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Abstract Hadron decay chains constitute one of the main
sources of information on the QCD spectrum. We discuss
the differences between several partial wave analysis for-
malisms used in the literature to build the amplitudes. We
match the helicity amplitudes to the covariant tensor basis.
Hereby, we pay attention to the analytical properties of
the amplitudes and separate singularities of kinematical and
dynamical nature. We study the analytical properties of the
spin-orbit (LS) formalism, and some of the covariant tensor
approaches. In particular, we explicitly build the amplitudes
for the B → ψπK and B → D̄ππ decays, and show that
the energy dependence of the covariant approach is model
dependent. We also show that the usual recursive construc-
tion of covariant tensors explicitly violates crossing sym-
metry, which would lead to different resonance parameters
extracted from scattering and decay processes.

1 Introduction

The high quality data on hadron production and decays that
are or will be available from BaBar, BelleII, BESIII, CMS,
CLAS12, COMPASS, GlueX, LHCb, and other experiments,
necessitate rigorous amplitude analysis. This is particularly
true for the extraction of resonance parameters that are based
on analytical partial waves. Moreover, analytical reaction
amplitudes are needed in conjunction with lattice data to

a e-mail: mikhail.mikhasenko@hiskp.uni-bonn.de
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study the hadron spectrum from first-principles lattice QCD
calculations [1–5].

In this paper, we focus on three-body decays, aka 1-to-3
processes. In recent years such reactions have led to ample
data that resulted in the observation of new exotic phenom-
ena, e.g. the so-called XYZ states in heavy meson decays [6–
8], and that are also used in studies of excited mesons and
baryons. The issues we address and the methodology we
present are, however, of relevance to other analyses as well,
for example to baryon resonance studies in photoproduction
[9,10], or meson spectroscopy from pion or photon beam
fragmentation [11–13].

In the modern literature, there seems to be a lot of
confusion regarding properties of the reaction amplitudes
employed in analyses of such processes. This is often stated
in the context of a potentially nonrelativistic character of
certain approaches [9,14,15]. As we explain below, how-
ever, rather than arising from relativistic kinematics, the dif-
ferences between the various formalisms have a dynami-
cal origin. Reaction amplitudes are given by the scattering
matrix elements between initial and final states that repre-
sent asymptotically free particles. Such states belong to a
unitary, noncovariant representation of the Lorentz group.
Since the scattering operator is a Lorentz scalar, reaction
amplitudes share the transformation properties of the free
particle states. A typical three particle decay process is dom-
inated by two-body resonances, and can be well approxi-
mated by a finite number of partial waves. The latter can be
given by the helicity partial waves or the Russell–Saunders,
aka LS amplitudes [16]. For the LS amplitudes, one couples
particle states in the canonical representation. The relation
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between the helicity and LS basis is a straightforward orthog-
onal transformation. Because of the noncovariant transfor-
mation properties of the reaction amplitude, partial waves
transform in a nontrivial way as well, e.g. helicity amplitudes
mix under Lorentz boosts through Wigner rotations. Never-
theless, all of the amplitudes referred to above (the helicity
amplitudes, the helicity partial waves, the LS partial wave
amplitudes) are relativistic, i.e. have well defined behavior
under Lorentz transformations.

Since the helicity amplitudes involve asymptotically free
particle states, they must be proportional to free particle
wave functions, e.g. Dirac spinors or polarization tensors.
These wave functions have mixed transformation properties,
i.e. have both covariant (Lorentz or Dirac), and noncovari-
ant (helicity) indices. The Lorentz and Dirac indices need
to be contracted with covariant tensors built from particle
four-vectors and Dirac gamma matrices to yield the nonco-
variant helicity amplitudes. Helicity amplitudes can therefore
be expressed as linear combinations of products of covariant
tensors and wave functions with coefficients that are scalar
functions of the Mandelstam invariants. It can be shown that
these scalar functions have only dynamical singularities as
demanded by unitarity [17], and for this reason are useful
when analyzing singularities of the partial waves. Further-
more, these scalar functions are invariant under crossing
which makes them convenient to relate amplitudes in the
decay and scattering kinematics.

There exist an approach for constructing the scalar func-
tions from an assumed model for the partial waves, hereafter
referred to as the covariant projection method (CPM) [14,18–
20], that starts from a LS partial wave model (or equiv-
alently the Cartesian, aka Zemach amplitudes [21]) but
writes them in a covariant fashion. The method has a draw-
back, which is related to the behavior under crossing (see
Sect. 3.1). The alternative, which we refer to as the canon-
ical approach [16,22–25], is to use the well known rela-
tion between the helicity amplitudes and the helicity par-
tial waves [16] to determine the scalar functions in terms of
the partial wave models. The differences between these two
approaches to relate partial waves and scalar functions result
in factors which are confusingly referred in the literature as
“relativistic corrections”. These are actually Lorentz invari-
ant functions and therefore can be absorbed into the scalar

functions. In both the CPM and canonical approaches, the
relativistic kinematics is properly taken into account. Thus,
the differences in these approaches are dynamical in nature.

In what follows, we present a detailed comparison of these
two approaches, paying specific attention to the analytical
properties, which are among the few constraints that can be
imposed in a model independent way. Instead of present-
ing results for a general case, we find it more pedagogical to
compare these constructions in a few concrete examples. The
examples we discuss are of special interest to various ongo-
ing analyses, and are complex enough to illustrate the gen-
eral principles. The first example is the parity violating (PV)
three-body decay B0 → ψπ−K+, with ψ = J/ψ,ψ(2S).
The analyses by Belle and LHCb show nontrivial structures
appearing in the ψ(2S) π [25–28], and in the J/ψ π chan-
nel [29]. These are of particular interest, because a resonance
in these channels would require an exotic interpretation [6–
8]. The rest of the paper is organized as follows. In Sect. 2
we discuss the canonical approach on the example of the
B → ψπK decay. By relating the helicity partial waves
to the scalar amplitudes via the partial wave expansion, we
derive constraints and isolate the kinematical singularities.
We also discuss implication of these constraints for the LS
partial wave amplitudes. The details of the amplitude param-
eterizations are given in the Appendices and are presented in
a way that can be implemented in the standard data analysis
tools [30,31]. In Sect. 3 we examine the CPM approach and
compare this model with the findings from Sect. 2. We men-
tion the crossing symmetry properties of CPM using, as an
example, B0 → D̄0π+π−, which was recently analyzed by
LHCb within this formalism [32]. Summary and conclusions
are given in Sect. 4.

2 Analyticity constraints for B → ψπK

In Fig. 1 we show a diagram representing the kinematics of
the decay B → ψ(→ μ+μ−)πK . The spinless particles
B, π , K are stable against the strong interaction. The ψ is
narrow enough to completely factorize its decay dynamics.
Thus, we construct the amplitude considering ψ to be sta-
ble. More details, including the dilepton decay of the ψ , are
given in Appendices A and B. We use pi , i = 2 . . . 4 to label

Fig. 1 Reaction diagrams for a
the B → ψ(→ μ−μ+)πK
decay process, and for b the
ψB → πK s-channel scattering
process. The t-channel process
ψπ → B̄K is indicated by the
vertical line

(a) (b)
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the momenta of B, π , and K respectively. The momentum
of the ψ will be denoted by p̄1, for a reason which we will
explain below. The helicity amplitude for the decay process
B → ψπK is denoted by Aλ(s, t), λ being the helicity of
ψ , i.e.〈ψπK , out|B, in〉 = (2π)4δ4(p2 − p̄1 − p3 − p4)Aλ.
The amplitude depends on the standard Mandelstam vari-
ables s = (p3 + p4)

2, t = ( p̄1 + p3)
2, and u = ( p̄1 + p4)

2

with s + t + u = ∑
i m

2
i .

The B meson decays weakly, so Aλ is given by the sum
of a PV and parity conserving (PC) amplitude. The difficulty
treating the decay channel directly is that the mass of the
decaying particle should be considered on the same footing
as the other dynamical variables (s, t , u). This is demanded
by unitarity, which implies that above a threshold, the ampli-
tude is a singular function of the corresponding dynamical
variable. It is therefore simpler to study singularities in a
scattering channel and cross to the other channels by analyt-
ical continuation in the momentum of the ψ , i.e. by setting
p̄1 = −p1 [33]. In general, under crossing, helicity ampli-
tudes are mixed by Wigner rotations. In our case, however,
since crossing can be realized through a (unphysical) boost in
the direction of motion of the ψ , there is no change in helicity.

We begin with the discussion of the PV amplitudes in
the s-channel. The s-channel resonances correspond to the
K ∗’s and dominate the reaction. As discussed in the previous
section, the analysis of the experimental data indicates a pos-
sible signal of resonances in the exotic ψπ spectrum, which
in our notation correspond to the t-channel. Once we have
constructed the s-channel amplitudes, the t-channel ones can
be treated similarly (cf. Appendix B).

In the center of mass of the s-channel scattering process,
the ψ momentum defines the z-axis, the momenta p3 and p4

lie in the xz-plane. We call p (q) to the magnitude of the
incoming (outgoing) three momentum. The scattering angle
θs is a polar angle of the pion (see Fig. 2). The quantities
depend on the Mandelstam invariants through

zs ≡cos θs = s(t−u)+(m2
1−m2

2)(m
2
3 − m2

4)

λ
1/2
12 λ

1/2
34

≡ n(s, t)

λ
1/2
12 λ

1/2
34

,

(1a)

p = λ
1/2
12

2
√
s
, q = λ

1/2
34

2
√
s
, (1b)

Fig. 2 Scattering kinematics in the s-channel rest frame. In the decay
kinematics, the momentum and the spin of the ψ is reversed, so to keep
the same helicity

with λik = (
s − (mi + mk)

2
) (
s − (mi − mk)

2
)
. The func-

tion n(s, t) is a polynomial in s, t . To incorporate resonances
in the πK system with a certain spin j , we expand the ampli-
tude in partial waves,

Aλ(s, t, u) = 1

4π

∞∑

j=|λ|
(2 j + 1)A j

λ(s) d
j
λ0(zs), (2)

where A j
λ(s) are the helicity partial wave amplitudes in the s-

channel. In Eq. (2) the entire t dependence enters though thed
functions. The d functions have singularities in zs which lead
to kinematical singularities in t of the helicity amplitudesAλ.
The dynamical singularities in t , related to, for example, the
possible resonances in the ψπ channel, can only be repro-
duced if the the sum contains the infinite number of partial
waves. In practice the t- or u-channel resonances (singular-
ities) are accounted for explicitly through t- or u-channel
partial waves, and to avoid double counting each series is
truncated at a finite number of terms. This defines the so-
called isobar model in which

Aλ(s, t, u) = A(s)
λ (s, t, u)+A(t)

λ (s, t, u)+A(u)
λ (s, t, u), (3)

with,

A(s)
λ (s, t, u) = 1

4π

Jmax∑

j=|λ|
(2 j + 1)A(s) j

λ (s) d j
λ0(zs), (4)

where Jmax is finite. However, we remark that the analysis of
kinematical singularities has general validity, and might be
applied to the original untruncated series.

The expressions for the (t) and (u) isobars are similar to
Eq. (4). Note, that due to the superscript (s) the amplitudes
A(s) j

λ (s) are not identical to the helicity partial waves, A j
λ(s)

of Eq. (2). This is because the other two terms on the right
hand side of Eq. (3) also contribute to the s-channel partial
wave expansion. We refer to the former as the isobar partial
waves or simply, isobars. The difference between the partial
waves, which are defined in a model independent way, and
isobars, which appear in the specific model as in Eq. (3),
has important consequences when establishing the relation
between phases of the isobar amplitudes and those of the
partial waves [34–40]. This issue, however, is not directly
related to the topic of this paper and we do not discuss it any
further.

We return to the partial wave expansion, and proceed
with the analysis of kinematical singularities. An extensive
discussion and the full characterization of these singulari-
ties can be found in [16,41–45]. We recall that d j

λ0(zs) =
d̂ j
λ0(zs)ξλ0(zs), where ξλ0(zs) =

(√
1 − z2

s

)|λ| = sin|λ| θs
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is the so-called half angle factor that contains all the kine-
matical singularities in t . The reduced rotational function
d̂ j
λ0(zs) is a polynomial in s and t of order j − |λ| divided

by the factor λ
( j−|λ|)/2
12 λ

( j−|λ|)/2
34 . The helicity partial waves

A j
λ(s) have singularities in s. These have both dynamical and

kinematical origin. The former arise, for example, from s-
channel resonances. The kinematical singularities, just like
the t-dependent kinematical singularities, arise because of
external particle spin. We explicitly isolate the kinematic fac-
tors in s, and denote the kinematical singularity-free helicity
partial wave amplitudes by Â j

λ(s).
1 First, the term (pq) j−|λ|

is factorized out from the helicity amplitude A j
λ(s). This fac-

tor is there to cancel the threshold and pseudothreshold sin-
gularities in s that appear in d̂ j

λ0(zs). Second, we follow [16]
and introduce the additional kinematic factor Kλ0 (‘±’ is
short for λ = ±1). These factors are required to account for
a mismatch between the j and L dependence in the angular
momentum barrier factors in presence of particles with spin.
Finally, the kinematical singularity-free helicity partial wave
amplitudes Â j

λ(s) are defined by

A j
0(s) = K00 (pq) j Â j

0(s) for j ≥ 1, (5a)

A j
±(s) = K±0 (pq) j−1 Â j

±(s) for j ≥ 1, (5b)

A0
0(s) = 1

K00
Â0

0(s) for j = 0, (5c)

with K00 and K±0 given by

K00 = m1

p
√
s

= 2m1

λ
1/2
12

, (5d)

K±0 = q = λ
1/2
34

2
√
s
. (5e)

Specifically, it is expected that A j
λ(s) ∼ pL1qL2 at thresh-

old, where L1 and L2 are the lowest possible orbital angular
momenta in the given helicity and parity combination. This
explains why j = 0 requires a special treatment [45], since
for j ≥ 1 we have L1 = j − 1, but for j = 0 the low-
est is L1 = j + 1. In addition, the K -factors have powers
of

√
s as required to ensure factorization of the vertices of

Regge poles. Similarly, as explained before, m1 is dynamical
and thus the kinematical singularity-free amplitudes are not
expected to contain singularities in m2

1, and as will be seen
below, the m1 dependence of the K -factor takes care of that.
The Â j

λ(s) are left as dynamic functions, which are unknown
in general and cannot be calculated from first principles. Usu-
ally they are parameterized in terms of a sum of Breit-Wigner
amplitudes with Blatt–Weisskopf barrier factors.

1 For fermion-boson scattering, the Â j
λ(s) can still have a branch point

at s = 0, as discussed in [44].

We now seek a representation of Aλ(s, t) in terms of the
scalar functions, as discussed in Sect. 1. For the PV amplitude
this is given by

Aλ(s, t) = εμ(λ, p1)

[

(p3 − p4)
μ − m2

3 − m2
4

s
(p3 + p4)

μ

]

×C(s, t) + εμ(λ, p1)(p3 + p4)
μB(s, t). (6)

Although the second term in brackets may look like an
extra 1/s pole, it cancels when multiplied by (p3 + p4)

μ.
This choice simplifies the final expressions, but we remark
that any other choice of independent tensor structures
would lead to the same results. In the s-channel center
of mass frame the ψ polarization vectors are given by
εμ(±, p1) = (0,∓1,−i, 0)/

√
2 for the transverse polariza-

tions and εμ(0, p1) = (|p1|/m1, 0, 0, E1/m1) for the lon-
gitudinal polarization. The energies Ei are calculated from
the momenta and are fully determined by s. The functions
B(s, t) and C(s, t) are the kinematical singularity free scalar
amplitudes discussed in the Sect. 1.

We can match Eqs. (2) and (6), and express the scalar
functions as a sum over kinematical singularity free helicity
partial waves. The ratio Aλ(s, t)/ (Kλ0 ξλ0(zs)), computed
using Eq. (6), is compared to the same ratios computed using
the helicity partial waves from Eq. (2). This yields

− C(s, t)
n(s, t)(s + m2

1 − m2
2)

4m2
1s

+ B(s, t)
λ12

4m2
1

= A0(s)

K00 ξ00(zs)
= 1

4π

⎛

⎝
∑

j>0

(2 j + 1)(pq) j Â j
0(s)d̂

j
00(zs)

+ λ12

4m2
1

Â0
0(s)

)

, (7)

± √
2C(s, t) = A±(s)

K±0 ξ10(zs)

= ± 1

4π

∑

j>0

(2 j + 1)(pq) j−1 Â j
±(s) d̂ j

10(zs), (8)

from λ = ± and λ = 0, respectively, which can be combined
to obtain

4πB(s, t) = Â0
0(s) + 4m2

1

λ12

∑

j>0

(2 j + 1)(pq) j

[

Â j
0(s)d̂

j
00(zs) + s + m2

1 − m2
2√

2m2
1

Â j
+(s) zs d̂

j
10(zs)

]

.

(9)

Neither B(s, t) nor C(s, t) can have kinematical singu-
larities in s or t . In Eqs. (7)–(9), d̂ j

10(zs) is regular in t , and
the s singularities at (pseudo)thresholds are canceled by the
factor (pq) j−1. The latter factor contains a high-order pole
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at s = 0. Such pole is a feature of the dynamical model,
and specifically arises because at s = 0 the little group is
not SO(3) anymore. The latter motivates the partial wave
expansion, thus it is not surprising that the truncation of the
partial wave series results in such singularities [16,46].2 This
construction hence does not constrain the poles at s = 0.

For the same reason the sum in Eq. (9) has no kinematical
singularities in s and t , however the 1/λ12 factor in front of
the sum generates two poles at s± = (m1 ±m2)

2, unless the
expression in brackets vanishes at those points. This means
that the Â j

λ(s) with different λ cannot be independent func-
tions at the (pseudo)threshold. Explicitly, in the limit s → s±
at fixed t one has zs → ∞ and using [43],

d̂ j
λ0(zs)

zs→∞−−−−→ (−1)
λ+|λ|

2
(2J )! [J (2J − 1)]1/2

2J J [(1 + λ)!(1 − λ)!]1/2

× z J−|λ|
s

〈 j − 1, 0; 1, λ| j, λ〉 for |λ| ≤ 1, (10)

one finds that the expression within the brackets in Eq. (9)
behaves as

Â j
0(s)

(zs) j

〈 j − 1, 0; 1, 0| j, 0〉 − s + m2
1 − m2

2√
2 m2

1

Â j
+(s)

× (zs) j√
2 〈 j − 1, 0; 1, 1| j, 1〉 . (11)

This combination has to vanish to cancel the 1/λ12, thus
one finds (for j > 0)

Â j
+(s) = 〈 j − 1, 0; 1, 1| j, 1〉 g j (s) + λ12 f j (s), (12a)

Â j
0(s) = 〈 j − 1, 0; 1, 0| j, 0〉 s + m2

1 − m2
2

2m2
1

× g′
j (s) + λ12 f ′

j (s), (12b)

where g j (s), f j (s), g′
j (s), and f ′

j (s) are regular functions at
s = s±, and g j (s±) = g′

j (s±). Note that, while the func-
tional form considered in Eq. (12) complies with the gen-
eral requirements we are imposing, it actually implements
more freedom than required by the former. For instance, one
could take f j (s) = 0 without any loss of generality. The
particular choice taken in Eq. (12), however, turns out to be
useful for the comparisons with other parameterizations (LS
and CPM) which we will discuss in Sect. 3. Together with
Eq. (12), the expressions in Eqs. (6), (8) and (9) provide the
most general parameterization of the amplitude that incorpo-
rates the minimal kinematic dependence that generates the
correct kinematical singularities as required by analyticity.

2 For example, in Regge theory these poles are canceled by the daughter
Regge trajectories [16,47].

Upon restoration of the kinematic factors, the original
helicity partial wave amplitudes read ( j > 0)

A j
+(s) = p j−1q j

[

〈 j − 1, 0; 1, 1| j, 1〉 g j (s) + λ12 f j (s)

]

,

(13a)

A j
0(s) = p j−1q j

[

〈 j − 1, 0; 1, 0| j, 0〉 s + m2
1 − m2

2

2m1
√
s

g′
j (s)

+ m1√
s
λ12 f ′

j (s)

]

, (13b)

and A0
0(s) = λ

1/2
12 /(2m1) Â0

0(s), where Â0
0(s) is regular at

(pseudo)threshold. A particular choice of the functions g j (s),
g′
j (s), f j (s) and f ′

j (s) constitutes a given hadronic model.
A specific example is given in Appendix B.

2.1 Implications for the LS partial wave amplitudes

The advantage of the LS basis is that the identification of
the correct threshold factors is straightforward. For a given
system of two particles with spins j1, j2 and corresponding
helicities λ1, λ2, the relation between a two-particle state in
the helicity and LS basis is

| j	; LS〉 =
√

2L + 1

2 j + 1

∑

λ1λ2

〈L , 0; S, λ1 − λ2 | j	〉

× 〈 j1, λ1; j2,−λ2 |S, λ1 − λ2〉 | j	; λ1λ2〉 , (14)

where 	 is the projection of the total angular momentum
j . For the B → ψπK amplitude, it implies the following
relation between the LS amplitudes G and the helicity ampli-
tudes,

G j
L(s) =

√
2L + 1

2 j + 1

∑

λ

〈L , 0; 1, λ | jλ〉 A j
λ(s). (15)

The amplitudes with L = j ± 1 and L = j differ by
parity. Equation (15) can be inverted to relate the helicity
partial wave amplitudes with the LS amplitudes G j

l (s),

A j
λ(s) = p j−1q j

(√
2 j − 1

2 j + 1
〈 j − 1, 0; 1, λ| j, λ〉Ĝ j

j−1(s)

+
√

2 j + 3

2 j + 1
〈 j + 1, 0; 1, λ| j, λ〉p2Ĝ j

j+1(s)

)

.

(16)

In Eq. (16) we denoted the LS partial wave amplitudes
with the threshold factors explicitly factored out by Ĝ j

l (s),

i.e. G j
j±1(s) = p j±1 q j Ĝ j

j±1(s). We now compare the gen-
eral expression for the helicity partial waves with the spin-
orbit LS partial waves. We find that Eq. (16) matches the
general form in Eq. (12) when
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g j (s) =
√

2 j − 1

2 j + 1
Ĝ j

j−1(s), (17a)

f j (s) = 1

4s

√
2 j + 3

2 j + 1
〈 j + 1, 0; 1, 1| j, 1〉 Ĝ j

j+1(s), (17b)

g′
j (s) = 2m1

√
s

s + m2
1 − m2

2

√
2 j − 1

2 j + 1
Ĝ j

j−1(s), (17c)

f ′
j (s) = 1

4m1
√
s

√
2 j + 3

2 j + 1
〈 j + 1, 0; 1, 0| j, 0〉 Ĝ j

j+1(s).

(17d)

The common lore is that the LS formalism is intrinsically
nonrelativistic. However, the matching in Eq. (17) proves that
the formalism is fully relativistic, but care should be taken
when choosing a parameterization of the LS amplitude so that
the expressions in Eq. (17) are free from kinematical singu-
larities. For example, if one takes the functions Ĝ j

j−1(s) and

Ĝ j
j+1(s) to be proportional to Breit–Wigner functions with

constant couplings, the amplitudes g′
j (s) and f ′

j (s) would

end up having a pole at s = m2
2 − m2

1, and/or a branch point
at s = 0 unexpected for boson-boson scattering. On the other
hand, as discussed in Sect. 2, the pole at s = 0 is part of the
dynamical model. It is clear that using Breit–Wigner param-
eterizations, or any other model for helicity amplitudes, i.e.
the left-hand sides of Eq. (17), instead of the LS amplitudes
helps prevent unwanted singularities.

3 Comparison with the covariant projection method

We consider now the CPM approach of [14,18–20]. As
said, the method is based on the construction of explicitly
covariant expressions. To describe the decay a → bc, we
first consider the polarization tensor of each particle with
index i and spin ji , εiμ1...μ ji

(pi ). Using the decay momentum
pbc = (pb − pc)/2 and the total momentum Pbc = pb + pc,
we build a tensor Xμ1...μL (pbc, Pbc) to represent the orbital
angular momentum of the bc system. In order to find total
angular momentum tensor, we first combine the polarizations
of b and c into a “total spin” tensor Sμ1...μS (εb, εc) (orthogo-
nal to the momentum pb + pc). Then, we combine the tensor
Sμ1...μS (εb, εc) with the orbital tensor Xμ1...μL and finally
contract the result with the polarization of a, thus mimick-
ing the LS construction. The tensors S and X have definite
spin and parity, i.e. are in an irreducible representation of the
rotation group in the particle rest frame. Thus they must be
symmetric, traceless, and orthogonal to the total momentum
in the particles system, pb + pc. If one of the daughters is
unstable, we can implement its decay in a similar way. The
procedure is recursive, and relatively simple for low spins.

Together with the explicit covariance, it makes the formalism
very attractive.

We use the CPM to build the amplitude for B → ψπK .
The construction of an amplitude for an arbitrary spin of the
intermediate state is cumbersome, and we limit ourselves to
the special case of an intermediate K ∗ with j = 1. We start
with the tensor amplitude for the scattering process ψB →
K ∗ → πK . The orbital angular momentum of the decay
K ∗ → πK in P-wave is given by Xρ(q, P). The tensor
is constructed from a four-vector of the relative momentum
qμ = (pμ

3 − pμ
4 )/2 and the total momentum of the system

Pμ = pμ
3 + pμ

4 = pμ
1 + pμ

2 . For the PV amplitudes, the
initial process ψB → K ∗ is described by two waves. The
corresponding orbital tensors are the unit rank-0 tensor for
the S-wave and rank-2 tensor Xρμ(p, P), with pρ = (pρ

1 −
pρ

2 )/2, for the D-wave. Hence

Aλ(s, t) = εμ(λ, p1)

(

−gμν + PμPν

s

)

Xν(q, P)gS(s)

+ερ(λ, p1)Xρμ(p, P)

×
(

−gμν + PμPν

s

)

Xν(q, P)gD(s), (18)

where P is the K ∗ momentum. The final P-wave orbital
tensor is Xν(q, P) = q⊥

ν = qν − Pν P · q/s. The D-wave
orbital tensor Xρμ(p, P) = 3pρ

⊥ pμ
⊥/2 − gρμ

⊥ p2⊥/2, with
pμ
⊥ = pμ − Pμ P · p/s, and gρμ

⊥ = gρμ − Pρ Pμ/s. Explic-
itly,

A+(s, θs) = −q
sin θs√

2

[

gS(s) + p2

2
gD(s)

]

,

A0(s, θs) = q
E1

m1
cos θs

[
gS(s) − p2gD(s)

]
, (19)

and matching with Eq. (12) gives

g1(s) = g′
1(s) = 4π

3
gS(s), (20a)

f1(s) = 2π

3s
gD(s), (20b)

f ′
1(s) = −4π

3s

s + m2
1 − m2

2

m2
1

gD(s). (20c)

The threshold conditions g1(s±) = g′
1(s±) are satisfied,

and the functions f1(s) and f ′
1(s) are regular at the thresholds.

Finally, we show the relation between the CPM and the LS
amplitudes. The comparison with Eq. (16) leads to

3

4π
G1

0(s) = gS(s) q

√
1

3

(
E1

m1
+ 2

)

− gD(s) q p2

√
1

3

(
E1

m1
− 1

)

, (21a)
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3

4π
G1

2(s) = gD(s) q p2

√
1

6

(

2
E1

m1
+ 1

)

− gS(s) q

√
2

3

(
E1

m1
− 1

)

. (21b)

Although the gS(s) and gD(s) of the CPM formalism,
see Eq. (18), are typically interpreted as the S and D par-
tial wave amplitudes, we see that this is the case only at
(pseudo)threshold s = s±, where the factor E1/m1 − 1 van-
ishes. In Sect. 3.2 we discuss a specific example to show the
numerical difference between the various approaches.

3.1 Crossing symmetry; and the decay B → D̄ππ

An issue with the CPM formalism is the explicit violation
of crossing symmetry. The recursive procedure explained
in [14,18–20] produces different scalar amplitudes if applied
in the scattering or in the decay kinematics. For the decay
kinematics, the CPM amplitude is constructed according to
a chain B → ψK ∗(→ Kπ). The tensor Xν(q, P) describes
the P-wave decay K ∗ → Kπ as before. S- and D-waves
are still possible for the decay B → ψK ∗. The same sym-
bolic expression in Eq. (18) holds for the decay kinematics,
but Xμν is now constructed from the relative momentum
p̂ = (P − p̄1)/2 between K ∗ and ψ in the B rest frame (we
restored the p̄1 for the momentum of the ψ in the decay kine-
matics), and orthogonalized with respect to the B momentum
p2,

Aλ(s, t) = ε∗
μ(λ, p̄1)

(

−gμν + PμPν

s

)

Xν(q, P)gS(s)

+ερ∗(λ, p̄1)Xρμ( p̂, p2)

(

−gμν + PμPν

s

)

× Xν(q, P)gD(s), (22)

where Xρμ depends on p̂μ
⊥ = p̂μ − pμ

2 p2 · p̂/m2
2, and

ĝρμ
⊥ = gρμ − pρ

2 p
μ
2 /m2

2. As mentioned before, crossing
symmetry requires the helicity amplitude Aλ(s, t) to be the
same up to a phase for the decay and the scattering process.
The expressions for the helicity amplitudes read

A+(s, θs) = −q
sin θs√

2

(

gS(s) + p2gD(s)
s

2m2
2

)

, (23a)

A0(s, θs) = q cos θs
(
E1

m1
gS(s) − γ (s) p2 gD(s)

s

m2
2

s − m2
1 − m2

2

2m1m2

)

,

(23b)

where γ (s) = (s−m2
1 +m2

2)/(2m2
√
s) is the boost factor of

K ∗ in the B rest frame discussed in [14,19]. The matching to
the general form in Eq. (12) is analogous. Although Eqs. (19)
and (23) agree at threshold, the dynamical models differ in

general, and the additional factors appearing in Eq. (23) are
part of the model.

The issue with the crossing symmetry is particularly inter-
esting, and we want to illustrate it further on a simpler exam-
ple. We consider the decay B → D̄ππ . This reaction has
been analyzed by LHCb using the CPM formalism [32].
Since none of the external particles have spin, the reaction is
described by a single scalar amplitude. Because of cross-
ing symmetry, the amplitude is the same scalar function
of the Mandelstam variables in both scattering and decay
kinematics. We consider the s-channel scattering kinematics
BD → π+π−. We use the indices 1, 2, 3 and 4 for the D, B,
π+ and π− momenta. Therefore, P = p1 + p2 is the center
of mass momentum, s = P2 is the invariant mass of the ππ

system, and p and q are the breakup momenta for the initial
and final states. For simplicity, we restrict this discussion to
the case of a spin-1 isobar, BD → ρ → π+π−. The CPM
amplitude is given by

A(s, t) = Xμ(p, P)

(

−gμν + PμPν

s

)

Xν(q, P) gP(s)

(24)

In the center of mass frame of the s-channel, Xμ(p, P) =
(0, 0, 0, p) and Xν(q, P) = (0, q sin θs, 0, q cos θs) are
purely spacelike vectors proportional to the breakup momenta.
Therefore, the amplitude in Eq. (24) matches the expecta-
tions. For the decay process, the orbital tensor Xμ(p, P)

is replaced by Xμ( p̂, p2) to be orthogonalized to the four-
momentum p2. As a result, a factor γ (s) = (s − m2

1 +
m2

2)/(2m2
√
s) appears, and the breakup momentum from

the B → D̄ρ orbital tensor is evaluated in the rest frame
of B. The amplitudes for the decay process crossed to the
scattering kinematics are

A[BD→ππ ] = pq cos θs gP(s),

A[B→D̄ππ ] = γ (s)

√
s

m2
pq cos θs gP(s). (25)

The two amplitudes differ by a factor γ (s)
√
s/m2 = (s −

m2
1 +m2

2)/(2m
2
2). While this factor is analytic in s and does

not spoil the counting of kinematical singularities discussed
in the previous section, its appearance breaks crossing sym-
metry and this shows the drawback of the CPM formalism.

The issues arise from the construction of an amplitude as
subsequent one-to-two decays. At first sight this appears as
a natural choice. However, a well defined amplitude should
have only asymptotic states on the external legs. This would
exclude any decay into a resonance. One needs to take a step
back to the definition of a resonance, i.e. a pole in the scatter-
ing amplitude. Therefore, the consistent procedure would be
to write the amplitude in the scattering kinematics and then
use crossing symmetry to analytically continue the amplitude
into the decay region.
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Fig. 3 Comparison of the lineshape of K ∗(892) and K ∗(1410) in the πK -invariant mass distribution, constructed with the different formalisms.
In the left panel we show the result with no barrier factors. In the right panel, we include the customary Blatt-Weisskopf factors

3.2 Kπ -mass distribution in different approaches

To explore the differences between the various approaches,
we consider the example of two intermediate vectors in the
πK channel: the K ∗(892), with mass and width MK ∗ =
892 MeV, K ∗ = 50 MeV, and the K ∗(1410), with MK ∗ =
1414 MeV, K ∗ = 232 MeV. The differential width is given
by the expression,

d

ds
=

∑

j

N j

(∣
∣
∣A

j
0(s)

∣
∣
∣
2 + 2

∣
∣
∣A

j
+(s)

∣
∣
∣
2
)

ρ(s), (26)

where ρ(s) = λ
1/2
12 λ

1/2
34 /s, and N j is a normalization con-

stant. In Fig. 3 we show the results for five different scenarios.
We consider the CPM formalisms discussed in Eqs. (19) and
(23) (for the scattering and decay kinematics, respectively),
setting gS(s) = 0 and gD(s) = TK ∗(s), with

TK ∗(s) ≡ 0.1

M2
K ∗(892) − s − iMK ∗(892)K ∗(892)

+ 1

M2
K ∗(1410) − s − iMK ∗(1410)K ∗(1410)

. (27)

For the LS formalism, we choose the couplings in Eq. (16)
to be Ĝ1

0(s) = 0, Ĝ1
2(s) = TK ∗(s). The LS amplitude in

the decay kinematics differs from the one in the scattering
kinematics only because of the breakup momentum of B →
ψK ∗, calculated in the B rest frame or in the K ∗ rest frame,
respectively. Finally, we draw a line for our proposal given
by Eq. (B3), the only nonzero term in the sum is F1

2 (s) =
TK ∗(s).

The partial wave amplitudes for two-to-two scattering
processes are proportional to pL1qL2 , where p (q) are the

initial (final) state break up momentum and the particles
in L1(L2)-waves. This behavior comes from the expansion
of the amplitude at threshold, and generates an unphysical
growth at higher energies. This behavior is customarily mod-
ified by model-dependent form factors.3 The most popular
approach is based on a nonrelativistic model introduced by
Blatt and Weisskopf [48,49]. For the plot on the right in Fig. 3
we multiply the amplitudes by the Blatt–Weisskopf barrier
factors

B1(q) =
√

1

1 + q2R2 , (28a)

B2(p) =
√

1

9 + 3p2R2 + p4R4 , (28b)

for the initial P- and final D-waves, respectively. The cou-
plings are set as gS(s) = Ĝ1

0(s) = F1
0 (s) = 0 and

gD(s) = Ĝ1
2(s) = F1

2 (s) = TK ∗(s)B1(q)B2(p) for the cor-
responding formalisms in Eqs. (18), (19) and (B3). The con-
stant R is chosen to be 5 GeV−1, which corresponds 1 fm,
i.e. the scale of the strong interaction.

We see in Fig. 3 that the Kπ invariant mass squared distri-
bution is distorted differently in all models. It is straightfor-
ward to track down where the differences come from. In the
JPAC amplitude of Eqs. (B3) and (B4), the threshold factor in
the F1

2 (s) function in Eq. (B3) is set to λ12, in contrast to the
CPM and LS formalisms where the factor p2 = λ12/(4s) is
used. This makes the differential width distribution different
by the factor 1/s2. Another difference originates from the
factor E1/m1 for the A0(s) amplitude which was required

3 i.e. having left-hand singularities only.
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by analyticity. We showed that it is not present in the LS
approach, as one can see in Eq. (16). In the physical domain
this factor behaves as 1/

√
s at the amplitude level, resulting

in 1/s difference in the the differential width.

4 Summary and conclusions

We considered different approaches for constructing ampli-
tudes for scattering and decay processes. Although the prob-
lem might be viewed as standard exercise, there seems to
be confusion among amplitude analysis practitioners, as to
which formalism best represents S-matrix constraints [18,
19]. Specifically, we have compared the canonical helicity
formalism [16,22–25] and the covariant projection method
[14,18–20]. We used analyticity as a guiding principle to
examine these approaches. Using as example the decay
B → ψπK , and the helicity formalism, we separated the
kinematical factors from the dynamical functions. We then
matched the helicity amplitudes with the most general covari-
ant expression. In this process we identified kinematical con-
straints on the helicity amplitudes. We have shown that the
naïve parameterization of the LS couplings fails to satisfy
all the constraints required by analyticity. We found that, in
contrast to LS parameterization, an extra factor (s + m2

1 −
m2

2)/(2m1
√
s) naturally appears in the tensor formalism

when written for the scattering kinematics. More interest-
ingly, the customary recipes in the CPM approach explicitly
violate crossing symmetry. In particular, we showed that the
tensor approach discussed in [14,18–20], when applied to
the decay kinematics directly, introduces a peculiar energy
dependence which has no clear physical motivation.

To address the issue of the relativistic corrections, we
recall the relation between the helicity and the LS ampli-
tudes. This relation is valid for any energy. The concept of
the spin-orbit decomposition is fully relativistic. However,
analyticity prevents the LS couplings to be parameterized as
simple constants. We remark that our observations and con-
clusions are strictly valid only when asymptotic states are
considered. We performed extensive studies for the four-legs
process which describes two-to-two scattering, or the one-
to-three decay, when the mother particle has an (infinitely)
narrow width. The extension to other reactions requires ded-
icated studies.

Regarding the question raised in the title, we conclude that
the helicity formalism is the right guide. Specifically, kine-
matical singularities have been classified for helicity partial
waves. However, crossing to the decay channel is more nat-
ural for covariant amplitudes, while the LS amplitudes have
the correct threshold behavior built in. Since a model for an
amplitude is always required, examining the behavior of all
of these amplitudes as we did here can maximize the consis-
tency of the model with S-matrix principles.
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Appendix A: Parity-conserving amplitudes in the s chan-
nel

We consider the most general scattering amplitude for
ψB → πK with parity conservation enforced. The only
tensor structure allowed is

Aλ(s, t, u) = −iεμνρσ p
μ
1 pν

2 p
ρ
3 ε(λ, p1)

σ D(s, t), (A1)

where the Levi–Civita tensor is defined by ε0123 = 1 and
D(s, t) is the singularity free scalar amplitude.

As follows from the derivation in [16], the kinematical
factor is K±0 = √

s pq = λ
1/2
12 λ

1/2
34 /(4

√
s), i.e. the minimal

L in the final and initial states matches j . Removing also the
half-angle factor ξ10(zs) = sin θs , we get

A±(s, θs)

K±0 ξ±0(zs)
= 1√

2
D(s, t), (A2)

where the partial wave helicity amplitudes can be written as

A±(s, θs) = 1

4π

∑

j>0

(2 j + 1) K±0 (pq) j−1 Â j
±(s)

× d̂ j
±0(zs) sin θs . (A3)

Finally, we can match the scalar amplitude D(s, t) with
the partial waves helicity amplitudes,

D(s, t) =
√

2

4π

∑

j>0

(2 j + 1)(pq) j−1 Â j
+(s)d̂ j

+0(zs). (A4)
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Appendix B: Theminimal singularity-free parameteriza-
tion of the helicity amplitudes

We consider a model for the reaction B → ψπK , using the
general parameterization of the helicity amplitudes obtained
in Sect. 2 and Appendix A. We use the isobar model of Eq. (3),
and neglect any u-channel (ψK ) resonant contribution. We
already provided the covariant form of the s-channel ampli-
tude A(s)

λ (s, t) in Eq. (6), where the scalar functions B and C
are related to the kinematical singularity free helicity partial
waves Â(s), j

λ . The general form is in Eq. (12). A particular

choice of the functions g(s)
j , g(s)′

j , f (s)
j and f (s)′

j determines
our model. To match the LS parameterization at threshold,
we set

g(s)
j =

√
2 j − 1

2 j + 1
F (s), j
j−1 ,

f (s)
j =

√
2 j + 3

2 j + 1
〈 j + 1, 0; 1, 0| j, 0〉F (s), j

j+1 , (B1)

g(s)′ =
√

2 j − 1

2 j + 1
F (s), j
j−1 ,

f (s)′
j =

√
2 j + 3

2 j + 1
〈 j + 1, 0; 1, 1| j, 1〉F (s), j

j−1 , (B2)

where F (s), j
l are independent dynamical functions,

Â(s), j
0 = s + m2

1 − m2
2

2m2
1

(√
2 j − 1

2 j + 1

× 〈 j − 1, 0; 1, 0| j, 0〉F (s), j
j−1 + λ12

√
2 j + 3

2 j + 1

×〈 j + 1, 0; 1, 0| j, 0〉F (s), j
j+1

)

, (B3)

Â(s), j
+ =

√
2 j − 1

2 j + 1
〈 j − 1, 0; 1, 1| j, 1〉F (s), j

j−1

+ λ12

√
2 j + 3

2 j + 1
〈 j + 1, 0; 1, 1| j, 1〉F (s), j

j+1 . (B4)

The amplitudes in the t-channel are analogous to the s-
channel ones upon replacement of momenta and masses, 2 ↔
3. The corresponding dynamical functions are F (t), j

l .
Combining the s-channel PV amplitude in Eq. (6), the s-

channel PC amplitude in Eq. (A1), and their t-channel coun-
terparts, the full amplitude reads

Aλ(s, t, u)

= εμ∗(λ, p̄1)A(s, t, u)μ

= εμ∗(λ, p̄1)

[(

(p3 − p4)μ − m2
3 − m2

4

s
(p3 + p4)μ

)

× C (s)(s, t) + (p3 + p4)μB
(s)(s, t)

+
(

(p2 − p4)μ − m2
2 − m2

4

t
(p2 + p4)μ

)

× C (t)(s, t) + (p2 + p4)μB
(t)(s, t)

− iεσνρμ p̄
σ
1 pν

2 p
ρ
3 D

(s)(s, t)

− iεσνρμ p̄
σ
1 pν

3 p
ρ
2 D

(t)(s, t)

]

, (B5)

with x = s, t , and

mx =
{
m2 for x = s,
m3 for x = t,

λ1x =
{
λ12 for x = s,
λ13 for x = t,

qx =
{

λ
1/2
34 /(2

√
s) for x = s,

λ
1/2
24 /(2

√
t) for x = t,

px = λ
1/2
1x

2
√
x
, (B6)

C (x)(s, t) = 1

4π
√

2

∑

j>0

√
2 j + 1(pxqx )

j−1

×
[

F (x), j
j−1

√
2 j − 1 〈 j − 1, 0; 1, 1| j, 1〉

+ F (x), j
j+1 λ1x

√
2 j + 3 〈 j + 1, 0; 1, 1| j, 1〉

]

× d̂ j
10(zx ), (B7)

B(x)(s, t) =
√

3

4π
F (x),0

1 + 1

4π

4m2
1

λ1x

×
∑

j>0

√
2 j + 1(pxqx )

j x + m2
1 − m2

x√
2m2

1

×
[

F (x), j
j−1

√
2 j − 1

(
1√
2

〈 j − 1, 0; 1, 0| j, 0〉

×d̂ j
00(zx ) + 〈 j − 1, 0; 1, 1| j, 1〉 d̂ j

10(zx )zx

)

+ F (x), j
j+1 λ1x

√
2 j + 3

×
(

1√
2

〈 j + 1, 0; 1, 0| j, 0〉 d̂ j
00(zx )

+〈 j + 1, 0; 1, 1| j, 1〉 d̂10(zx )zx

)]

, (B8)

D(x)(s, t) =
√

2

4π

∑

j>0

(2 j + 1)(pxqx )
j−1 F (x), j

j d̂ j
10(zx ).

(B9)

The decay ψ → μ+(q2)μ
−(q1) can be attached by contract-

ing the tensor amplitude Aμ from Eq. (B5) with the tensor
given by the fermion vector current.
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∑

spins

M = A(s, t, u)μū(q1)γ
μv(q2). (B10)

The square of the leptonic tensor summed over the unob-
served polarizations of the leptons yields

|M|2 = 4A(s, t, u)μA(s, t, u)∗ν

(

qμ
1 q

ν
2 +qν

1q
μ
2 − m2

1

2
gμν

)

.

(B11)

The amplitude is linear in the dynamical functions F (x), j
l ,

i.e.

Aμ =
∑

jlx

F (x), j
l (Zx j

l )μ, (B12)

where the index j is the spin in the x-channel. The sum over
j goes from 0 to ∞ in general, while in the considered isobar
model one includes only the terms with relevant resonances.
The orbital angular momentum l runs over j − 1, j, j + 1.
In the special case j = 0, the possible values of l are 0 and
1 only. The functions F (x), j

l contain the dynamical input.
They include the resonance amplitude (e.g. parameterized
by the Breit-Wigner formula) and left hand singularities (e.g.
Blatt-Weisskopf barrier factors). The (Zx j

l )μ are kinematic
functions responsible for the right angular dependence. The
square of the matrix element is a bilinear form in the dynam-
ical functions

|M|2 =
∑

j j ′ll ′xx ′
F (x), j
l

(
F (x ′), j ′
l ′

)∗
V x jx ′ j ′
ll ′ ,

V x jx ′ j ′
ll ′ = 4

[(
Zx j
l

)

μ

(

qμ
1 q

ν
2 +qν

1q
μ
2 − gμν

2
m2

1

) (
Zx ′ j ′
l ′

)∗
ν

]

.

(B13)

The expression for the kinematic function (Zx j
l )μ is given in

Eq. (B14). The first two terms in Eq. (B14) are used for the
PV decay, the last term for the PC one

(Zx j
l )μ = Cx

μζ
x j
l + Bx

μβ
x j
l + Dx

μδ
x j
l . (B14)

The functions Cx
μ, Bx

μ, and Dx
μ describe the tensor structures

in front of C (x), B(x), and D(x) in Eq. (B5). The functions
ζ
x j
l , β

x j
l and δ

x j
l take over the kinematic dependence of the

functions C (x), B(x) and D(x), i.e. they are factors in front of
F (x), j
l

Cs
μ = (p3 − p4)μ − m2

3 − m2
4

s
(p3 + p4)μ,

Bs
μ = (p3 + p4)μ, Ds

μ = −iεσνρμ p̄
σ
1 pν

2 p
ρ
3 , (B15)

Ct
μ = (p2 − p4)μ − m2

2 − m2
4

t
(p2 + p4)μ,

Bt
μ = (p2 + p4)μ, Dt

μ = −iεσνρμ p̄
σ
1 pν

3 p
ρ
2 , (B16)

with

ζ
x j
j−1 = (pxqx ) j−1

4π
√

2

× √
(2 j + 1)(2 j − 1) 〈 j − 1, 0; 1, 1| j, 1〉 d̂ j

10(zx ),
(B17)

ζ
x j
j = 0, (B18)

ζ
x j
j+1 = λ1x (pxqx ) j−1

4π
√

2

× √
(2 j + 1)(2 j + 3) 〈 j + 1, 0; 1, 1| j, 1〉 d̂ j

10(zx ),
(B19)

β
x j
j−1 = 4m2

1(pxqx )
j

4πλ1x

× x + m2
1 − m2

x√
2m2

1

√
(2 j + 1)(2 j − 1)

×
(

1√
2

〈 j − 1, 0; 1, 0| j, 0〉 d̂ j
00(zx )

+ 〈 j − 1, 0; 1, 1| j, 1〉 × d̂ j
10(zx )zx

)

, (B20)

β
x j
j = 0, (B21)

β
x j
j+1 = 4m2

1(pxqx )
j

4π

× x + m2
1 − m2

x√
2m2

1

√
(2 j + 1)(2 j + 3)

×
(

1√
2

〈 j + 1, 0; 1, 0| j, 0〉 d̂ j
00(zx )

+ 〈 j + 1, 0; 1, 1| j, 1〉 d̂10(zx )zx

)

, (B22)

δ
x j
j−1 = 0, (B23)

δ
x j
j =

√
2

4π
(2 j + 1)(pxqx )

j−1d̂ j
10(zx ), (B24)

δ
x j
j+1 = 0. (B25)

The special case j = 0 has ζ x0
l = βx0

0 = βx0−1 = δ
x j
l = 0

and βx0
1 = √

3/(4π).
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