated in a series
of works [4–8], the appearance of such a (momentum-
dependent) mass scale [9], m2(q2), is inextricably con-
nected with the infrared finiteness of the gluon propagator,
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�(q2), and the ghost dressing function, F(q2), observed
in a variety of large-volume lattice simulations [10–17].
Even though these paradigm-shifting lattice results have been
explained and interpreted within a plethora of diverse the-
oretical approaches [1,4,5,9,18–46], in the present work
we employ the formal framework that emerges from the
fusion between the pinch-technique (PT) [9,47–51] with the
background-field method (BFM) [52], known as “PT-BFM
scheme” [4,53,54].

The set of basic ideas underlying the approach put forth
in [6,7], and more recently in [8], may be summarized as fol-
lows. At the level of the Schwinger-Dyson equation (SDE)
that governs the dynamics of the gluon propagator within the
PT-BFM scheme, the masslessness of the gluon is enforced
nonperturbatively by means of a special integral identity
(“seagull” identity [8,55]). This identity is triggered by the
special (Abelian) Slavnov–Taylor identities (STIs) satisfied
by the fundamental vertices appearing in the diagrammatic
expansion of the gluon SDE,1 enforcing the exact result
�−1(0) = 0. The action of the seagull identity may be cir-
cumvented, allowing for the possibility �−1(0) �= 0, only
if the well-known Schwinger mechanism [56,57] is trig-
gered [58–61]. The activation of this latter mechanism, in
turn, requires the presence of longitudinally coupled mass-
less poles, i.e., of the generic form (qμ/q2)˜C(q, r, p), in the
aforementioned vertices entering in the gluon SDE.

The origin of these poles is dynamical rather than kine-
matic, and may be traced back to the formation of tightly
bound colored excitations; in fact, within this picture, the
terms ˜C may be identified with the “bound-state wave func-
tions” of these excitations. The quantities relevant for the
generation of a gluon mass scale and the determination of

1 We remind the reader that, within the PT-BFM scheme, at least one
of the two legs entering into the gluon propagator is a “background”
gluon (see next section). All such vertices are generically denoted by
˜�, while their conventional counterparts by �.
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its momentum dependence are the partial derivatives of the
˜C(q, r, p) as q → 0, to be generically denoted by ˜C ′(r2);
their evolution, in turn, is controlled by a system of coupled
homogeneous linear Bethe–Salpeter equations (BSEs) [58–
61].

Even though, in principle, all fundamental vertices enter-
ing into the gluon SDE, i.e., the three-gluon, ghost-gluon,
and four-gluon vertex, may develop such poles, one of the
main simplifications implemented in all previous studies is
the assumption that the dominant effect originates from the
three-gluon vertex, and that all contributions from the pole
parts of the remaining vertices are numerically subleading.
This assumption, in turn, reduces dramatically the level of
technical complexity, converting the system of coupled BSEs
into one single dynamical equation (in the Landau gauge). In
the present work we partially relax this basic assumption by
including massless poles also in the ghost-gluon vertex, ˜�μ,
and studying in detail how the results previously obtained are
affected by their presence.2

The analysis necessary for addressing the aforementioned
dynamical question is significantly more complicated than
that of [6,62], mainly due to the fact that the pole formation
is now governed by a system of two coupled integral equa-
tions. Specifically, the resulting system of BSEs involves as
unknown quantities the derivative of the wave function of
the pole in the three-gluon vertex, ˜�μαβ , to be denoted by
˜C ′

gl(r
2), and the corresponding quantity in ˜�μ, to be denoted

by ˜C ′
gh(r

2).
These two quantities affect the gluon dynamics in rather

distinct ways. To begin with, both ˜C ′
gl(r

2) and ˜C ′
gh(r

2) enter

in the formula that determines the value of �−1(0) [see
Eq. (2.20)]; however, their relative contribution can be vastly
different, even if it turned out that ˜C ′

gl(r
2) � ˜C ′

gh(r
2),

because they are convoluted with completely different struc-
tures. Moreover, as has been shown first in [6] and recently
revisited in [62], the running gluon mass scale, m2(q2), is
entirely determined from the form of ˜C ′

gl(r
2). Therefore, the

way that ˜C ′
gh(r

2) could affect m2(q2) is indirect, depending

on the difference between the ˜C ′
gl(r

2) found from the (single)

BSE when ˜C ′
gh(r

2) is assumed to vanish identically, as was

done previously [6,62], and the ˜C ′
gl(r

2) obtained by actually
solving the coupled BSE system, as we do here.

The full analysis of the BSE system carried out in the
present work reveals that ˜C ′

gh(r
2) is considerably smaller

than ˜C ′
gl(r

2). Specifically, when all quantities entering into
the kernels of the BSE system have been renormalized using
the momentum subtraction scheme (MOM) at the point
μ = 4.3 GeV, the relative size between the two quantities

2 Note however that we are still operating under the hypothesis that
potential effects due to poles associated with the four-gluon vertex are
numerically suppressed.

is approximately ˜C ′
gh(r

2)/˜C ′
gl(r

2) � 1/5. As a result, the

substitution of ˜C ′
gl(r

2) and ˜C ′
gh(r

2) into the corresponding

integrals that determine �−1(0) shows that the effect stem-
ming from ˜C ′

gh(r
2) is practically negligible. This conclusion

may be restated in terms of the quadratic equation for the
strong coupling αs , introduced in [62]; specifically, the value
of αs that emerges from the combination of the BSE and
the SDE remains practically unchanged in the presence of
the nonvanishing, but rather small, ˜C ′

gh(r
2). The only place

where ˜C ′
gh(r

2) makes a small but discernible difference is

in the running of m2(q2), in the region of momenta more
than a few GeV. In particular, the deviation from the exact
power-law running is controlled by the value of the exponent
p, which changes from the value p = 0.1 when ˜C ′

gh(r
2)

is neglected [62] to the value p = 0.24 when ˜C ′
gh(r

2) is
included. Thus, the overall conclusion of this work is that
the effects of the ghost sector, in the sense described above,
do not modify appreciably the dynamics responsible for the
generation of an effective gluon mass scale.

In addition to the findings just mentioned, the present
study addresses certain aspects related to the structure and
behaviour of ˜�μ, which are theoretically interesting and
novel, and furnish further insights into the underlying mass
scale generation mechanism. Specifically, as is well-known,
in the limit of vanishing ghost momentum, the form-factors
of the conventional ghost-gluon vertex, �μ, satisfy a spe-
cial exact relation, known as Taylor’s theorem [63]. In this
work we derive the corresponding relation for ˜�μ, using
three vastly different approaches. The form of Taylor’s theo-
rem that emerges is clearly different from the standard case,
involving the ghost dressing function F(q2) as its new main
ingredient.

Furthermore, the structure of ˜�μ is scrutinized, plac-
ing particular emphasis on the way that the fundamental
(Abelian) STI is realized in the presence of a longitudinally
coupled pole term. In fact, it is shown that through an appro-
priate rearrangement of its form factors, consistent with the
(newly derived) version of Taylor’s theorem, the effect of
the pole may be reabsorbed in the transverse (automatically
conserved) part of the vertex. The above considerations are
not without practical interest, since they allow us to fully
determine (under some mild assumptions) the entire func-
tion ˜Cgh(q, r, p) from the knowledge of ˜C ′

gh(r
2).

The article is organized as follows. In Sect. 2 we review
the basic formalism employed in this work, with particular
emphasis on the way the massless poles enter into the ver-
tices, and the special way the corresponding STIs are satisfied
in their presence. Then, in Sect. 3 we derive the version of
Taylor’s theorem applicable to ˜�μ, using three different pro-
cedures: (1) the STI that ˜�μ satisfies; (2) the SDE of ˜�μ,
and (3) an exact relation connecting ˜�μ with �μ, known as
“background-quantum identity” (BQI) [54]. In Sect. 4 we
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offer a new perspective on the way that the STI of ˜�μ is
enforced for a nonvanishing ˜Cgh(q, r, p), as well as the con-
straints imposed on it from Taylor’s theorem. The upshot
of this analysis is the demonstration that one may reinter-
pret the action of the longitudinally coupled pole as a corre-
sponding pole contribution in the transverse part of ˜�μ. In
addition, using the above results, we present a simple Ansatz
for ˜Cgh(q, r, p), which allows its full reconstruction, once
˜C ′

gh(r
2) has been determined. In Sect. 5 we derive the BSE

system that governs ˜C ′
gl(r

2) and ˜C ′
gh(r

2). Then, in Sect. 6 we
present the numerical analysis, and establish the subleading
nature of the ghost-related contributions. Finally, in Sect. 7
we present our conclusions.

2 Gluon mass scale from vertices with massless poles

For an SU(3) pure Yang–Mills theory (no dynamical quarks)
quantized in the Landau gauge, the gluon and ghost propa-
gators have the form (we factor out the trivial color structure
δab)

�μν(q) = −i�(q2)Pμν(q); Pμν(q) = gμν − qμqν

q2 ,

D(q2) = i
F(q2)

q2 . (2.1)

In the formulas above, �(q2) is related to the scalar form fac-
tor of the gluon self-energy �μν(q) = Pμν(q)�(q2) through
�−1(q2) = q2 + i�(q2), while F(q2) represents the so-
called ghost dressing function; at tree-level �(0)(q2) = 1/q2

and F (0)(q2) = 1.
Given that in the ensuing analysis we will employ sev-

eral ingredients of the BFM formalism, we next review
briefly some of its salient features and introduce the relevant
notation. According to the standard BFM procedure [52],
the gauge field A is split into a background (B) and a
quantum (fluctuating) (Q) component, according to Aμ =
Bμ + Qμ. This splitting introduces a considerable prolifer-
ation of Green’s functions, involving distinct combinations
of B- and Q-type of gluons. For example, in the gluon two-
point sector one has (1) the conventional gluon propagator,
�μν(q), introduced earlier, with two Q-type gluons (Q2); (2)
the mixed background-quantum propagator, with one Q- and
one B-type gluon (Q B or B Q), to be denoted by ˜�μν(q),
and (3) the background propagator, with two B-type glu-
ons, denoted by ̂�μν(q). The basic building blocks of the
SDEs governing these two-point functions are also different:
the SDE of �μν(q) contains the conventional three-gluon
(Q3), gluon-ghost (Qcc̄) and four gluon Q4 vertices (indi-
cated with �μαβ , �μ, and �μαβγ , respectively), whereas the
SDEs of ˜�μν(q) and ̂�μν(q) contain the background ver-

tices B Q2, Bcc̄, and B Q3, denoted by ˜�μαβ , ˜�μ, and ˜�μαβγ ,
respectively.

Particularly important for our purposes is the fact that,
when contracted by the momentum carried by any of their
background legs, the vertices of the type ˜� satisfy Abelian-
like STIs, i.e., linear (ghost-free) identities, whose tree-
level form generalizes to all orders [see Eqs. (2.4)–(2.6)
below]. Moreover, the so-called “background-quantum iden-
tities” [64–66] are especially useful; for example, the two-
point scalar functions �(q2), ˜�(q2), and ̂�(q2) satisfy

�(q2) = [1 + G(q2)]˜�(q2); ˜�(q2) = [1 + G(q2)]̂�(q2),

(2.2)

where G(q2) is the gμν component of a special two-point
function [65]. Similar, but more complicated relations, con-
nect �μαβ with ˜�μαβ , �μ with ˜�μ [see Eq. (3.24)], as well
as �μαβγ with ˜�μαβγ (see, e.g., [54]).

Consider then the SDE of �(q2) written in terms of the
Q B self-energy, ˜�μν(q), namely,

�−1(q2)Pμν(q) = q2 Pμν(q) + i˜�μν(q)

1 + G(q2)
. (2.3)

Expressing the gluon SDE in terms of ˜�μν(q) rather than
�μν(q) entails the advantage that, as emphasized above,
when contracted from the side of the B-gluon, each fully
dressed vertex satisfies a linear STI. In particular, the B Q2

and the Bcc̄ vertices satisfy (color omitted and all momenta
entering)

qμ
˜�μαβ(q, r, p) = i�−1

αβ (r) − i�−1
αβ (p), (2.4)

qμ
˜�μ(q, r, p) = i D−1(r2) − i D−1(p2), (2.5)

whereas for the B Q3 vertex we have

qμ
˜�mnrs

μαβγ (q, r, p, t) = f mse f ern�αβγ (r, p, q + t)

+ f mne f esr�βγα(p, t, q + r)

+ f mre f ens�γαβ(t, r, q + p).

(2.6)

Recently, it has been shown that if the vertices carrying the
B leg do not contain massless poles of the type 1/q2, then the
�(q2) governed by Eq. (2.3) remains rigorously massless [8].
The demonstration relies on the subtle interplay between the
Ward–Takahashi identities (WTIs), satisfied by the vertices
as q → 0, and an integral relation known as the “seagull
identity” [8,55]. In fact, in the absence of massless poles,
the Taylor expansion of both sides of Eqs. (2.4) and (2.5)
generates the corresponding WTIs

˜�μαβ(0, r,−r) = −i
∂

∂rμ
�−1

αβ (r), (2.7)
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˜�μ(0, r,−r) = −i
∂

∂rμ
D−1(r2), (2.8)

and

˜�mnrs
μαβγ (0,−r,−p, r + p)

= −
(

f mne f esr ∂

∂rμ
+ f mre f ens ∂

∂pμ

)

�αβγ (−r,−p, r + p). (2.9)

Using these expressions in evaluating the gluon SDE,
yields then3

�−1(0) =
∫

k

∂

∂kμ

Fμ(k) = 0

︸ ︷︷ ︸

seagull identity

, (2.10)

where

Fμ(k) = kμF(k2);
F(k2) = �(k2)[c1 + c2Y (k2)] + c3 D(k2), (2.11)

with c1, c2, c3 �= 0, and

Y (k2) = 1

(d − 1)

kα

k2

∫

�
�αρ(�)�βσ (� + k)�σρβ(−� − k, �, k).

(2.12)

This result may be circumvented by relaxing the assump-
tion made when deriving Eqs. (2.4) and (2.5), allowing the
vertices to contain longitudinally coupled 1/q2 poles; their
inclusion, in turn, triggers the Schwinger mechanism [56,57],
finally enabling the generation of a gauge boson mass
scale [58–61].

Neglecting effects stemming from poles associated with
the four-gluon vertex, the B Q2 and Bcc̄ vertices will then
take the form

˜�μαβ(q, r, p) = ˜�
np
μαβ(q, r, p) + i

qμ

q2
˜Cαβ(q, r, p), (2.13)

˜�μ(q, r, p) = ˜�
np
μ (q, r, p) + i

qμ

q2
˜Cgh(q, r, p), (2.14)

where the superscript “np” stands for “no-pole”, whereas ˜Cαβ

and ˜Cgh represents the bound-state gluon-gluon and gluon-
ghost wave functions, respectively [58,60,61].

Next, in order to preserve the BRST symmetry of the the-
ory, we demand that all STIs maintain their exact form in the

3 We define the dimensional regularization integral measure
∫

k ≡
με

(2π)d

∫

dd k, with d = 4 − ε the space-time dimension, and μ the ’t
Hooft mass scale.

presence of these poles; therefore, Eqs. (2.4) and (2.5) will
now read

qμ
˜�

np
μαβ(q, r, p) + ˜Cαβ(q, r, p) = i�−1

αβ (r) − i�−1
αβ (p),

(2.15)

qμ
˜�

np
μ (q, r, p) + ˜Cgh(q, r, p) = i D−1(r2) − i D−1(p2).

(2.16)

Taking the limit of Eqs. (2.15) and (2.16) as q → 0 on both
sides, matching the zeroth order in q yields the conditions

˜Cαβ(0, r,−r) = 0; ˜Cgh(0, r,−r) = 0, (2.17)

whereas the terms linear in q furnish a modified set of WTIs,
namely

˜�
np
μαβ(0, r,−r) = −i

∂

∂rμ
�−1

αβ (r) −
{

∂

∂qμ
˜Cαβ(q, r,−r − q)

}

q=0
,

(2.18)

˜�
np
μ (0, r,−r) = −i

∂

∂rμ
D−1(r2) −

{

∂

∂qμ
˜Cgh(q, r,−r − q)

}

q=0
.

(2.19)

The presence of the second term on the r.h.s. of Eqs. (2.18)
and (2.19) has far-reaching consequences for the infrared
behavior of �(q2). Specifically, a repetition of the steps lead-
ing to Eq. (2.10) reveals that, whereas the first terms on the
r.h.s. of these equations reproduces again Eq. (2.10) (and their
contributions thus vanish), the second terms survive, giving

�−1(0) = 3

2
g2CA F(0)

{∫

k
k2�2(k2)

[

1 − 3

2
g2CAY (k2)

]

˜C ′
gl(k

2)

−1

3

∫

k
k2 D2(k2)˜C ′

gh(k
2)

}

, (2.20)

where CA is the Casimir eigenvalue of the adjoint represen-
tation [N for SU(N )], ˜Cgl is the form factor of gαβ in the
tensorial decomposition of ˜Cαβ , and

C ′
i (k

2) = lim
q→0

{

∂˜Ci (q, k,−k − q)

∂(k + q)2

}

, i = gl, gh. (2.21)

As we see from Eq. (2.20), a necessary condition for �−1(0)

to acquire a nonvanishing value is that at least one of the ˜C ′
gl

and ˜C ′
gh does not vanish identically; in addition, ˜C ′

gl and ˜C ′
gh

must decrease sufficiently rapidly in the ultraviolet, in order
for the integrals in Eq. (2.20) to give a (positive) finite value.

Let us conclude this section by linking the non-vanishing
of ˜C ′

gl to the generation of a running gluon mass scale of the
type familiar from the quark case [1]. The infrared saturation
of the gluon propagator suggests the physical parametrization
�−1(q2) = q2 J (q2)+m2(q2) where J (q2) ∼ ln q2 at most,
and m2(0) �= 0. Then the modified gluon STI (2.15) will

123
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make it natural to associate the J terms with the qμ
˜�

np
μαβ on

the left-hand side (l.h.s.), and, correspondingly,

˜Cαβ(q, r, p) = m2(p2)Pαβ(p) − m2(r2)Pαβ(r). (2.22)

Focusing on the gαβ components of Eq. (2.22), we obtain [6]

˜Cgl(q, r, p) = m2(r2) − m2(p2) �⇒
q→0

˜C ′
gl(r

2) = dm2(r2)

dr2 .

(2.23)

Then, upon integration, we obtain

m2(q2) = �−1(0) +
∫ q2

0
dy ˜C ′

gl(y), (2.24)

thus establishing the announced link between ˜C ′
gl and a

dynamically generated gluon mass scale [67].

3 Taylor’s theorem for the PT-BFM vertex ˜�μ(q, r, p)

Taylor’s theorem [63], which is particular to the Landau
gauge, establishes an exact constraint on the form fac-
tors comprising the conventional ghost-gluon vertex (all
momenta entering as usual)

i�cn Qa
μ c̄m (p, q, r) = g f amn�μ(q, r, p);

�(0)
μ (q, r, p) = −rμ, (3.1)

in the limit of vanishing ghost momentum (p = 0). In
this section, after briefly recalling how this theorem follows
directly from the SDE satisfied by �μ, we derive the analo-
gous relation for the BFM vertex

i�cn Ba
μ c̄m (p, q, r) = g f amn

˜�μ(q, r, p);
˜�(0)

μ (q, r, p) = (p − r)μ, (3.2)

using three different methods: (i) the Abelian STI (2.5), (ii)
the BQI that connects �μ with ˜�μ, and (iii) the SDE satisfied
by ˜�μ.

3.1 Taylor’s theorem for �μ(q, r, p)

The most compact version of Taylor’s theorem may be
obtained by using the gluon and ghost momenta (q and p,
respectively) for the tensorial decomposition of �μ, namely

�μ(q, r, p) = A(q, r, p)qμ + B(q, r, p)pμ. (3.3)

From the SDE of Fig. 1, we have that

Fig. 1 The SDE satisfied by
the gluon-ghost conventional
(top) and BFM vertex (bottom).
In this latter case an extra term
(̃c) appears, due to the presence
of the additional BFM tree-level
coupling B Qcc̄

+

μ, a

q

ρ, d

σ, e

b

c

(a) (b)

(˜a) (˜b) (˜c)

++

k

=

μ, a

q

n m

μ, a

q

p r

+
ρ, d

σ, e

b

c σ, e

ρ, d

b

c

μ, a

q

μ, a

q

=

n

p

n m

μ, a

q

p r

n m

μ, a

q

p r

n

p m

r

m

r

n

p m

r

n

p

m

r

k

k + p

k

k + p
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g f amn�μ(q, r, p)

= −g f amnrμ + g f dbn
∫

k
(k + p)ρ�ρσ (k)D(k + p)

× Qdamb
σμ (−k, q, r, k + p), (3.4)

where Qdamb
σμ represents the Q Qcc̄ kernel appearing in dia-

gram (b) of that figure. Evidently, in the Landau gauge,
(k + p)ρ�ρσ (k) = pρ�ρσ (k), so that the entire contribu-
tion from the second term in Eq. (3.4) vanishes when p → 0.
Thus, in the Taylor limit, Eq. (3.4) yields simply

�μ(q,−q, 0) = qμ, (3.5)

while, from Eq. (3.3), in the same limit, we have that

�μ(q,−q, 0) = A(q,−q, 0)qμ. (3.6)

Therefore, from Eqs. (3.5) and (3.6) one obtains the known
result

A(q,−q, 0) = 1. (3.7)

Notice that if instead one expresses �μ(q, r, p) in terms
of q and r , namely

�μ(q, r, p) = A1(q, r, p)qμ − B1(q, r, p)rμ, (3.8)

we have that A(q, r, p) = A1(q, r, p) + B1(q, r, p) and
B(q, r, p) = B1(q, r, p), so that Eq. (3.7) yields

A1(q,−q, 0) + B1(q,−q, 0) = 1, (3.9)

which is the form of the theorem employed in previous
works [29,68].

3.2 Taylor’s theorem for ˜�μ(q, r, p) from its STI

Let us now turn to the vertex ˜�μ(q, r, p), and consider its
tensorial decomposition analogous to Eq. (3.3),

˜�μ(q, r, p) = ˜A(q, r, p)qμ + ˜B(q, r, p)pμ. (3.10)

Taking the limit p → 0 we have

˜�μ(q,−q, 0) = ˜A(q,−q, 0)qμ, (3.11)

and after contracting both sides by qμ one gets

qμ
˜�μ(q,−q, 0) = q2

˜A(q,−q, 0). (3.12)

On the other hand, from the STI we find

qμ
˜�μ(q, r, p) = i D−1(r2) − i D−1(p2), (3.13)

which, as p → 0, gives

qμ
˜�μ(q,−q, 0) = q2 F−1(q2). (3.14)

Thus, by combining Eq. (3.12) with Eq. (3.14), one obtains

˜A(q,−q, 0) = F−1(q2), (3.15)

which represents Taylor’s theorem for the BFM ghost-gluon
vertex.

3.3 Derivation from the SDE

We start by writing down the Landau gauge SDE for the ghost
dressing function,

F−1(q2) = 1 + �(q2), (3.16)

where

�(q2) = ig2CA
qμ

q2

∫

k
�μν(k)D(k + q)�ν(−k,−q, k + q).

(3.17)

Next, let us consider the diagrammatic representation of
the SDE satisfied by ˜�μ(q, r, p), shown in Fig. 1. The main
subtlety in dealing with this SDE in the present context is
the fact that its Landau gauge limit needs to be determined
with particular care in the presence of diagrams containing
the tree-level vertex B Q2

i�Ba
μ Qm

α Qn
β
(q, r, p) = g f amn

˜�μαβ(q, r, p),

˜�
(0)
μαβ(q, r, p) = gαβ(r − p)μ + gμβ(p − q + ξ−1

Q r)α

+ gμα(q − r − ξ−1
Q p)β . (3.18)

As the above equation shows, this vertex differs from the
corresponding tree-level Q3 vertex by a longitudinal term
proportional to 1/ξQ, i.e.,

˜�
(0)
μαβ(q, r, p) = �

(0)
μαβ(q, r, p) − ξ−1

Q �P
μαβ(q, r, p);

�P
μαβ(q, r, p) = pβgμα − rαgμβ. (3.19)

This implies in turn that, as has been explained in [5], the
limit ξQ → 0 must be achieved by letting each of the longitu-
dinal momenta act on the adjacent gluon propagator (written
for a general ξ ), yielding, e.g., pβ�βρ(p) = −iξQ pρ/p2; in
this way the would-be divergent 1

ξQ
is cancelled out, and one

may set directly ξQ = 0 in the remaining expression.
These observations are particularly relevant when evalu-

ating diagram (˜b) of Fig. 1, because, unlike its counterpart
(b), it does not vanish in the limit p → 0. The easiest way
to appreciate this fact it to remember that the vanishing of
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p, ξQ → 0

k

ρ, d σ, e

k + q
b c

q

nm

μ, a

q

k

ρ, d

σ, e

k + p

α, i

1
ξQ

ΓP

b c

β, j

n

p

m

r

Fig. 2 The unique contribution to the (˜b) diagram of Fig. 1 which is
non-vanishing in the p → 0 limit

graph (b) relies on the fact that the term (k + p)ρ originating
from the tree-level ghost-gluon vertex is contracted with an
adjacent �ρσ (k) in the Landau gauge, see Eq. (3.4). How-
ever, if the �ρσ enters, in its other end, into a tree-level vertex
˜�(0), the longitudinal momentum (k + p)σ present in �P will
act on it; thus, the original (k + p)ρ will be contracted with
(k + p)ρ/(k + p)2 instead, and will therefore survive when
the limit p → 0 is taken.

It turns out that there is only one possible structure of
this type contained in (˜b), which is shown diagrammatically
in Fig. 2; then, it is relatively straightforward to establish that,
in the p → 0 limit, we have that

(˜b)μ = 1

2
qμ�(q2), (3.20)

with the 1/2 factor originating from the use of the identity
f ads f msb f nbd = 1

2 CA f amn .
Finally, one needs to consider the additional diagram (̃c)

which appears due to the presence of the PT-BFM special
vertex B Qcc̄

�
(0)

cn Ba
μ Qb

ν c̄m (p, q, t, r) = −ig2gμν f mae f ebn . (3.21)

In the p → 0 limit then one obtains for this diagram

(̃c)μ = 1

2
qμ�(q2), (3.22)

which, when added to the previous result, gives for the ˜�μ

SDE in the p → 0 limit

˜�μ(q,−q, 0) = qμ[1 + �(q2)] = qμF−1(q2), (3.23)

where Eq. (3.16) has been used.

3.4 Derivation from the BQI

Finally, let us consider the BQI that relates the conventional
and background ghost-gluon vertices, which reads [54]

˜�μ(q, r, p) =
{

[

1 + G(q2)
]

gν
μ + qμqν

q2 L(q2)

}

�ν(q, r, p)

+ F−1(p2)pν Kμν(q, p, r)

− r2 F−1(r2)Kμ(q, p, r), (3.24)

where Kμν and Kμ are the auxiliary Green’s functions shown
in Fig. 3, which involve composite operators appearing as a
consequence of the anti-BRST symmetry present when quan-
tizing the theory within the BFM framework [66].

When taking the p → 0 limit, on the one hand the second
term on the right-hand side (r.h.s.) of the BQI (3.24) vanishes
directly due to the presence of pν ; on the other hand, the
last term vanishes in the Landau gauge, because the relation
(k + p)ρ�ρσ (k) = pρ�ρσ (k) will be triggered once again.
Thus, in this limit, the BQI reduces to

˜�μ(q,−q, 0) =
{

[1 + G(q2)]gν
μ + qμqν

q2 L(q2)

}

× �ν(q,−q, 0). (3.25)

Now, Taylor’s theorem for the conventional vertex implies
�ν(q,−q, 0) = qν , so that one arrives at

˜�μ(q,−q, 0) = [1 + G(q2) + L(q2)]qμ. (3.26)

At this point, use of the Landau gauge relation [29,69]

F−1(q2) = 1 + G(q2) + L(q2), (3.27)

together with Eq. (3.11), leads immediately to the result of
Eq. (3.15).

μ, a

q

r

ν, m

igf anmKμν(q, p, r) = igf anmgμν +

n

p

μ, a

q r
n

m

gf amnKμ(q, r, p) =

p

Fig. 3 The auxiliary functions appearing in the ghost-gluon vertex BQI
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4 A closer look at the pole part of the ghost vertex

It is well understood that, in order for the gluon mass scale
generation to go through in the way described in [6–8], the
STIs satisfied by the fundamental vertices must be realized
in part by means of a longitudinally coupled pole term. This
fact, in turn, imposes general restrictions on the structure
of the form factors of these vertices; in this section we will
study this issue for the case of the Bcc̄ vertex ˜�μ, which,
due to its reduced tensorial content, is particularly instruc-
tive. In the first subsection we examine in some detail the
structure of the pole part of ˜�μ, its relation with the other
form factors, together with the restrictions imposed by Tay-
lor’s theorem. Then, in the second subsection, we introduce a
concrete Ansatz for the pole part, which, in conjunction with
the solution obtained from the BSE system in Sect. 6, allows
for the sequential determination of all relevant pieces of ˜�μ.

4.1 General considerations and alternative formulation

We start by considering the general form of the vertex
˜�μ(q, r, p), given by

˜�μ(q, r, p) = ˜Anp(q, r, p)qμ + ˜Bnp(q, r, p)pμ

+ qμ

q2
˜Cgh(q, r, p), (4.1)

where both ˜Anp and ˜Bnp are finite functions for all possible
momenta q, r , and p. If we now take the limit p → 0 on the
r.h.s. of Eq. (4.1) and use Taylor’s theorem, we conclude that
˜Anp(q,−q, 0) and ˜Cgh(q,−q, 0) must satisfy the constraint

˜Cgh(q,−q, 0) + q2
˜Anp(q,−q, 0) = q2 F−1(q2). (4.2)

Note that, since F−1(q2) and ˜Anp(q,−q, 0) are finite at the
origin, Eq. (4.2) implies that ˜Cgh(0, 0, 0) = 0 [this last result
may be obtained also from by setting r = 0 directly in the
condition (2.17)].

Let us now introduce

R(q, r, p) := i
D−1(r2) − D−1(p2)

r2 − p2

= r2 F−1(r2) − p2 F−1(p2)

r2 − p2 , (4.3)

and, without loss of generality, set

˜Anp(q, r, p) = R(q, r, p) + f A(q, r, p),

˜Bnp(q, r, p) = 2R(q, r, p) + fB(q, r, p), (4.4)

where f A and fB are arbitrary, purely non-perturbative func-
tions, assumed to be well-behaved in the entire range of their
arguments, and in particular in the important limits q → 0

and p → 0. Note that the tree-level values for ˜Anp and ˜Bnp

are correctly recovered, since R(0) = 1.
Evidently, Eq. (4.3) implies R(q,−q, 0) = F−1(q2);

therefore

˜Anp(q,−q, 0) = F−1(q2) + f A(q,−q, 0), (4.5)

and from Eq. (4.2) we must have that

˜Cgh(q,−q, 0) = −q2 f A(q,−q, 0). (4.6)

Let us next contract ˜�μ(q, r, p) by qμ; clearly, the terms
proportional toR(q, p, r) saturate the STI, and thus we must
have

q2 f A(q, r, p) + (p ·q) fB(q, r, p) + ˜Cgh(q, r, p) = 0.

(4.7)

Note that, in the limit p → 0, Eq. (4.7) simply reproduces
Eq. (4.6); however, if we take instead the limit q → 0, the
matching of the linear terms in q yields the additional relation

fB(0, r,−r) = 2˜C ′
gh(r

2). (4.8)

This relation is particularly interesting because it connects
explicitly the term ˜C ′

gh(r
2) that accompanies the massless

pole [and enters eventually in the mass scale equation (2.20)]
with the function fB , which quantifies the necessary deviation
of ˜Bnp(q, r, p) from the expression that would saturate the
STI identically. At this point one may verify immediately
that, as first stated in [8] [see Eq. (7.4) there]4

˜Bnp(0, r,−r) = 2

[

i
∂ D−1(r2)

∂r2 + ˜C ′
gh(r

2)

]

. (4.9)

It is evident from the above considerations, and particu-
larly from Eq. (4.8), that the terms of ˜�μ(q, r, p) that involve
f A, fB , and ˜Cgh must organize themselves into a transverse
structure. To see this explicitly, use Eq. (4.7) to eliminate any
of the ˜Cgh, f A and fB in favor of the other two, and substitute
into Eq. (4.1), to obtain

˜�μ(q, r, p)=(2p + q)μR(q, r, p)+ fB(q, r, p) pσ Pσμ(q).

(4.10)

Clearly, the expression on the r.h.s. of Eq. (4.10) yields
directly the correct Taylor limit. Note also that q2 pσ Pσμ(q)

4 Notice that the form factor Anp
2 defined in [8] carries in the q → 0

limit a minus sign with respect to the ˜Bnp defined here, see Eqs. (3.17)
and (3.18) in [8].
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= (p·q) rμ − (r ·q) pμ, the latter being the transverse vector
introduced by Ball and Chiu [70].5

According to Eq. (4.10), all memory of the longitudinally
coupled pole has been transferred to the transverse part of the
vertex. Of course, this simple reorganization of terms leading
to Eq. (4.10) could not possibly induce any modifications to
the contribution of the ghost loops to �−1(0). To see that this
is indeed so, note that the first term of Eq. (4.10), in the limit
q → 0, triggers the “seagull identity” and cancels exactly
against the seagull diagram, while the second term gives a
contribution that is manifestly transverse (p → k),

Pμν(q)˜�(q2)

= g2CA Pσν(q)

∫

k
kμkσ D(k)D(k − q) fB(q, k − q,−k).

(4.11)

Then, as q → 0, we obtain

˜�(0) = g2CA

d

∫

k
k2 D2(k) fB(0, k,−k), (4.12)

which, after taking into account Eq. (4.8), coincides with
Eq. (6.11) of [8] (see also Eq. (7.3) of the same paper).

Let us point out that the ˜�μ of Eq. (4.10) could have
been supplemented from the beginning by a transverse piece,
whose form factor, unlike that of Eq. (4.10), would vanish
as q → 0; this is indeed the construction of [70], where
a term a(q, r, p)

[

(r ·q) pμ − (p ·q) rμ)
]

is included, with
a(q, r, p) finite. In the present context, the effect of includ-
ing this additional term would be to modify fB → fB +q2a;
this extra term is clearly irrelevant as far as the gluon mass
scale generation is concerned; for instance, it would have a
vanishing contribution to the r.h.s. of Eq. (4.12). Therefore,
a(q, r, p) will be neglected in what follows.

4.2 A special case

Let us now consider a special realization of the general sce-
nario presented above, which admits a complete solution.
Specifically, we set

f A(q, r, p) = f (q, r, p) = 1

2
fB(q, r, p), (4.13)

which, using Eq. (4.7), implies

5 The vertex studied in [70] is not˜�μ, but rather the photon-scalar vertex
of scalar QED. However, apart from the overall color factor, there is a
direct one-to-one correspondence between the two vertices, mainly due
to the fact that they both satisfy a similar Abelian STI, namely that of
Eq. (2.5), with the simple replacement D(q2) → D(q2), where D(q2)

is the propagator of the charged scalar particle.

f (q, r, p) = −
˜Cgh(q, r, p)

r2 − p2 . (4.14)

Next, and in complete analogy to the expression in Eq. (2.22)
used for the gluon case, we employ for ˜Cgh the simple Ansatz

˜Cgh(q, r, p) = r2h(r2) − p2h(p2), (4.15)

which clearly satisfies the condition ˜Cgh(0, r,−r) = 0, as
required on general grounds. In addition, the quantity ˜C ′

gh(r
2)

is now given by

˜C ′
gh(r

2) = [r2h(r2)]′, (4.16)

while, in the Taylor limit,

˜Cgh(q,−q, 0) = q2h(q2) = −q2 f (q,−q, 0), (4.17)

exactly as required from Eq. (4.6).
The above Ansatz allows for a complete solution of the part

of the ghost sector that affects the dynamics of the gluon mass
scale generation, because, once ˜C ′

gh(r
2) has been determined

from the corresponding BSE system, all other quantities may
be deduced from Eqs.(4.13)–(4.16), and eventually Eq. (4.4).

In particular, from Eq. (4.16) we have that

r2h(r2) = c +
∫ r2

0
dy ˜C ′

gh(y) , (4.18)

where c is the integration constant. Evidently, c drops out
when forming ˜Cgh(q, r, p) using Eq. (4.16),

˜Cgh(q, r, p) =
∫ r2

0
dy ˜C ′

gh(y) −
∫ p2

0
dy ˜C ′

gh(y); (4.19)

on the other hand, in the Taylor limit (p → 0) Eq. (4.19)
yields

˜Cgh(q,−q, 0) =
∫ q2

0
dy ˜C ′

gh(y), (4.20)

which may be reconciled with Eqs. (4.17) and (4.18) only
for the value c = 0.

At this point it is natural to introduce the combination

F−1
eff (q2) := F−1(q2) + h(q2)

= F−1(q2)[1 + h(q2)F(q2)
︸ ︷︷ ︸

σ(q2)

], (4.21)

where the function

σ(q2) = D(q2)

∫ q2

0
dy ˜C ′

gh(y) (4.22)
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quantifies the relative deviation of the vertex form factors
from their “canonical” form, due to the presence of the pole
term. Specifically, from Eq. (4.4) one obtains

˜Anp(q, r, p) = Reff(q, r, p) = 1

2
˜Bnp(q, r, p) , (4.23)

where Reff is obtained from the R in Eq. (4.3) by carrying
out the substitution F−1(q2) → F−1

eff (q2).

5 Coupled dynamics of massless pole formation

The actual behavior of ˜C ′
gl and ˜C ′

gh is determined by a homo-
geneous system of linear integral equations, which may be
derived from the SDEs satisfied by the corresponding B Q2

and Bcc̄ vertices as q → 0 [6,71]. As in this limit the zeroth
order terms vanish by virtue of Eq. (2.17), the derivative terms
become the leading contributions, and the resulting homoge-
neous equations assume the form of two coupled BSEs, given
by

f amn lim
q→0

˜Cαβ(q, r, p)

= f abc lim
q→0

{ ∫

k

˜Cγ δ(q, k,−k − q)�γρ(k)�δσ (k + q)

× Kbmnc
1ραβσ (−k, r, p, k + q)

+
∫

k

˜Cgh(q, k,−k − q)D(k)D(k + q)

Kbmnc
2αβ (−k, r, p, k + q)

}

,

f amn lim
q→0

˜Cgh(q, r, p)

= f abc lim
q→0

{ ∫

k

˜Cγ δ(q, k,−k − q)�γρ(k)�δσ (k + q)

× Kbmnc
3ρσ (−k, r, p, k + q)

+
∫

k

˜Cgh(q, k,−k − q)D(k)D(k + q)

× mKbmnc
4 (−k, r, p, k + q)

}

. (5.1)

To proceed further, we will approximate the four-point
BS kernels Ki by their lowest-order set of diagrams shown
in Figs. 4 and 5, in which the various diagrams contain fully
dressed propagators and vertices (notice that all gluon propa-
gators are “quantum” ones, and all vertices of the “� type”).
In particular for the three-gluon and ghost-gluon vertices we
will consider the simple Ansätze

�μαβ(q, r, p) = fgl(r)�
(0)
μαβ(q, r, p),

�μ(q, r, p) = fgh(r)�(0)
μ (q, r, p), (5.2)

where �(0) represents the standard tree-level expression of
the corresponding vertex, and the form factors fgl and fgh

are considered to be functions of a single kinematic variable.
We then arrive at the following final equations

˜C ′
gl(q

2) = 8π

3
αsCA

[∫

k

˜C ′
gl(k

2)�2(k)�(k + q)N1(k, q)

+1

4

∫

k

˜C ′
gh(k

2)D2(k)D(k + q)N2(k, q)

]

,

˜C ′
gh(q

2) = 2παsCA

[∫

k

˜C ′
gl(k

2)�2(k)D(k + q)N3(k, q)

+1

2

∫

k

˜C ′
gh(k

2)D2(k)�(k + q)N4(k, q)

]

, (5.3)

where

N1(k, q) = (q ·k)[q2k2 − (q ·k)2]
q4k2(k + q)2 f 2

gl(k + q)
[

8q2k2

+ 6(q ·k)(q2 + k2) + 3(q4 + k4) + (q ·k)2
]

,

N2(k, q) = (q ·k)[q2k2 − (q ·k)2]
q4 f 2

gh(k + q),

N3(k, q) = (q ·k)[q2k2 − (q ·k)2]
q2k2 f 2

gh(k + q),

N4(k, q) = (q ·k)[q2k2 − (q ·k)2]
q2(k + q)2 f 2

gh(k + q). (5.4)

Notice, in particular, that in the q → 0 limit, ˜Cgl(0) saturates
to a constant [62], whereas the structure of the N3 and N4

kernels implies that ˜Cgh(0) = 0.

6 Numerical analysis

Before proceeding to solve the BSE system (5.3), some of
the functions that appears in it ought to be specified.

To begin with, for the gluon propagator � and ghost dress-
ing function F we will employ the available SU(3) lattice
data [14]. As for the vertex form factors fgl and fgh, we
use the curves shown in Fig. 6. More specifically, in the
case of the three-gluon vertex, the left panel of Fig. 6 shows
a compilation of the lattice data of this form factor in the
symmetric configuration (defined as q2 = p2 = r2 and
q · p = q · r = p · r = −q2/2, e.g., with a 2π/3 angle
between each pair of momenta) [72,73], properly normal-
ized by dividing out the coupling [g = 2 at μ = 4.3 GeV for
the data set at hand, corresponding to αs = 0.32]. Notice,
in particular, the suppression of the vertex with respect to its
tree-level value, as well as the sign reversal (the so-called
“zero crossing”) at small momenta, followed by a (logarith-
mic) divergence at the origin. This characteristic behavior
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Fig. 4 The BSE satisfied by the
gluon bound-state wave function
˜Cαβ (center) in the presence of
both gluon and ghost massless
poles. The simplified four-gluon
and gluon-ghost kernels used
are also shown
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Fig. 5 The BSE satisfied by the
ghost bound-state wave function
˜Cgh (center) in the presence of
both gluon and ghost massless
poles. The simplified four-ghost
and gluon-ghost kernels used
are also shown
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can be traced back to the delicate balance between contribu-
tions originating from gluon loops, which are “protected” by
the corresponding gluon mass scale, and the “unprotected”
logarithms coming from the ghost loops that contain (even
nonperturbatively) massless ghosts [74–81].

For the ghost-gluon vertex, instead, the right panel
of Fig. 6 shows the numerical solution of the corresponding
vertex SDE equation in the symmetric configuration within

the so-called “one-loop dressed” approximation. The form
factor is found to be equal at its tree-level value at both IR
and UV values, with a characteristic peak appearing at inter-
mediate momenta (around 0.75 GeV). The presence of this
peak is in fact quite general, appearing in different kinematic
configurations, e.g., the soft gluon (q → 0) and soft ghost
(p → 0) limits (see respectively Fig. 6 and 7 of Ref. [68]).
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Fig. 6 (Left panel) SU(3) lattice data (evaluated with various β, vol-
umes and lattice actions) for the form factor fgl in the symmetric con-
figuration [72,73]; the continuous line corresponds to the optimal data

description obtained in [62] when solving the BSE in the absence of
ghosts. (Right panel) the ghost-gluon vertex form factor fgh in the sym-
metric configuration obtained from solving its SDE

Fig. 7 Unnormalized gluon and ghost solutions ˜S′
gl and ˜S′

gh of the BSE system (5.3) (left panel), and the corresponding normalized curves (right
panel)

The (unnormalized) solutions ˜S′
gl and ˜S′

gh obtained when
using these ingredients in the BSE system (5.3) corresponds
to the eigenvalue αBSE

s = 0.43, and are shown on the left
panel of Fig. 7. While it is clear that QCD dynamics is strong
enough to generate massless poles for both vertices studied,
the presence of a hierarchy in their relative “strengths” is
also evident, as ˜S′

gh is considerably suppressed with respect

to ˜S′
gl (with the latter being roughly 5 times the former at

peak value).
The common normalization constant c can be determined

with the procedure recently described in [62], that is, by
requiring that the normalized gluon BS amplitude give rise,
when plugged into Eq. (2.24), to a running gluon mass scale
that is (i) monotonically decreasing and (ii) vanishes in the
UV. This implies [62] C ′

i = −|c|S′
i , with

|c| = �−1(0)
∫ ∞

0
dy ˜S′

gl(y)

, (6.1)

and, correspondingly,

m2(q2) = −
∫ ∞

q2
dy ˜C ′

gl(y). (6.2)

The resulting gluon mass scale is shown in Fig. 8, where it
is also compared to the result obtained in [62] in the absence
of ghosts, when αBSE

s = 0.45. As can be clearly appreciated,
the presence of ghosts implies a faster running; indeed, one
finds that the mass scale can be accurately fitted through the
formula [82]

m2(q2) = m2(0)/[1 + (q2/m2
1)

1+p], (6.3)

with m1 = 0.37 GeV and p = 0.24 as opposed to m1 = 0.36
GeV and p = 0.1 in the absence of ghosts. An additional
consistency check can be performed by substituting Eq. (6.1)
into Eq. (2.20), thus obtaining a second order algebraic equa-
tion for αs , given by
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Fig. 8 The gluon mass scale obtained by integrating the gluon BSE
solution, compared to the one obtained in the absence of ghosts

Aα2
s + Bαs + C = 0, (6.4)

where

A = 3C2
A

32π3 F(0)

∫ ∞

0
dy y2�2(y)Y (y)˜S′

gl(y),

B = −3CA

8π
F(0)

∫ ∞

0
dy

[

y2�2(y)˜S′
gl(y) − 1

3
y2 D2(y2)˜S′

gh(y)

]

,

C = −
∫ ∞

0
dy ˜S′

gl(y). (6.5)

Substituting into Eq. (6.5) the solutions found for ˜S′
gl(y) and

˜S′
gh(y) we obtain (all values in GeV2) A = 110.02, B =

−24.25, C = −9.32, yielding αSDE
s = 0.43 ≡ αBSE

s .
As a final step we can fully reconstruct the form factors

characterizing the three-gluon and ghost-gluon vertices pole

Fig. 10 The function σ(q2) measuring the relative deviation of the
gluon-ghost vertex form factors from their canonical form, due to the
presence of the pole term

parts, by using the results obtained so far in conjunction
with Eqs. (2.23) and (4.15). The results are shown in Fig. 9;
notice that due to their suppression, the presence of ˜Cgl and
˜Cgh will not appreciably modify the no-pole parts. This can
be seen also in Fig. 10 where we plot the quantity σ(q2) intro-
duced in Eq. (4.22), which quantifies the relative deviation of
the gluon-ghost vertex form factors from their “canonical”
form, due to the presence of the pole term. Such deviation
saturates at the 2% level, making the presence of poles prac-
tically undetectable from studies of three-point form factors
alone.

7 Conclusions

In this work we have studied the impact of the ghost sector
on the dynamics of gluon mass scale generation, using the
specific framework provided by the PT-BFM formalism. In
this approach, the infrared finiteness of the gluon propagator,

Fig. 9 Reconstructed form factors ˜Cgl and ˜Cgh of the pole parts of the three-gluon and gluon-ghost vertices. The momenta p and r are treated as
independent
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and the gluon mass scale connected to it, arise from the action
of massless bound state poles, which enter in the structure
of the fundamental vertices of the theory. Within this con-
text, our present analysis reveals that the contribution of the
poles associated with the ghost gluon vertex ˜�μ are partic-
ularly suppressed with respect to those originating from the
corresponding poles of ˜�μαβ . This fact is illustrated rather
clearly in Fig. 9, where both vertex functions, ˜Cgl(q, r, p)

and ˜Cgh(q, r, p), which accompany the corresponding poles
and account for their relative “strengths”, are directly com-
pared, for the entire range of Euclidean momenta. Evidently,
whereas the qualitative structure of both is rather similar, their
relative size is substantially different. Consequently, the “glu-
onic” pole contributions, ˜Cgl(q, r, p), are completely deci-
sive both for the generation and the momentum evolution of
the gluon mass scale. The above result is non-trivial, in the
sense that there is no obvious a-priori argument that would
imply the observed suppression of the ghost sector. In fact,
the mere existence of solutions of the BSE system, let alone
the observed insensitivity of the relevant eigenvalue to the
presence of ˜C ′

gh(r
2), may be only established once the full

analysis has been carried out.
We emphasize that throughout our analysis we have

explicitly neglected any possible effects stemming from
poles associated with the four-gluon vertex. In that sense,
all such possible terms have been assumed to vanish, or be
numerically suppressed. It would be clearly interesting to
eventually relax this assumption and gain some direct infor-
mation of the actual size of such contributions. Note, how-
ever, that from the technical point of view this task is par-
ticularly complex, mainly due to the rich tensorial structure
of this vertex [83–86]. In fact, in this case the corresponding
vertex functions, ˜C4gl(q, r, p, t), depend on four rather than
three kinematic variables, and, equivalently, their derivatives
as q → 0 will depend on two instead of one, which will vastly
complicate the structure and treatment of the would-be BSE
system.

Let us finally mention that an additional novel element
presented in the present work is the analysis of the behavior
of ˜�μ in the limit of vanishing ghost momentum, leading to
the derivation of the analogue of Taylor’s theorem for the
PT-BFM formalism. The resulting constraint relates one of
the form factor of ˜�μ with the ghost-dressing function. In
addition to its relevance for the reconstruction of the full
˜Cgh(q, r, p) presented here, this particular constraint might
turn useful for future lattice simulations of the PT-BFM ver-
tices [87,88], which could provide further valuable insights
to this entire field of research.
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