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Abstract We analytically and numerically disclose the
effects of the higher-order correction terms in the gravity
and in the gauge field on the properties of s-wave holo-
graphic superconductors. On the gravity side, we consider
the higher curvature Gauss–Bonnet corrections and on the
gauge field side, we add a quadratic correction term to the
Maxwell Lagrangian. We show that, for this system, one
can still obtain an analytical relation between the critical
temperature and the charge density. We also calculate the
critical exponent and the condensation value both analyti-
cally and numerically. We use a variational method, based
on the Sturm–Liouville eigenvalue problem for our analyti-
cal study, as well as a numerical shooting method in order to
compare with our analytical results. For a fixed value of the
Gauss–Bonnet parameter, we observe that the critical temper-
ature decreases with increasing the nonlinearity of the gauge
field. This implies that the nonlinear correction term to the
Maxwell electrodynamics makes the condensation harder.
We also study the holographic conductivity of the system
and disclose the effects of the Gauss–Bonnet and nonlinear
parameters α and b on the superconducting gap. We observe
that, for various values of α and b, the real part of the conduc-
tivity is proportional to the frequency per temperature, ω/T ,
as the frequency is large enough. Besides, the conductivity
has a minimum in the imaginary part which is shifted toward
greater frequency with decreasing temperature.

1 Introduction

The correspondence between the gravity in a d-dimensional
anti-de Sitter (AdS) spacetime and the conformal field theory
(CFT) residing on the (d − 1)-dimensional boundary of this
spacetime, known as the AdS/CFT correspondence, provides
an established method for calculating correlation functions in
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a strongly interacting field theory using a dual classical grav-
ity description [1–3]. It has been confirmed that this duality
can be applied to solving the problem of high temperature
superconductors in condensed matter physics [4]. This is due
to the fact the high temperature superconductors are basically
in a strong coupling regime, and thus one expects that the
holographic method could give some insights into the pairing
mechanism in these systems. Understanding the mechanism
of high temperature superconductors has long been a myster-
ies problem in modern condensed matter physics. Recently,
it was suggested that it is logical to understand the proper-
ties of high temperature superconductors on the boundary of
spacetime by considering classical general relativity in one
higher dimension. This idea is called holographic supercon-
ductors (HSCs) [5–7] and has got a lot of attention in the
past decade. According to the HSC proposal, on the gravity
side, a Maxwell field and a charged scalar field are intro-
duced to describe theU (1) symmetry and the scalar operator
in the dual field theory, respectively. This holographic model
undergoes a phase transition from a black hole with no hair
(normal phase/conductor phase) to the case with scalar hair
at low temperatures (superconducting phase) [8].

Nowadays, the investigations on the HSC have attracted
considerable attention and have become an active field of
research. Let us review some work in this direction. In the
background of Schwarzschild AdS black holes in Einstein
gravity, the properties of HSCs have been explored in [9–
16]. The studies were also generalized to higher-order grav-
ity theories such as Gauss–Bonnet gravity [17–23]. It was
argued that the critical temperature of the HSC decreases
with increasing the backreaction, although the effect of the
Gauss–Bonnet coupling is more subtle: the critical temper-
ature first decreases then increases as the coupling tends
towards the Chern–Simons value in a backreaction depen-
dent fashion [20]. It was confirmed that the critical exponent
of the condensation in Gauss–Bonnet HSCs still obeys the
mean field theory and has the value 1/2 [19]. Other studies
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on the holographic superconductor have been carried out (see
for example [24–49] and the references therein).

It is also interesting to investigate the electrical conductiv-
ity of HSC in the dual CFT as a function of frequency. In the
AdS/CFT correspondence, the electrical conductivity can be
computed by looking at the linear response of the system to
fluctuations of the fields Ax and gtx in the bulk. These fluc-
tuations are dual to the electric current Jx and energy current
Ttx operators in the CFT. In the context of linear Maxwell
field, the conductivity of HSC was computed in [4,6,7]. In
the presence of nonlinear electrodynamics, the conductivity
of HSC has been investigated in [50,51]. Also, in the context
of Born–Infeld nonlinear electrodynamics, the optical prop-
erties of Lifshitz HSC have been explored in [52]. It was
demonstrated that this superconductor exhibits a metamate-
rial property for low frequency of the external electric field
for a certain region of the nonlinear parameter. The effects of
the Weyl coupling parameter and the Lifshitz dynamic expo-
nent on the conductivity of HSC have been explored in [53].
In Ref. [54], rotating BTZ black holes were considered as the
gravity dual to a (1 + 1) dimensional superconductor. In this
case, the dependence on the angular momentum on the con-
ductivity has been investigated. Recently, the authors of [55]
have analytically computed the holographic conductivity of
HSCs in the presence of Born–Infeld nonlinear electrody-
namics by considering the backreaction of the matter field
on the bulk metric. Further investigations on the holographic
conductivity of HSCs have been performed in [56,57].

In this work, we will address the effects of the higher-
order corrections on the holographic conductivity of the s-
wave HSC. On the gravity side, we will consider the Gauss–
Bonnet curvature correction terms which is the most general
action in the 5D spacetime and on the gauge field side we
add the quadratic nonlinear gauge term. We shall investigate
the effects of these correction terms on the imaginary and
real parts of the electrical conductivity of the system. With
these correction terms, especially including a Gauss–Bonnet
correction to the 5D action, we have the most general action
with second-order field equations in 5D [58], which provides
the most general model for a s-wave HSC. Furthermore, in an
effective action approach to string theory, the Gauss–Bonnet
term corresponds to the leading-order quantum corrections to
gravity, and its presence guarantees a ghost-free action [59].
The purpose of this work is to analytically and numerically
explore the effects of these correction terms on the properties
of the s-wave HSC.

The plan of the work is as follows. In Sect. 2, we set up
our model of the HSC in Gauss–Bonnet gravity with nonlin-
ear electrodynamics in the probe limit and derive the equa-
tions of motion. In Sect. 3, we analytically and numerically
compute the relationship between the critical temperature
and the charge density of Gauss–Bonnet HSC. In Sect. 4,
we study condensation operator near the critical temperature

using analytical and numerical method. In Sect. 5 we investi-
gate the electrical conductivity of the HSC in Gauss–Bonnet
gravity with a nonlinear correction term to the Maxwell field.
In particular, we shall find the ratio of the gap frequency in
conductivity to the critical temperature. Finally, we summa-
rize and discuss our results in Sect. 6.

2 HSC in Gauss–Bonnet gravity with nonlinear
electrodynamics

We consider the 5D Einstein–Gauss–Bonnet gravity in the
background of AdS spaces which is described by the action
[60]

S =
∫

d5x
√−g

[
R − 2� + α

2

(
R2 − 4RμνRμν

+Rμνρσ Rμνρσ

)+ LM

]
, (1)

where � = −6/ l2 is the cosmological constant of 5-
dimensional AdS spacetime with radius l, α is the Gauss–
Bonnet coefficient with dimension (length)2, Rμνρσ , Rμν

and R are the Riemann curvature tensor, Ricci tensor, and
the Ricci scalar, respectively. For convenience, hereafter we
set the AdS radius l = 1. We consider the Lagrangian density
of the matter field, LM , as

LM = LNL − |∇ψ − iq Aψ |2 − m2|ψ |2, (2)

where ψ is a scalar field, q andm are, respectively, the charge
and the mass of the scalar field, and the Lagrangian density
of the nonlinear electrodynamics is given by [61,62]

LNL = F + bF2 + O(F4), (3)

where F = − 1
4 F

μνFμν is the Maxwell Lagrangian and b
is a parameter. The term bF2 is the first-order leading non-
linear correction term to the Maxwell field. There are sev-
eral motivations for choosing the nonlinear Lagrangian in
the form of (3). First, the series expansion of the three well-
known Lagrangians of nonlinear electrodynamics such as
Born–Infeld, logarithmic and exponential nonlinear electro-
dynamics have the form of (3) [63]. Second, calculating a
one-loop approximation of QED, it was shown [64] that the
effective Lagrangian is given by (3). Besides, if one neglects
all other gauge fields, one may arrive at the effective quadratic
order of U (1) as F2 [65,66]. Furthermore, considering the
next-order correction terms in the heterotic string effective
action one can obtain the F2 term as a correction to the
bosonic sector of supergravity, which has the same order as
the Gauss–Bonnet term [65–68],

Lcor = β
[
α
(
R2 − 4RμνRμν + Rμνρσ Rμνρσ

)+ b(FμνFμν)
2] .

(4)
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The field equations can be obtained by varying the action
(1) with respect to the metric gμν , the scalar field ψ , and the
gauge field Aμ. We find

Rμν − (R − 2�)

2
gμν

−α

2

{
1

2
gμν

(
R2 − 4Rρσ Rρσ + Rκλρσ Rκλρσ

)

−2RRμν + 4RμλR
λ
ν + 4Rμρνσ R

ρσ − 2R ρσλ
μ Rνρσλ

}

= Tμν, (5)

(∇μ − iq Aμ)(∇μ − iq Aμ)ψ − m2ψ = 0, (6)

∇μ

[
(1 + 2bF) Fμν

] = iq
[
ψ∗(∇ν − iq Aν)ψ

−ψ(∇ν + iq Aν)ψ∗] , (7)

where Tμν is the matter-stress tensor

Tμν = 1

2

(
F + bF2

)
gμν − 2 (1 + 2bF) FμρF

ρ
ν

−1

2
m2|ψ |2gμν − 1

2
gμν |∇ψ − iq Aψ |2

+1

2

[
(∇ν − iq Aν)ψ(∇μ + iq Aμ)ψ∗ + μ ↔ ν

]
.

(8)

The metric of a planar Schwarzschild–AdS black hole in 5D
is [69]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dx2 + dy2 + dz2), (9)

with

f (r) = r2

2α

⎛
⎝1 −

√√√√1 − 4α

(
1 − r4+

r4

)⎞
⎠ . (10)

The Hawking temperature at the horizon can be written in
the form

T = f
′
(r)

4π
= r+

π
. (11)

It is worthwhile to note that in the limit r → ∞, we can
obtain

f (r) ∼ r2

2α

[
1 − √

1 − 4α
]
, (12)

so we can introduce the effective AdS radius by

L2
eff = 2α

1 − √
1 − 4α

. (13)

We choose the gauge and the scalar fields in the form [4]

Aμ = (φ(r), 0, 0, 0, 0), ψ = ψ(r). (14)

Inserting the metric (9) and the gauge and scalar fields (14)
in the field equations (6) and (7), we arrive at

∂2
r ψ +

(
3

r
+ ∂r f

f

)
∂rψ +

(
φ2

f 2 − m2

f

)
ψ = 0, (15)

∂2
r φ + 3

r

(
1 − 2b(∂rφ)2

)
∂rφ − 2ψ2φ

f

(
1 − 3b(∂rφ)2

)
= 0.

(16)

The horizon radius is defined as the root of f (r+) = 0.
The regularity condition for the gauge field At on the hori-
zon r+ implies the boundary condition φ(r+) = 0, which
substituting in Eq. (15) yields

ψ(r+) = ∂r f (r+)

m2 ∂rψ(r+). (17)

Near the AdS boundary (r → ∞) the asymptotic behaviors
of the solutions are given by

φ(r) = μ − ρ

r2 , (18)

ψ(r) = ψ−
r�− + ψ+

r�+ , (19)

where �± = 2±
√

4 + m2L2
eff . It is clear that we should have

m2L2
eff ≥ − 4. The value of �± depend on m̃2 = m2L2

eff . For
example, setting m̃2 = −3, we have �+ = 3 and �− = 1.
The coefficients ψ± correspond to the vacuum expectation
values of the condensate operator, namely ψ± =< O± >,
where O± is the dual operator to the scalar field with the
conformal dimension �±. Following [4], we can impose the
boundary condition in which either ψ− or ψ+ vanishes, so
that the theory is stable in the asymptotic AdS region. In what
follows, we set ψ− = 0 and take ψ+ = 〈O+〉 non-zero.
The interpretation of the parameters μ and ρ, also comes
from the gauge/gravity dictionary and they are, respectively,
interpreted as the chemical potential and charge density of
the conformal field theory on the boundary.

3 Relation between critical temperature and charge
density

In this section, we are going to study the critical temperature
of HSC, when the higher-order corrections to the gravity side
and the gauge field are taken into account. We shall continue
our study both analytically and numerically and compare the
results of the two methods.

3.1 Analytical method

Here, we analytically obtain the relation between the critical
temperature and the charge density of Gauss–Bonnet HSC.
To do this, we first transform the coordinate r to z, such that
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z = r+/r . Using these new coordinates, the equations of
motion (15) and (16) can be rewritten as

∂2
z φ − 1

z
∂zφ + 6bz3

r2+
(∂zφ)3

−2ψ2φr2+
f z4 + 6b(∂zφ)2φψ2

f
= 0, (20)

∂2
z ψ +

(
∂z f

f
− 1

z

)
∂zψ + r2+

z4

(
φ2

f 2 − m2

f

)
ψ = 0. (21)

Near the critical temperature (T = Tc) we have ψ = 0, and
thus Eq. (20) reduces to

∂2
z φ − 1

z
∂zφ + 6bz3

r2+
(∂zφ)3 = 0. (22)

Solving the above equation for a small value of the nonlinear
parameter b, we find

φ(z) = λr+c(1 − z2)

[
1 − bλ2

2
ξ(z)

]
+ O(b2), (23)

where

ξ(z) = (1 + z2)(1 + z4), λ = ρ

r3+c
. (24)

Next, we consider the boundary conditions for ψ near the
critical point (T → Tc). We assume ψ has the following
form [70]:

ψ |z→0 ∼ 〈O+〉
r3+

z3F(z), (25)

where F(z) is the trial function near the boundary z = 0,
which satisfies the boundary conditions F(0) = 1 and
F ′(0) = 0. Substituting Eqs. (23) and (25) in Eq. (21) one
arrives at

F
′′ + p(z)F

′ + q(z)F + λ2w(z)F = 0, (26)

where the prime now indicates the derivative with respect to
z, and p(z), q(z) and w(z) read

p(z) = 3(1 − √
1 − 4α + 4αz4) − 12α + 20αz4

z[1 − 4α + 4αz4 − √
1 − 4α + 4αz4] , (27)

q(z) = 1

z2

[
3(1 − 4α − 4αz4 − √

1 − 4α + 4αz4)√
1 − 4α + 4αz4 − 1 + 4α − 4αz4

+ 2m2α√
1 − 4α + 4αz4 − 1

]
, (28)

w(z) = 4α2(1 − z2)2(1 − b
2λ2ξ(z))2

(1 − √
1 − 4α + 4αz4)2

. (29)

It is a matter of calculations to convert Eq. (26) to the standard
form of the Sturm–Liouville equation,

(T (z)F
′
(z))

′ − Q(z)F(z) + λ2P(z)F(z) = 0, (30)

where

T (z) = z3

2
√

α
(
√

1 − 4α + 4αz4 − 1)

≈ z3√α(z4 − 1)[1 − α(z4 − 1)], (31)

Q(z) = −T (z)q(z) ≈ −3z
√

α(3z4 + 6αz4 − 7αz8), (32)

P(z) = T (z)w(z)

≈
√

αz3(z2 − 1)(1 + α(z4 − 1))(1 − b
2λ2ξ(z))2

z2 + 1
.

(33)

In the above equations we have only kept the terms up to
order α3/2. Next, we perform a perturbative expansion bλ2

and retain only the terms that are linear in b such that

bλ2 = b(λ2|b=0) + O(b2), (34)

where λ2|b=0 is the value of λ2 for b = 0. Thus we can
rewrite Eq. (33) as

P(z) ≈
√

αz3(z2 − 1)(1 + α(z4−1))(1−b(λ2|b=0)ξ(z))

z2 + 1
.

(35)

Employing the Sturm–Liouville eigenvalues problem, the
eigenvalues of Eq. (30) can be obtained by varying the fol-
lowing function:

λ2 =
∫ 1

0 dz(T (z)(F
′
(z))2 + Q(z)F2(z))∫ 1

0 dzP(z)F2(z)
, (36)

where we also choose F(z) = 1 − az2 and m2 = −3/L2
eff

to assess this expression. Finally, using Eqs. (11) and (24),
for T ∼ Tc, one can obtain

Tc = ζρ1/3, (37)

where ζ = 1
πλ

1/3
min

and λmin is the minimum eigenvalue which

can be obtained by variation of Eq. (36). Our strategy, in the
analytical method, for calculating the critical temperature for
condensation is to minimize the function (36) with respect to
the coefficient a by fixing other parameters of the model such
as b and α. Then we obtain λmin and hence the maximum
value of Tc/ρ1/3 can be deduced through Eq. (37). As an
example, we present the details of our calculation for α =
0.01 and b = 0.01. In this case Eq. (36) reduces to

λ2 = 0.150900 − 0.226000a + 0.117119a2

0.003844 − 0.003350a + 0.000911a2 , (38)
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Table 1 Comparison of analytical and numerical values of ζ = Tc/ρ1/3

for α = 0.0001

b a λ2
min ζSL

(
= 1

πλ
1/3
min

)
ζNumerical

0 0.721772 18.2331 0.196204 0.197957

0.01 0.747560 25.0682 0.186064 0.181057

0.02 0.777479 36.1392 0.175060 0.165642

0.03 0.809805 55.2025 0.163126 0.151671

Table 2 Comparison of analytical and numerical values of ζ = Tc/ρ1/3

for α = 0.01

b a λ2
min ζSL

(
= 1

πλ
1/3
min

)
ζNumerical

0 0.720561 18.5392 0.195660 0.196843

0.01 0.747087 25.6427 0.185363 0.179433

0.02 0.777900 37.2577 0.174173 0.163592

0.03 0.811046 57.4907 0.162026 0.149279

Table 3 Comparison of analytical and numerical values of ζ = Tc/ρ1/3

for α = 0.1

b a λ2
min ζSL

(
= 1

πλ
1/3
min

)
ζNumerical

0 0.709061 21.5679 0.190787 0.186114

0.01 0.743348 31.6982 0.178928 0.162657

0.02 0.783517 49.9342 0.165876 0.141983

0.03 0.823574 85.6808 0.151601 0.124005

whose minimum is λmin = 25.6427 at a = 0.747087. And
thus according to Eq. (37), the critical temperature becomes
Tc = 0.185363ρ1/3. In Tables 1, 2 and 3, we summarize our
results for λmin and ζ for different values of the parameters
α, a and b. This table shows that, for a small and fixed value
of α, with increasing the nonlinear parameter b, the value
of ζ = Tc/ρ1/3 decreases as well. As we shall see in the
next section this result is in a very good agreement with the
numerical results.

3.2 Numerical method

Now, we numerically investigate the critical behavior of the
HSC in Gauss–Bonnet gravity with a quadratic correction
term to the gauge field. For the numerical study we employ
the shooting method [71]. For simplicity we assume r+ = 1,
and thus Eqs. (20) and (21) for φ and ψ reduce to

∂2
z φ − 1

z
∂zφ + 6bz3(∂zφ)3 − 2ψ2φ

f z4 + 6b(∂zφ)2φψ2

f
= 0,

(39)

∂2
z ψ +

(
∂z f

f
− 1

z

)
∂zψ + 1

z4

(
φ2

f 2 − m2

f

)
ψ = 0. (40)

Near the horizon (z = 1), we can expand φ and ψ as

φ ≈ φ
′
(1)(1 − z) + φ

′′
(1)

2
(1 − z)2 + · · · , (41)

ψ ≈ ψ(1) + ψ
′
(1)(1 − z) + ψ

′′
(1)

2
(1 − z)2 + · · · , (42)

while near the AdS boundary (z = 0), they behave like

φ ≈ μ − ρz2, (43)

ψ ≈ ψ−z�− + ψ+z�− . (44)

We calculate φ
′′
(1), ψ

′
(1) and ψ

′′
(1) in the term of ψ(1)

and φ
′
(1) by using the equations of motion for φ and ψ ,

namely Eqs. (39) and (40), respectively. Since near the crit-
ical point ψ is very small, thus we choose ψ(1) = 0.0001.
Our strategy for using the shooting method is as follows. For a
specific value of the reduced scalar field mass m̃2, we can per-
form a numerical calculation near the horizon boundary with
one shooting parameter φ

′
(1) to get proper solutions at the

infinite boundary. For specific values of φ
′
(1), we impose the

boundary condition ψ− = 0. We also calculate the analytical
values and numerical values of ζ for different b. We com-
pare our numerical results with analytical results in Tables 1,
2 and 3.

In Fig. 1, we plot ψ versus z for three first bound-
ary condition φ

′
(1), m̃2 = −3 and different values of the

Gauss–Bonnet coefficient α and nonlinear parameter b. In
the absence of a quadratic correction term (b = 0), our results
exactly coincide with those presented in [19,24]. The accept-
able diagram for us is the red one in each plot, since there is
nothing in the bulk to have effect on the speed of the wave,
so the diagram of ψ will be stable. From Tables 1, 2 and 3, it
is evident that when b becomes larger the condensation gets
harder. A similar behavior can be seen for the fixed value of
b and different values of α, namely the critical temperature
reduces and condensation becomes harder when the Gauss–
Bonnet coupling parameter α gets larger.

4 Critical exponent and condensation values

In this section, our aim is to calculate the critical exponent of
HSC with first-order correction terms in gravity and gauge
field. Again, we continue our studying both analytically and
numerically.

4.1 Analytical method

We would like to obtain the critical exponent and the conden-
sation values of the condensation operator near the critical
temperature using the analytical method. Inserting Eq. (25)
into Eq. (20), we get
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(a) (b) (c)

(d)

Fig. 1 The behavior of ψ(z) versus z for Gauss–Bonnet HSC and for m̃2 = −3 and different α and b

∂2
z φ − 1

z
∂zφ + 6bz3

r2+
(∂zφ)3 = 〈O+〉2

r4+
Bφ (45)

and

B = 2z2

f

(
1 − 3bz4(∂zφ)2

r2+

)
F2(z). (46)

Near the critical temperature, 〈O+〉2

r4+
is a very small and thus

we can expand φ(z) as

φ(z)

r+
= λ(1 − z2)

[
1 − bλ2

2
ξ(z)

]
+ 〈O+〉2

r4+
χ(z), (47)

where χ satisfies the following boundary condition:

χ(1) = χ ′(1) = 0. (48)

With the help of Eq. (47), and comparing the coefficient of
〈O+〉2

r4+
on both sides, Eq. (45) leads to

χ ′′(z) − χ ′

z
+ 72bλ2z5χ ′ = λB(1 − z2)

(
1 − b

2
λ2ξ(z)

)
.

(49)

From Eq. (49) we figure out, in the limit z → 0, the following
equation:

χ ′′(0) = χ ′(z)
z

|z→0. (50)

It is a matter of calculations to show that Eq. (49) can be
written

d

dz

(
e12bλ2z6 χ ′

z

)
= λ

2z3

r2+

e12bλ2z6
(1 − b

2λ2�(z))

(1 + z2)(1 + α(1 − z4))
F2(z),

(51)

where �(z) = 1+z2+z4+25z6. Integrating both sides of the
above equation in the interval [0, 1] and using the boundary
condition (48), we arrive at

χ ′

z
|z→0 = − λ

r2+
A, (52)

where

A ≈
∫ 1

0

2z3F2(z)
[
1 − b

2 λ2(1 + z2 + z4 + z6)
] [1 − α(1 − z4)]

1 + z2 dz.

Combining Eqs. (18) and (47), we obtain

μ

r+
− ρ

r3+
z2 = λ(1 − z2)

[
1 − bλ2

2
ξ(z)

]

+〈O+〉2

r4+
(χ(0) + zχ ′(0) + z2

2
χ ′′(0) + · · · ), (53)

where in the last step we have expanded χ(z) around z = 0.
Equating the coefficients of z2 on both sides of Eq. (53), we
find

ρ

r3+
= λ

(
1 + 〈O+〉2

r6+
A
)

. (54)
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(b)(a) (c)

Fig. 2 The condensate operator < O+ > as a function of the temperature for different values of b and various values of α, where we have set
< O− > = 0 and m̃2 = −3

(a) (b) (c)

Fig. 3 These figures show the behavior of log
(
< O+ > /T 3

c

)
versus log (1 − T/Tc) near the critical temperature Tc for different values of b and

α. The numerical results are highlighted in the filled squares

Using λ = ρ/r3+c and definition (11), we can obtain the order
parameter 〈O+〉 near the critical temperature Tc as

〈O+〉 = γπ3T 3
c

√
1 − T

Tc
, (55)

where

γ =
√

6

A . (56)

From Eq. (55) we observe that the critical exponent has the
mean field value 1/2, which is independent of the nonlinear
parameter b and Gauss–Bonnet parameter α. It is worth not-
ing that 〈O〉 is zero at T = Tc and condensation occurs for
T < Tc. We shall come back to calculation of the condensa-
tion value γ in the next subsection.

4.2 Numerical method

We use the numerical method to explore the behavior of the
condensate operator 〈O+〉 in terms of temperature for differ-
ent values of α and b (see Fig. 2). These curves are obtained
by the shooting method which we described in the previous
section. As one can see from this figure there is a critical
temperature Tc below which the condensate appears, then it
increases quickly as the system is cooled and finally goes to
a constant for sufficiently low temperatures. This behavior

is qualitatively similar to that obtained in BCS theory and
observed in many materials.

Now we are going to study the condensation operator
〈O+〉 in a close neighborhood of the superconductor’s critical
temperature to compute the critical exponents and the con-
densation value γ of the Gauss–Bonnet HSC with quadratic
nonlinear electromagnetic. For this purpose, we first take the
logarithm of Eq. (55). We arrive at

log

( 〈O+〉
T 3
c

)
= log

(
π3γ

)
+ 1

2
log

(
1 − T

Tc

)
. (57)

We have plotted the behavior of the above function in Fig.
3. From this figure, we observe that the numerical results are
fitted to the above analytic form in the vicinity of the critical
temperature. We summarize our results in Fig. 3 and also
Tables 4, 5 and 6 for different values of b and α. We see that,
for a fixed value of α, the condensation operator γ increases
with increasing b, while for a fixed value of b, it decreases
with increasing α.

5 Holographic conductivity

In this section, we study the energy gap in the holographic
superconductor phase which is constructed on the boundary
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Table 4 The analytical and numerical results for the condensation oper-
ator for α = 0.0001

b a λ2
min γSL γNumerical

0 0.721772 18.2331 7.70525 12.4879

0.01 0.747560 25.0682 9.05565 17.4138

0.02 0.777479 36.1392 14.4103 24.5663

Table 5 The analytical and numerical results for the condensation oper-
ator for α = 0.01

b a λ2
min γSL γNumerical

0 0.720561 18.5392 7.72419 11.2411

0.01 0.747087 25.6427 9.44846 15.9088

0.02 0.777900 37.2577 15.6715 23.5892

of the background spacetime. In particular, we investigate the
influence of the Gauss–Bonnet and nonlinear parameters on
the superconducting gap. In order to do this, we must compute
the electrical conductivity of holographic superconductor by
turning on a small perturbation δAx = Ax (r) exp(−iωt)
to the gauge field in the bulk where ω is the frequency. At
linearized order in the perturbation (δAx ), the equation of
motion for the gauge field Ax (r), which obeys Eq. (7), is

∂2
r Ax +

[
1

r

(
1 − 6b∂rφ

2
)

+ ∂r f

f
+ 4bφ∂rφψ2

f

]
∂r Ax

−
[

2ψ2

f

(
1 − b∂rφ

2
)

− ω2

f 2

]
Ax = 0. (58)

In the absence of the nonlinear correction (b = 0), this dif-
ferential equation reduces to the Maxwell case as presented
in [4,5]. To determine the conductivity, we need the asymp-
totic (r → ∞) form of the second-order differential equation
(58),

∂2
r Ax + 3

r
∂r Ax + ω2L4

eff

r4 Ax + · · · = 0, (59)

which admits the following solution near the boundary:

Ax = A(0)
x + A(1)

x

r2 + ω2L4
eff ln(Kr)

2r2 A(0)
x + · · · , (60)

where A(0)
x , A(1)

x are two constants and K is also a constant
parameter with length dimension which is considered so as
to have a dimensionless logarithmic argument.

According to the AdS/CFT correspondence, the two point
correlation function of the current operators in a system is
given by its on-shell action where the action is evaluated on

Table 6 The analytical and numerical results for the condensation oper-
ator for α = 0.1

b a λ2
min γSL γNumerical

0 0.709061 21.5679 7.90303 4.05071

0.01 0.743348 31.6982 9.81189 10.0376

0.02 0.783517 49.9342 37.6568 17.7555

the equations of motion. Here, the on-shell action is

So.s. ≡
∫ r∞

r+
dr
∫

d4x
√−gL, (61)

which, in the quadratic approximation for the gauge field
perturbation, becomes

So.s. =
∫

d4x
∫ r∞

r+
dr

{
− 1

2
r

[(
2ψ(r)2 − ω2

f (r)
− bω2∂rφ

2

f (r)

)
Ax (r)

2

+ f (r)
(

1 + b∂rφ
2
)

∂r Ax (r)
2

]}
. (62)

After performing an integration by parts and using Eq. (58),
we get

So.s. =
∫

d4x

[
−1

2
r f (r)

(
1 + b∂rφ

2
)

∂r Ax (r)Ax (r)

] ∣∣∣∣
r=r∞

.

(63)

Substituting Eqs. (12), (18) and (60) in the above expression,
one arrives at

So.s. =
∫

d4x

[
A(0)
x A(1)

x

L2
eff

− ω2L2
eff A

(0)2
x

4

+1

2
ω2L2

eff ln(Kr)A(0)2
x + A(1)2

x

L2
effr

2

−ω2L2
eff A

(0)
x A(1)

x

4r2 − ω2L6
eff ln(Kr)A(0)2

x

8r2

+ω2L2
eff ln(Kr)A(0)

x A(1)
x

r2

+ω4L6
eff ln(Kr)A(0)2

x

4r2 + O
(

1

r3

)] ∣∣∣∣
r=r∞

, (64)

thus we can obtain So.s. as follows:

So.s. =
∫

d4x

[
A(0)
x A(1)

x

L2
eff

− ω2L2
eff A

(0)2
x

4
+ 1

2
ω2L2

eff ln(Kr)A(0)2
x

]
,

(65)

in which logarithmic divergences appears. In order to cancel
out this divergence, we obtain the boundary counterterm as
described in the appendix by using Skenderis’ method of
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 4 The real part of the conductivity as a function of frequency for different values of b and α. Each figure is plotted for different temperatures
T/Tc

holographic renormalization [72]. Therefore, the finite on-
shell action may be written as

S = So.s. + Sc.t., (66)

where the gauge invariant counterterm Sc.t. is given by Eq.
(79). Now, we can obtain the current operator in the boundary
field theory [4,5] as

〈Jx 〉 = δS

δA(0)
x

= 2

L2
eff

A(1)
x − ω2L2

eff

2
A(0)
x . (67)

According to Ohm’s law, the electrical conductivity can be
expressed as

σ (ω) = 〈Jx 〉
Ex

, (68)

where Ex = −∂tδAx . Hence, using the current (67), the
holographic conductivity is given by

σ = − 2i A(1)
x

ωL2
eff A

(0)
x

+ iωL2
eff

2
. (69)

Consequently, the holography conductivity is calculated by
solving numerically a differential equation (58) such that the
in-falling boundary condition is imposed at the event horizon

Ax (r) = exp

(
− iω

4πT

)
S(r), (70)

in which T is the Hawking temperature and

S(r) = 1 + a1(r − r+) + a2(r − r+)2 + · · · , (71)

where a1, a2, . . . are calculated by Taylor series expansion
of Eq. (58) around the horizon.
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Im

Im

Im

Im

Im

Im

Im

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 5 The imaginary part of the conductivity as a function of frequency for different values of b and α. Each figure is plotted for different
temperatures T/Tc

The numerical results for holographic conductivity asso-
ciated with the condensation operator < O+ > are plotted in
Figs. 4, 5, 6 and 7. The real and imaginary parts of the electri-
cal conductivity versus frequency are illustrated at different
temperatures below Tc in Figs. 4 and 5, respectively. As one
can see from Fig. 4, the superconducting gap has opened
below the critical temperature, which became deeper with
decreasing the temperature. Besides, for various values of α

and b, the real part of the conductivity is proportional to the
frequency per temperature, ω/T , as the frequency is large
enough. According to Fig. 5 the divergence in the imaginary
part, at ω = 0, points out a delta function in the real part,
Re[σ ], at ω = 0, which is not displayed in Fig. 4. As one can
see from Fig. 5, the holographic conductivity of the HSC has
a minimum in the imaginary part. Thus with decreasing the
temperature the minimum in the imaginary part shifts toward
greater frequency for various values of the Gauss–Bonnet and
nonlinear parameters.

To study the formation of the superconducting gap with
changing α and b at low temperature, e.g., T ≈ 0.1Tc, the
real and the imaginary parts of holographic conductivity as a
function of ω/< O+ >1/3 are plotted in Figs. 6 and 7, respec-
tively. For a fixed value of the Gauss–Bonnet coefficient
α, the energy gap (ω/< O+ >1/3) enlarges with increas-
ing nonlinear parameter b. It is evident from Figs. 6 and
7 that the energy gap of HSC for various α exhibits different
behaviors based on the nonlinear correction b. In the case of
the Maxwell field (b = 0), the superconducting energy gap
decreases as α increases at low temperature (see Fig. 6d).
When we take into account the nonlinear correction b, the
energy gap of the HSC increases with increasing α (see Fig.
6d, g). From Fig. 7, we see that, for a fixed value of α, the
minimum of the imaginary part of the conductivity goes to
the larger value of ω/ < O+ >1/3 when b increases. In the
absence of a correction (b = 0), it decreases with enhanc-
ing Gauss–Bonnet coefficient (Fig. 6d). Besides, for a fixed

123



Eur. Phys. J. C (2018) 78 :159 Page 11 of 15 159

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 6 The real part of the conductivity as a function of ω/ < O+ >1/3, at low temperatures, around T ≈ 0.1Tc

value of b, the minimum of Im[σ ] increases with increasing
α, while for a fixed value of α, it increases with increasing b.

6 Conclusions

In this paper, we continue the studies on the s-wave holo-
graphic superconductors (HSC) by taking into account the
higher correction terms both on the gravity side and on the
gauge field side of the system. We considered the Gauss–
Bonnet HSC when the Maxwell Lagrangian has a nonlinear
correction term and is written in the form L = F + bF2,
where F is the Maxwell Lagrangian. We have provided
several motivations for choosing this kind of Lagrangian
for the gauge field. For example, all well-known nonlinear
Lagrangians have a series expansion of which the first two
terms are exactly in the above form.

First, we have analytically and numerically investigated
the relation between the critical temperature of the phase tran-
sition and charge density which depends on both the Gauss–

Bonnet parameter α and the nonlinear parameter b. For this
purpose, we employed the analytical Sturm–Liouville eigen-
value problem and the numerical shooting method. We find
that, for a fixed value of α, with increasing nonlinear parame-
ter b, the value of Tc/ρ1/3 decreases. This implies that when
b becomes larger, the condensation gets harder. A similar
behavior can be seen for the fixed value of b and different
values of α, namely the critical temperature decreases and the
condensation becomes harder when the Gauss–Bonnet cou-
pling parameter α gets larger. We confirmed that these results
are in a very good agreement with our numerical results. Then
we obtained the critical exponent of the Gauss–Bonnet HSC
with a nonlinear gauge field. We observed that the critical
exponent has the mean field value 1/2, which is independent
of the nonlinear parameter b and the Gauss–Bonnet param-
eter α.

Then we explored, numerically, the holographic conduc-
tivity of the system. For this purpose, we plotted the real and
imaginary parts of the electrical conductivity versus ω/T
and ω/ < O+ >1/3 for T < Tc. We observed that the

123



159 Page 12 of 15 Eur. Phys. J. C (2018) 78 :159

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 7 The imaginary part of the conductivity as a function of ω/ < O+ >1/3, at low temperatures, around T ≈ 0.1Tc

superconducting gap has opened below the critical tempera-
ture, which became deeper with decreasing the temperature.
Interestingly enough, we found that, for different values of α

and b, and for large frequency, the real part of the conductiv-
ity is proportional to ω/T . We observed that the holographic
conductivity of HSC has a minimum in the imaginary part.
Besides, with decreasing the temperature the minimum in the
imaginary part shifts toward greater frequency for various
values of the Gauss–Bonnet parameter α and the nonlinear
gauge field parameter b. Furthermore, for a fixed value of b,
the minimum of Im[σ ] increases with increasing α, while for
a fixed value of α, it increases with increasing b.
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Appendix: Holographic renormalization

To construct the boundary counterterm action, we utilize
the holographic renormalization method of Skenderis, which
was presented in [72–74]. To apply this method, the space-
time metric takes the form

ds2 = Gabdξadξb = − L2
eff

�
X (�)dτ 2 + L2

eff d�2

4�X (�)

+ L2
eff

�
(dx2 + dy2 + dz2), (72)

which relates to the metric (9) via τ = t/Leff , � = L2
eff/r and

the asymptotic (� → 0) metric function is X (�)�→0 = 1.
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Hence, the asymptotically metric becomes

ds2 = L2
eff d�2

4�X (�)
+ hμνdxμdxν, (73)

where

hμν = L2
eff

�
γ 0
μν. (74)

According to the electromagnetic contribution, one can eval-
uate the on-shell action as

S =
∫
M

d5ξ
√−G

[
F + bF2

]

=
∫
M

d5ξ

√−G

2
Ab∇a

[
(1 + 2bF) Fab

]

−
∫

∂M
d4x

√−h

2
AμF

�μ (1 + 2bF)

= −Leff

∫
�=ε

d4x
√

−γ 0Aμ∂�Aνγ
0μν (1 + 2bF) , (75)

where ε is a small constant parameter. On the new coordinates
(72), the gauge field equation of the bulk motion near the
boundary is given by

�
d2Ai

d�2 + 1

4
∂2

0 Ai + O(�2) = 0, (76)

where ∂2
0 refers to the wave operator of the boundary metric

γ 0
μν and the general solution of this equation is

Ai = A0
i + A1

i � + ψ�ln(�), (77)

where ψ = −1/4∂2
0 A

0
i . With Ai at hand, the on-shell elec-

tromagnetic action can be written as

S = −Leff

∫
�=ε

d4x
√

−γ 0A0
i

(
A1
i − 1

4
∂2

0 A
0
i − 1

4
ln(ε)∂2

0 A
0
i

)
,

(78)

which is logarithmically divergent. Now, according to Ref.
[72], in order to determine the counterterm action, we first
invert the solution (77) to find A0

i = Ai + O(ε). Thus, the
counterterm action is obtained:

Sc.t. = − Leff

4
ln(ε)

∫
�=ε

d4x
√

−γ 0Ai∂
2
0 Ai

= − Leff

4
ln(ε)

∫
�=ε

d4x

√−h

2
FμνF

μν. (79)

It is notable that, since we consider Ai = Ai (�) exp(−iωLeffτ),
one can calculate

∂2
0 Ai = ω2L2

eff Ai . (80)
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