
Eur. Phys. J. C (2018) 78:152
https://doi.org/10.1140/epjc/s10052-018-5623-5

Regular Article - Theoretical Physics

Critical behavior and phase transition of dilaton black holes with
nonlinear electrodynamics

Z. Dayyani1, A. Sheykhi1,2,a, M. H. Dehghani1,b, S. Hajkhalili1

1 Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454, Iran
2 Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha, Iran

Received: 21 July 2017 / Accepted: 8 February 2018 / Published online: 22 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract In this paper, we take into account the dilaton
black hole solutions of Einstein gravity in the presence of
logarithmic and exponential forms of nonlinear electrody-
namics. First of all, we consider the cosmological constant
and nonlinear parameter as thermodynamic quantities which
can vary. We obtain thermodynamic quantities of the system
such as pressure, temperature and Gibbs free energy in an
extended phase space. We complete the analogy of the non-
linear dilaton black holes with the Van der Waals liquid–gas
system. We work in the canonical ensemble and hence we
treat the charge of the black hole as an external fixed parame-
ter. Moreover, we calculate the critical values of temperature,
volume and pressure and show that they depend on the dila-
ton coupling constant as well as on the nonlinear parameter.
We also investigate the critical exponents and find that they
are universal and independent of the dilaton and nonlinear
parameters, which is an expected result. Finally, we explore
the phase transition of nonlinear dilaton black holes by study-
ing the Gibbs free energy of the system. We find that in the
case of T > Tc, we have no phase transition. When T = Tc,
the system admits a second-order phase transition, while for
T = Tf < Tc the system experiences a first-order transition.
Interestingly, for Tf < T < Tc we observe a zeroth-order
phase transition in the presence of a dilaton field. This novel
zeroth-order phase transition occurs due to a finite jump in
the Gibbs free energy which is generated by the dilaton–
electromagnetic coupling constant, α, for a certain range of
pressure.

1 Introduction

Nowadays, it is a general belief that there should be
some deep connection between gravity and thermodynamics.

a e-mail: asheykhi@shirazu.ac.ir
b e-mail: mhd@shirazu.ac.ir

Bekenstein [1,2] was the first who disclosed that a black hole
can be regarded as a thermodynamic system with entropy and
temperature proportional, respectively, to the horizon area
and surface gravity [1–4]. The temperature T and entropy
S together with the energy (mass) of the black holes satisfy
the first law of thermodynamics dM = T dS [1–4]. Histor-
ically, Hawking and Page were the first who reported the
existence of a certain phase transition in the phase space
of the Schwarzschild anti-de Sitter (AdS) black hole [5]. In
recent years, the studies on the phase transition of gravita-
tional systems have got renewed interest. It has been shown
that one can extend the thermodynamic phase space of a
Reissner–Nordstrom (RN) black holes in an AdS space, by
considering the cosmological constant as a thermodynamic
pressure, P = −�/8π and its conjugate quantity as a ther-
modynamic volume [6–11]. In particular, it was argued that
indeed there is a complete analogy for RN–AdS black holes
with the van der Walls liquid–gas system with the same criti-
cal exponents [12]. The studies were also extended to nonlin-
ear Born–Infeld electrodynamics [13]. In this case, one needs
to introduce a new thermodynamic quantity conjugate to the
Born–Infeld parameter, which is required for consistency of
both the first law of thermodynamics and the corresponding
Smarr relation [13]. Extended phase space thermodynamics
and P–V criticality of the black holes with power-Maxwell
electrodynamics were investigated in [14]. When the gauge
field is in the form of logarithmic and exponential nonlinear
electrodynamics, critical behavior of black hole solutions in
Einstein gravity has also been explored [15]. Treating the cos-
mological constant as a thermodynamic pressure, the effects
of higher curvature corrections from Lovelock gravity on the
phase structure of asymptotically AdS black holes have also
been explored. In this regard, critical behavior and phase tran-
sition of higher curvature corrections such as Gauss–Bonnet
[16,17] and Lovelock gravity have also been investigated
[18,19]. The studies were also extended to the rotating black
holes, where phase transition and critical behavior of Myers–
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Perry black holes have been investigated [20]. Other studies
on the critical behavior of the black hole spacetimes in an
extended phase space have been carried out in [21–26].

Although Maxwell theory is able to explain a variety of
phenomena in electrodynamics, it suffers some important
problems such as then divergence of the electric field of a
point-like charged particle or infinity of its self energy. In
order to solve these problems, one may get help from the non-
linear electrodynamics [27–30]. Inspired by developments in
string/M-theory, the investigation on the nonlinear electrody-
namics has got a lot of attention in recent years.

On the other side, a scalar field called dilaton emerges in
the low energy limit of string theory [31]. Breaking of space-
time supersymmetry in ten dimensions leads to one or more
Liouville-type potentials, which exist in the action of dilaton
gravity. In addition, the presence of the dilaton field is neces-
sary if one couples the gravity to other gauge fields. There-
fore, the dilaton field plays an essential role in string theory
and it has attracted extensive attention in the literature [32–
44]. Critical behavior of the Einstein–Maxwell-dilaton black
holes has been studied in [45]. In the context of Born–Infeld
and power-Maxwell nonlinear electrodynamics coupled to
the dilaton field, critical behavior of (n + 1)-dimensional
topological black holes in an extended phase space has been
explored in [46,47], respectively. Although the asymptotic
behavior of these solutions [46,47] are neither flat nor anti-
de Sitter (AdS), it was found that the critical exponents have
the universal mean field values and do not depend on the
details of the system, while the thermodynamic quantities
depend on the dilaton coupling constant, nonlinear parame-
ter and the dimension of the spacetime. In the present work,
we would like to extend the study of the critical behavior of
the black holes, in an extended phase space, to other non-
linear electrodynamics in the context of dilaton gravity such
as exponential and logarithmic nonlinear electrodynamics.
Following [13,47], and in order to satisfy the Smarr rela-
tion we shall extend the phase space to include a nonlinear
parameter as a thermodynamic variable and consider its con-
jugate quantity as polarization. We will complete the analogy
of the nonlinear dilaton black holes with a Van der Waals
liquid–gas system and work in the canonical ensemble. In
addition, we calculate the critical exponents and show that
they are universal and are independent of the dilaton and
nonlinearity parameters. Finally, we shall explore the phase
transition of dilaton black holes coupled to nonlinear electro-
dynamics by considering the discontinuity in the Gibss free
energy of the system. We will see that in addition to the first-
and second-order phase transition in charged black holes,
the presence of the dilaton field admits a zeroth-order phase
transition in the system. This phase transition is occurred
due to a finite jump in the Gibbs free energy which is gen-
erated by dilaton–electromagnetic coupling constant, α, for
a certain range of pressure. This novel behavior indicates a

small/large black hole zeroth-order phase transition in which
the response functions of the black holes thermodynamics
diverge, e.g. the isothermal compressibility.

This paper is outlined as follows. In the next section,
we present the action, basic field equations and our metric
ansatz for dilaton black holes. In Sect. 3, we explore the crit-
ical behavior of dilaton black holes coupled to exponential
nonlinear (EN) electrodynamics. In Sect. 4, we investigate
P–V criticality of dilaton black holes when the gauge field
is in the form of logarithmic nonlinear (LN) electrodynam-
ics. In Sect. 5, we investigate the effects of nonlinear gauge
field parameter in the strong nonlinear regime on the critical
behavior of the system. In Sect. 6, we explore the phase tran-
sition of nonlinear dilaton black holes. We finish with closing
remarks in Sect. 7.

2 Basic field equations

We examine the following action of Einstein-dilaton gravity
which is coupled to nonlinear electrodynamics:

S = 1

16π

∫
d4x

√−g (R

− 2gμν∂μ�∂ν� − V (�) + L(F,�)
)
, (1)

where R is the Ricci scalar curvature, � is the dilaton field
and V (�) is the potential for �. We assume the dilaton poten-
tial to have the form of two Liouville terms [34,40],

V (�) = 2�0e
2ζ0� + 2�e2ζ�, (2)

where �0, �, ζ0 and ζ are constants that should be deter-
mined. In the action (1), L(F,�) is the Lagrangian of
two Born–Infeld-like versions of nonlinear electrodynamics
which are coupled to the dilaton field [48,49],

L(F,�) =

⎧⎪⎪⎨
⎪⎪⎩

4β2e2α�
[
exp

(
− e−4α�F2

4β2

)
− 1

]
, END,

−8β2e2α� ln
(

1 + e−4α�F2

8β2

)
, LND,

(3)

where END and LND stand for an exponential and a loga-
rithmic nonlinear dilaton Lagrangian, respectively. Here α is
a constant which determines the strength of coupling of dila-
ton and electromagnetic field. The parameter β, with dimen-
sion of mass, represents the maximal electromagnetic field
strength which in string theory can be related to the string
tension, β = 1

2πα′ [50]. In fact β determines the strength
of the nonlinearity of the electrodynamics. In the limit of
large β (β → ∞), the system goes to the linear regime and
the nonlinearity of the theory disappears and the nonlinear
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electrodynamic theory reduces to the linear Maxwell elec-
trodynamics. On the other hand, as β decreases (β → 0), we
go to the strong nonlinear regime of the electromagnetic and
thus the behavior of the system will be completely different
(see Sect. 5). In Eq. (3) F2 = FμνFμν , where Fμν is the
electromagnetic field tensor. By varying the action (1) with
respect to the gravitational field gμν , the dilaton field � and
the electromagnetic field Aμ, we arrive at the following field
equations [48,49]:

Rμν = 2∂μ�∂ν� + 1

2
gμνV (�)

− 2e−2α�∂YL(Y )FμηF
η

ν

+ nβ2e2α� [2Y ∂YL(Y ) − L(Y )] gμν, (4)

∇2� = 1

4

∂V

∂�
+ nαβ2e2α� [2Y ∂YL(Y ) − L(Y )] , (5)

∇μ

(
e−2α�∂YL(Y )Fμν

)
= 0, (6)

where n = 2 for END and n = − 4 for LND cases. In the
above field equations we have used a shorthand for L(F,�),

L(F,�) = 2nβ2L(Y ), L(Y )

=
⎧⎨
⎩

exp(−Y ) − 1, END,

ln(1 + Y ), LND,

(7)

and

Y = e−4α�F2

2β2|n| . (8)

In the limit case β → ∞, which is equal to L(Y ) = −Y
for END and L(Y ) = Y for LND cases, the above system of
equations recover the corresponding equations for Einstein–
Maxwell-dilaton gravity [40].

We would like to find topological solutions of the above
field equations. The most general such metric can be written
in the form

ds2 = − f (r)dt2 + dr2

f (r)
+ r2R2(r)d�2

k, (9)

where f (r) and R(r) are functions of r which should be
determined, and d�2

k is the line element of a two-dimensional
hypersurface � with constant curvature,

d�2
k =

⎧⎨
⎩

dθ2 + sin2 θdφ2, for k = 1,

dθ2 + θ2dφ2, for k = 0,

dθ2 + sinh2 θdφ2, for k = −1.

(10)

For k = 1, the topology of the event horizon is the two-
sphere S2, and the spacetime has the topology R2 × S2. For
k = 0, the topology of the event horizon is that of a torus and
the spacetime has the topology R2 × T 2. For k = −1, the
surface � is a 2-dimensional hypersurface H2 with constant

negative curvature. In this case the topology of spacetime is
R2 × H2.

In the remaining part of this paper, we consider the critical
behavior of END and LND black holes.

3 Critical behavior of END black holes

In this section, first of all, we review the solution of dilatonic
black holes coupled to EN electrodynamics [48]. Then we
construct the Smarr relation and the equation of state of the
system to study the critical behavior of the system.

3.1 Review of END black holes

In order to solve the system of Eqs. (4) and (5) for three
unknown functions f (r), R(r) and �(r), we make the ansatz
[38]

R(r) = eα�. (11)

Inserting this ansatz and metric (9) into the field equations
(4)–(6), one can show that these equations have the following
solutions [48]:

�(r) = α

α2 + 1
ln

(
b

r

)
, (12)

AEND
t = bγ β(α2 + 1)

(
βbγ

q

) 1−γ
γ−2

(
1 − α2

4

) 1
2γ−4

×
{

− 1

4
�

(
α2 + 1

4
,

1 − α2

4
LW (η)

)

+ 1

α2 − 1

[
�

(
α2 + 5

4
,

1 − α2

4
LW (η)

)

− 1

2
�

(
α2 + 1

4

)]}
. (13)

f (r) |END= −k
α2 + 1

α2 − 1
b−γ rγ

− m

r1−γ
+ (� + 2β2)

(
α2 + 1

)2
bγ

α2 − 3
r2−γ

+ 2βq
(
α2 + 1

)2
rγ−1

(
β2b2γ

q2

) 1−γ
2γ−4

L
3−2γ
2γ−4
W (η)

×
{
L2
W (η)

α2 + 5
�

(
α2 + 5

4
,
α2 + 9

4
,
α2 − 1

4
LW (η)

)

− 1

α2−3
�

(
α2−3

4
,
α2+1

4
,
α2−1

4
LW (η)

) }
,

(14)

where m and q are integration constants which are related to
the mass and the charge of the black holes. Also, LW (x) =
LambertW (x) is the Lambert function and �(a, b, z) is the
hypergeometric function [51,52]. Here η and γ are defined
by
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η ≡ q2r2γ−4

β2b2γ
, γ = 2α2

α2 + 1
. (15)

The above solutions will fully satisfy the system of Eqs. (4)
and (5) provided we have

ζ0 = 1

α
, ζ = α, �0 = k

b−2α2

α2 − 1
. (16)

According to the definition of mass due to Abbott and Deser
[53], the mass of the solution (14) is [48]

M = bγmω

8π(α2 + 1)
, (17)

where ω represents the area of the constant hypersurface �.
In Eq. (17), one can find the mass parameter as a function of
the horizon radius by considering f (r = r+) = 0 [48]. The
charge of the solution is given by [48]

Q = qω

4π
. (18)

The Hawking temperature of the END black hole can be
calculated as [48]

T+ |END = 1

4π

(
d f (r)

dr

)
r+

= − (α2 + 1)

4π
r1−γ
+

{
k
b−γ r2γ−2

+
α2 − 1

+ (� + 2β2)bγ − 2βqrγ−2
+

(
1√

LW (η+)

−√
LW (η+)

) }
, (19)

where η+ = η(r = r+). Applying the well-known area law,
we can find the entropy of the black hole,

S = A

4
= bγ r2−γ

+ ω

4
. (20)

The electric potential of the black hole is obtained [48]:

U |END = bγ β(α2 + 1)

(
βbγ

q

) 1−γ
γ−2

(
1 − α2

4

) 1
2γ−4

×
{

− 1

4
�

(
α2 + 1

4
,

1 − α2

4
LW (η+)

)

+ 1

α2 − 1

[
�

(
α2 + 5

4
,

1 − α2

4
LW (η+)

)

− 1

2
�

(
α2 + 1

4

)] }
. (21)

3.2 First law of thermodynamics and phase structure

We start by calculating thermodynamic variables to check
the first law of the black hole thermodynamics. We consider
the cosmological constant as the black hole pressure and its
associated conjugate as the volume of the black hole. As
mentioned above, entropy of black hole is related to its hori-
zon area, so we can obtain the thermodynamic volume of the
black hole as

V =
∫

4Sdr+ = (α2 + 1)bγ

(α2 + 3)rγ−3
+

ω (22)

As we take the cosmological constant as the black hole pres-
sure, the ADM mass should be interpreted as the enthalpy,
H ≡ M rather than the internal energy [54], and it should
be a function of extensive quantities: entropy and charge,
and intensive quantities: pressure and nonlinear parameter.
Indeed, in the extended phase space, another thermodynamic
variable is the nonlinear parameter β, of which the conjugate
is defined as [13]

B =
(

∂M

∂β

)
S,Q,P

. (23)

Therefore, the first law takes the form

dM = T dS +UdQ + V dP + Bdβ. (24)

The conjugate of β has the dimension of polarization per
unit volume and can be interpreted as the vacuum polar-
ization [50]. Throughout this paper, we choose the unit in
which, from dimensional analysis, one can find [β] = [m] =
[b] = [q], and α is a dimensionless parameter. We shall also
investigate the effects of both the dilaton parameter α and
the nonlinear parameter β on the critical behavior and phase
structure of the nonlinear dilaton black holes.

According to the definition (23), the conjugate quantity of
the nonlinear parameter for the END black hole is given by

B |END = bγ (α2 + 1)ω

8π

{
4βbγ r3−2γ

+
α2 − 3

+ q(α2 + 1)

(
βbγ

q

) 1−γ
γ−2

LW (η+)
3−2γ
2γ−4

×
[
L2
W (η+)

α2 + 5
�

(
α2 + 5

4
,
α2 + 9

4
,
α2 − 1

4
LW (η+)

)

− 1

α2 − 3
�

(
α2 − 3

4
,
α2 + 1

4
,
α2 − 1

4
LW (η+)

) ]}
.

(25)
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In the linear regime where β → ∞, the conjugate of the non-
linear parameter goes to zero. As an example, let us expand
B for large β for α = 0, 1. We find

B |END=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q4ω

80πr5β3 − 5q6ω

432πr9β5 + O
(

1
β7

)
for α = 0,

q4ω

48πr3b2β3 − q6ω

48πr5b4β5 + O
(

1
β7

)
for α = 1.

(26)

One can calculate the pressure as

P = (α2 + 3)bγ

(α2 − 3)rγ
+

�

8π
, (27)

which is in accordance with the result of [45,46]. In the
absence of the dilaton field (α = 0 = γ ), the above expres-
sion for the pressure reduces to the pressure of RN–AdS black
holes in an extended phase spaces [12]. It is easy to show that
all conserved and thermodynamic quantities in this theory
satisfy the first law of the black hole thermodynamics (24).
Using a scaling (dimensional) argument, the corresponding
Smarr formula per unit volume ω can be written as

M = 2

α2 + 1
T S + α2 − 1

α2 + 1
(2V P + βB) +UQ. (28)

One can easily check that in the limit case α = 0, this relation
is exactly the Smarr formula of [15], while in the case of linear
Maxwell electrodynamics, it reduces to the Smarr relation of
the RN–AdS black hole [12].

3.3 Equation of state

The critical point can be obtained by solving the following
equations:

∂P

∂v

∣∣∣
Tc

= 0,
∂2P

∂v2

∣∣∣
Tc

= 0. (29)

In order to obtain the critical point, we should introduce the
equation of state P = P(V, T ) by Eqs. (19) and (27). It is a
matter of calculation to show

P |END = �T

r+
+ �(α2 + 1)

2π

[
krγ−2

+
2(α2 − 1)bγ

+β2bγ

rγ
+

+ qβ

r2+

(√
LW (η+) − 1√

LW (η+)

)]
,

(30)

where we have defined

� = (3 + α2)

2(3 − α2)(α2 + 1)
. (31)

Note that Eq. (30) does not depend on the volume explicitly.
However, if one pays attention to Eq. (22), one sees that the

volume is a function of r+. Thus, we can rewrite Eq. (30) as

P |END = T

v
− k(α2 + 3)

8π(α2 − 3)(α2 − 1)

(v�)γ−2

bγ

− β2(α2 + 3)

4π(α2 − 3)

(
b

v�

)γ

− qβ(α2 + 3)

4π(α2 − 3)v2�2

(√
LW (η′)

− 1√
LW (η′)

)
, (32)

where

η′ =
(
q (v�)γ−2

β bγ

)2

. (33)

It is interesting to make a dimensional analysis of Eq. (32).
Following [12], we can write the physical pressure and tem-
perature as

P = h̄c

l2p
P, T = h̄c

κ
T, (34)

where l p = √
h̄G/c3 is the Planck length, κ , h̄ and c are

the Boltzmann constant, the reduced Planck constant and the
speed of light, respectively. Inserting Eq. (34) in Eq. (30), we
can define the specific volume as

v = l2pr+
�

. (35)

Hereafter, we set h̄ = c = G = l p = 1, for simplicity. In
order to find the critical volume vc, the critical temperature
Tc and the critical pressure Pc, we should solve Eq. (29).
However, due to the complexity of the equation of state, we
consider the large β limit of Eq. (32). It is easy to show that

PEND

∣∣∣
β→∞ = T

v
− (α2 + 3)

8π(α2 − 3)bγ

{
k(v�)γ−2

(α2 − 1)

+ q2(v�)γ−4

− q4(v�)3γ−8

4b2γ β2

}
+ O

(
1

β4

)
. (36)

Considering the large β limit, we can obtain the properties
of the critical point:

vc = �

�
− q4(α2 + 4)(α2 + 7)

8�kβ2b2γ
�(2γ−5) + O

(
1

β4

)
,

Pc = q2(α2 + 3)2

8π(α2 − 3)bγ
�γ−4 + q4(α2 + 7)

16πβ2b3γ
��3γ−8

+ O

(
1

β4

)
,

Tc = − k(α2 + 1)

π(α2 − 1)(α2 + 3)bγ
�γ−1
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Fig. 1 P–v diagram of END black holes

+ q4(α2 + 4)

8πβ2b3γ
�3γ−7 + O

(
1

β4

)
, (37)

where

� =
√
q2

k

(
α2 + 2

)
(α2 + 3). (38)

Let us note that Eq. (37) is similar to the corresponding one
in Born–Infeld-dilaton (BID) black holes [46]. This is an
expected result since for large β the equation of state of END
and BID is exactly the same. One can find that from Eq. (37)
follows the interesting relation

ρc = Pcvc
Tc

= − (α2 + 3)(α2 − 1)

4(α2 + 2)

{
1

− q2

2(α2 + 2)β2b2γ
�2γ−4

}
+ O

(
1

β4

)
. (39)

In the absence of the dilaton field (α = 0) and considering
linear electrodynamics where β → ∞, we arrive at ρc =
3/8, which is a universal value for a Van der Waals fluid.
This implies that the critical behavior of this type of black
holes resembles the Van der Waals gas [12].

To summarize, our solution can face with a phase transi-
tion when temperature is below its critical value. One may
predict this behavior by considering an isothermal P–v dia-
gram. It is expected that the P–v diagrams for our solution
and the Van der Waals gas have a similar behavior. In Fig. 1
we have plotted the behavior of P in terms of v. From these
figures we see that, in the absence/presence of a dilaton field,
the nonlinear black hole resemble the Van der Waals fluid
behavior.

3.4 Gibbs free energy

In another important approach to determine the critical
behavior of a system one refers to its thermodynamic poten-
tial. In the canonical ensemble and extended phase space, the
thermodynamic potential closely associates with the Gibbs
free energy G = M − T S. It is a matter of calculation to
show that

GEND = ω(α2 + 1)bγ

8π

{
k r+

2(α2 + 1)bγ

+ (� + 2β2)(α2 − 1)bγ

2(α2 − 3)r2γ−3
+

+2qβ

(
q

βbγ

) γ−1
γ−2

LW (η+)
− 2γ−3

2γ−4

×
[
LW (η+)2

α2 + 5

× �

([
α2 + 5

4

]
,

[
α2 + 9

4

]
,
α2 − 1

4
LW (η+)

)

− 1

α2 − 3
�

([
α2 − 3

4

]
,

[
α2 + 1

4

]
,
α2 − 1

4

× LW (η+)

)]

−qβr1−γ
+

[
1√

LW (η+)
− √

LW (η+)

] }
. (40)

Expanding for large β in the absence of the dilaton field
(α = 0), we arrive at
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GEND

∣∣∣
β→∞ = k r+

4
−2πr3+P

3
+3q2

4r+
− 7q4

80r5+β2
+O

(
1

β2

)
.

(41)

This is nothing but the Gibbs free energy of RN–AdS black
holes with a nonlinear leading-order correction term [12]. In
order to study the Gibbs free energy, we plot Fig. 3a. One can
see a swallow-tail behavior in this figure, which indicates a
phase transition below a critical value of temperature.

3.5 Critical exponents

Here we would like to study the critical exponents for the
END case. For this purpose, we first calculate the specific
heat:

CV = T

(
∂S

∂T

) ∣∣∣
V
. (42)

We also redefine Eq. (20) as

S = S(V, T ) = bγ ω

4

[
(α2 + 3)V

(α2 + 1)bγ

](γ−2)/(γ−3)

. (43)

It is clear that the entropy does not depend on the temperature
in this relation, so CV = 0. This indicates that the relative
critical exponent will be zero,

CV ∝
(
T

Tc
− 1

)α′

⇒ α′ = 0. (44)

In order to find the other critical exponent we consider the
following definition:

τ = T

Tc
p = P

Pc
ν = V

Vc
. (45)

Thus, we find

p |END = 1

ρc

τ

ν
− k(α2 + 3)

8π Pc(α2 − 3)(α2 − 1)

(vcν�)γ−2

bγ

− β2(α2 + 3)

4π Pc(α2 − 3)

(
b

vcν�

)γ

− qβ(α2 + 3)

4π Pc(α2 − 3)(vcν�)2

(√
LW (η′′)

− 1√
LW (η′′)

)
, (46)

where

η′′ =
(
q (vcν�)γ−2

β bγ

)2

. (47)

Expanding for β → ∞ yields

p = 1

ρc

τ

ν
+ 1

4π Pc

{
k(α2 + 1)�b−γ

(α2 − 1)(ν�vc)2−γ

−q2(α2 + 3)(ν�vc)
2γ−4

2(α2 − 3)bγ (ν�)γ

}
. (48)

Since we would like to find the critical exponent, we should
consider the close neighborhood of the critical point, so we
expand Eq. (46) near the critical point. Considering τ = t+1
and ν = (ω+1)1/ε where ε = (α2 +3)/(α2 +1), and taking
into account Eq. (46), we get

p = 1 + At − Btω − Cω3 + O(tω2, ω4), (49)

where

A = 1

ρc
B = 1

ερc

C = 2(α2 + 2)

3(α2 + 1)2ε3

− (α2 + 7)q2γ−2

3(α2 + 3)3β2b2γ

(
k

(α2 + 3)(α2 + 2)

)2−γ

. (50)

According to the Maxwell equal area law [12], we get

p = 1 + At − Btωl − Cω3
l = 1 + At − Btωs − Cω3

s

0 = −Pc

ωs∫

ωl

ω(Bt + 3Cω2)dω, (51)

where ωl and ωs refer to the volumes of large and small black
holes. The only non-trivial solution of Eq. (51) is

ωl = ωs = 2

√
− Bt

C
. (52)

The behavior of the order parameter near the critical point
can be found as

� = Vc(ωl − ωs) = 2Vcωl = 2

√
− B

C
t1/2. (53)

Therefore, the critical exponent associated with the order
parameter should be β ′ = 1

2 , which coincides with that in a
Van der Waals gas. The isothermal compressibility near the
critical point can be obtained:

κT = − 1

V

∂V

∂P

∣∣∣∣
T

∝ − Vc
BPc

1

t
. (54)

Since κT ∝ t−γ ′
, we have γ ′ = 1 and as we expect near the

critical point it should diverge. The last critical exponent is
δ′; it describes the relation between the order parameter and
the ordering field in the critical point, so we should set t = 0
in Eq. (49). We find

p − 1 = −Cω3 
⇒ δ′ = 3. (55)
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It is important to note that all critical exponents in this theory
coincide with those of the Van der Waals gas system.

4 Critical behavior of LND black holes

Now, we can repeat all the above steps for LND electrody-
namics and consider the effect of this type of nonlinear elec-
trodynamics on the critical behavior of the solutions. First of
all, we introduce the metric function and vector potential for
this type of the black holes [49],

ALND
t = q

r
3�2

([
1

2
, 1,

α2 + 1

4

]
,

[
2,

α2 + 5

4

]
,−η

)
,

(56)

f (r)LND = −k
α2 + 1

α2 − 1
b−γ rγ − m

r1−γ

+ (� − 4β2)
(
α2 + 1

)2
bγ

α2 − 3
r2−γ

+8β2(α2 + 1)2

(α2 − 3)2 bγ r2−γ

×
{

1 − 2�1

([
−1

2
,
α2 − 3

4

]
,

[
α2 + 1

4

]
,−η

)

+α2 − 3

2

(√
1 + η − ln

(η

2

)

+ ln
(
−1 + √

1 + η
)) }

, (57)

where 2�1 and 3�2 are hypergeometric functions. In order
to study the thermodynamical quantities, we first find the
temperature as

T LND+ = −2k
rγ−1
+ b−γ

4π
− m(α2 − 3)

4π(α2 + 1)
rγ−2
+

+8β2(α2 + 1)

4π(α2 − 3)
bγ r1−γ

(
1 − 1√

1 + η+

)

+ 8q2

4π(α2 − 3)
b−γ rγ−3

+

×
{

2 × 2�1

([
1

2
,
α2 + 1

4

]
,

[
α2 + 5

4

]
,−η+

)

− α2 + 1√
1 + η+

}
. (58)

The expression for the entropy is the same as in the END
case, because it does not depend on electrodynamics and still
obeys the area law. Considering the definition of the electric
potential, one may obtain U :

ULND = q

r+
3�2

([
1

2
, 1,

α2 + 1

4

]
,

[
2,

α2 + 5

4

]
,−η+

)
.

(59)

In order to verify the first law of thermodynamics, we should
calculate the conjugate of the nonlinear parameter for the
LND topological black hole. We obtain

BLND = (α2 + 1)βb2γ

π(α2 − 3)r2γ−3
+

{√
1 + η+ − ln

(η+
2

)

+ ln(
√

1 + η+ − 1) − η+
2
√

1 + η+

(
1

+ 1√
1 + η+ − 1

)
+ 2

α2 − 3

×
(

1−2�1

([
−1

2
,
α2−3

4

]
,

[
α2 +1

4

]
,−η+

))

+ η+
(α2 + 1)

2�1

([
1

2
,
α2 + 1

4

]
,

[
α2 + 5

4

]
,

−η+)

}
, (60)

from which its asymptotic behavior for β → ∞ and α = 0, 1
can be obtained:

BLND

∣∣∣
β→∞,α=0

= q4ω

160πr5β3
− q6ω

432πr9β5
+ O

(
1

β7

)
,

BLND

∣∣∣
β→∞,α=1

= q4ω

96πr3b2β3 − q6ω

240πr5b4β5

+O

(
1

β7

)
. (61)

It is clear that these relations are similar to those given in Eq.
(26). The definition of the black holes thermodynamic vol-
ume is related to the entropy and since the entropy expression
does not depend on the type of electrodynamics, the thermo-
dynamical volume is the same as given in Eq. (22). Also, as
we mentioned before, the pressure is related to the cosmo-
logical constant, so for LND black holes, one can find that
the pressure is exactly the same as given in Eq. (27). Finally,
it is a matter of calculation to check that all conserved and
thermodynamic quantities of LND black holes satisfy the
first law of black thermodynamics (24) as well as the Smarr
relation (28).

4.1 Equation of state

This section is devoted to the study of the critical behavior
of the black hole in the presence of LND electrodynamics.
In this regard, we obtain equation of state first,

PLND = T

v
+ 1

4πv

k (α2 + 1)

bγ (α2 − 1)
(�v)γ−1

− 4

πv

q2 (�v)γ−3

bγ (α2 − 3)
2�1

( [
1

2
,
α2 + 1

4

]
,

[
α2 + 5

4

]
,− η′

)

+ 1

πv

β2bγ (α2 + 1)

(�v)γ−1

×
{

− 2

α2 − 3
2�1

( [
−1

2
,
α2 − 3

4

]
,

[
α2 + 1

4

]
,− η′

)
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(b) α = β = 0.2, q = b = 1 and k = 1

Fig. 2 P–v diagram of LND black holes

+ ln(
√

1 + η′ − 1) − ln(η′) + ln(2) − 1

}

+ 1

πv

(α4 − 1)bγ

(α2 − 3)
√

1 + η′
[
q2b−2γ (�v)2γ−4 + β2

]
(�v)1−γ .

(62)

It is a general belief that one can predict a Van der Waals
like behavior for a thermodynamic system by studying its
P–v diagrams. According to Fig. 2 we can observe that, for
specific values of the parameters, a phase transition exists
below a critical temperature. It occurs for both large (Fig. 2a)
and small (Fig. 2b) values of the nonlinear parameter in the
presence of a dilaton field.

One may find the properties of the critical point by using
Eq. (62). However, due to the complexity of this equation,
it is not easy to investigate the critical point for an arbitrary
nonlinear parameter. Therefore, we consider the large β limit
of Eq. (62),

PLND

∣∣∣
β→∞

= T

v
+ (α2 + 1)

4πvbγ

{
− k

(α2 − 1)
(v�)γ−1 + q2(v�)γ−3

− q4

8b2γ β2 (v�)3γ−7
}
. (63)

In the absence of a dilaton field (α = 0), the equation of state
of RN–AdS black holes in an extended phase space [12] is
recovered with a leading-order nonlinear correction term,

PLND

∣∣∣
β→∞ = T

v
− k

2πv2 + 2q2

πv4 − 4q4

πv8β2 . (64)

Therefore, for the large β limit, the critical point is
obtained, thus

vc = �

�
− 5q4(α2 + 4)(α2 + 7)

16�kβ2b2γ
�2γ−5 + O

(
1

β4

)
,

Pc = q2(α2 + 3)2

8π(α2 − 3)bγ
�γ−4 + 5q4(α2 + 7)

32πβ2b3γ
��3γ−8

+ O

(
1

β4

)
,

Tc = − k(α2 + 1)

π(α2 − 1)(α2 + 3)bγ
�γ−1 + 5q4(α2 + 4)

16πβ2b3γ
�3γ−7

+ O

(
1

β4

)
,

ρc = − (α2 + 3)(α2 − 1)

4(α2 + 2)

{
1 − 5q2

4(α2 + 2)β2b2γ
�2γ−4

}

+ O

(
1

β4

)
. (65)

It is important to note that all the above relations reduce to
those of RN–AdS black holes in an extended phase space
[12], provided α = 0 and β → ∞. Comparing the results
obtained here with Eq. (37), one can find that the critical
points in the large β expansion for the two versions of elec-
trodynamics are similar and the same as those of BID given in
[46]. This is an expected result since in the large β limit, the
Lagrangian of all of these theories have a similar expansion,
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(a) END black holes (b) LND black holes

Fig. 3 Gibbs free energy versus T for β = q = b = k = 1 and α = 0.3

namely

LBID = LEND = −F2e−2αφ(r) + F4

8β2 e
−6αφ(r)

+O

(
1

β4

)
,

LEND = −F2e−2αφ(r) + F4

16β2 e
−6αφ(r)

+O

(
1

β4

)
. (66)

Thus for large β the equation of state and the critical point
properties of BID, END and LND electrodynamics are the
same.

4.2 Gibbs free energy

Next, we study the Gibbs free energy for LND black holes to
characterize a phase transition in the system. It is a matter of
calculation to show that the Gibbs free energy of LND black
holes is given by

GLND = k r+ω

16π

+ (α2 + 1)r3−2γ ω

4π(α2 − 3)

{
2π P(α2 − 3)(α2 − 1)(b r+)γ

(α2 + 3)

+ 2q2r2γ−4
+√

1 + η+
+ b2γ β2

[
(α2 − 1) ln

(
2
√

1 + η+
η+

− 2

η+

)

+ (α2 − 1)η+ + α2 + 1√
1 + η+

− α4 − 4α2 − 1

(α2 − 3)

]

−2(α2 − 1)β2b2γ

(α2 − 3)

× 2�1

([
−1

2
,
(α2 − 3)

4

]
,

[
(α2 + 1)

4

]
, −η+

)

− 4q2r2γ−4
+

(α2+1)
2�1

( [
1

2
,
(α2+1)

4

]
,

[
(α2+5)

4

]
, −η+

)}
.

(67)

Note that if we expand this relation for large nonlinear param-
eter β, we restore the result of Eq. (41). We have plotted the
behavior of Gibbs free energy in terms of the temperature in
Fig. 3b one can observe a swallow-tail behavior in this fig-
ure when the pressure is smaller that its critical value. This
implies that the system experiences a phase transition.

4.3 Critical exponents

Next, we are going to obtain the critical exponent of LND
black holes. As we mentioned before, the entropy is equal in
the two theories, so Cv is equal too, and α′ = 0 like BID and
END theories. In order to calculate the other critical exponent
we should follow the approach given in Sect. 3.5. To this end,
we compute the equation of state near the critical point for
LND theories,

p = 1 + At − Btω − C ′ω3 + O(tω2, ω4), (68)
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(a) Tc versus β (b) Pc versus β

Fig. 4 Critical quantities of dilaton black holes. Here we have set q = b = k = 1 and α = 0.2

where

C ′ = 2(α2 + 2)

3(α2 + 3)2ε

− 5(α2 + 7)q2γ−2

6(α2 + 3)3β2b2γ

(
k

(α2 + 3)(α2 + 2)

)2−γ

. (69)

It is clear that the form of the above relation is similar to Eq.
(49), so as one expects, all remaining critical exponent will
be the same as in the case of END theory.

5 Effects of nonlinear gauge field

We have calculated the critical quantities in the limit of large
β where the nonlinearity of the theory is small. However,
it is clear from the P–v and Gibbs diagrams that there is
a similar phase transition in the limit of small β where the
nonlinearity of the theory is large. In the limit of small β

it is nearly impossible to calculate analytically the critical
quantities. Also, in the presence of the dilaton field, it will be
very difficult to calculate them even numerically. For some
numeric calculations (in the absence of a dilaton field) one
may see [15].

A close look at the critical temperature in both END and
LND given in Eqs. (37) and (65) shows that the presence
of the nonlinear field makes the critical temperature larger
and it will increase with decreasing β. One may observe that
the increasing in Tc and pc in LND is stronger than END.
In Fig. 4 we have plotted the critical quantities Tc and pc

of LND, END and Maxwell-dilaton (MD) theory in terms
of the nonlinear parameter β and we showed that they will
go to a same value in the large limit of β where the effects
of nonlinearity disappear. Clearly, the linear MD theory is
independent of the nonlinear parameter β, as can be seen
from Fig. 4. It is notable that the critical quantities in LND
are the same as those in END for large β. However, for small
β (nonlinear regime), their behavior is quite different. The
behavior of the critical temperature in terms of α is shown
in Fig. 5, for 0 ≤ α < 1. From these figures, one can see
that the behavior of the diagrams differs as the nonlinear
parameter β decreases. This implies that in a very strong
nonlinear regime, the nonlinearity nature of the theory plays
a crucial role. When α → 1, the critical temperatures in
different types of electrodynamic fields grow toward each
other, but it is completely unlike the critical pressure. As one
see in Fig. 6, for α → 1, the critical pressures become more
different.

As we already pointed out, although it is hard to calculate
the critical quantities analytically for arbitrary β, however,
it is quite possible to plot the related diagrams for different
β. We study Gibbs free energy and P–v behavior in Figs. 7
and 8, to see the difference between the nonlinear theories
we have considered. It is clear from these diagrams that the
behavior of END, LND and BID black holes is very similar
when T or β are large enough. As one expects, for the same T ,
the differences between the diagrams increase as β decreases
(see Fig. 9).
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(a) β = 0.25 (b) β = 0.1

Fig. 5 Tc versus α of dilaton black holes with different electrodynamics. Here we have taken q = b = k = 1

(a) β = 0.5 (b) β = 0.1

Fig. 6 Pc versus α of the black holes in different electrodynamics with q = b = k = 1

It was extensively argued in [13] that in the absence of
a dilaton field, a black hole with BI nonlinear electrody-
namics may have two, one or zero critical points, which
depends on the strength of the nonlinear and charge param-
eters. For BID black holes, only for small values of the
dilaton–electromagnetic coupling α one may see a second
critical point. Interestingly enough, as the dilaton parameter

α increases, the second critical point disappears. As an exam-
ple, we compare P–v diagrams of BID black holes for three
values of the dilaton coupling α in Fig. 10. It is clear from
these diagrams that in the absence of a dilaton field (Fig. 10a)
or for a weak dilaton field (Fig. 10b), there are two critical
points but when the dilaton field increases (Fig. 10c) the
second critical point vanishes and we have only one critical
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(a) β = 1 (b) β = 0.25

Fig. 7 Gibbs free energy versus T of dilaton black holes for q = b = k = 1 and α = 0.2

(a) β = 0.5 and T = 0.1 (b) β = 0.25 and T = 0.3

Fig. 8 P–v diagram of dilaton black holes with different electrodynamics. Here we have taken α = 0.3 and q = b = k = 1

point. In the other types of nonlinear electrodynamics such
as logarithmic, exponential or power-law Maxwell fields, the
second critical point is never seen; neither in the absence nor
in the presence of a dilaton field. Also it is worthwhile to
mention that for very small value of the nonlinear parame-
ter β there is not any critical point in all types of the above
electrodynamics.

6 Zeroth-order phase transition

Let us emphasize that the observed phase transitions in the
previous sections, which were similar to the Van der Waals
phase transition, are called the first-order phase transition
in the literature. It occurs where the Gibbs free energy is
continuous, but its first derivative with respect to the temper-
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(a) β = 0.7 (b) β = 0.4

Fig. 9 P–v diagram of dilaton black holes in the same temperature T = 0.001 and different β. Here we have fixed α = 0.3 and q = b = k = 1

ature and pressure is discontinuous. Now we want to men-
tion that another interesting type of phase transition occurs
in a certain range of the metric parameters. This discon-
tinuity in the Gibbs free energy, known as a zeroth-order
phase transition, is observed in superfluidity and supercon-
ductivity [55]. It is important to note that, due to this tran-
sition, the response functions of the black holes thermody-
namics diverge, e.g. the isothermal compressibility. Recently,
a zeroth-order phase transition was observed in the context
of Einstein–Maxwell-dilaton black holes [56]. It was con-
firmed that the presence of a dilaton field plays a crucial
role for such a phase transition [56]. Indeed, a direct rela-
tion exists between the zeroth-order portion of the transition
curve and the dilaton parameter α [56]. In other words, we
have no zeroth-order phase transition for Einstein–Maxwell
(Reissner–Nordstrom) black holes. Moreover, for nonlinear
BI electrodynamics, it was shown that a zeroth-order phase
transition may occur even in the absence of the dilaton field
[57], which means that the nonlinearity of the gauge field
can also cause a zeroth-order phase transition in black hole
thermodynamics.

Here we would like to explore the possibility of a zeroth-
order phase transition in END and LND black holes, where
both nonlinearity and the dilaton field are taken into account.
In order to see the finite jump in the Gibbs free energy, we
plot the diagrams of the Gibbs free energy with respect to
the pressure in Figs. 11, 12 and 13 for different values of the
metric parameters.

For completeness, we also investigate the phase transition
of BID solutions presented in [46]. An interesting case in the
BID theory is plotted in Fig. 11. From this figure, we see that,
for certain values of the pressure and a special range of dilaton
field parameters, both zeroth- and first-order phase transitions
may be observed in one diagram. Based on this figure, by
increasing the pressure until P1 a first-order transition occurs.
For P > P1, the Gibbs free energy has two values, and as one
can see the acceptable values of the energy are shown with
the blue curve, since it includes smaller values of the energy.
At point P2, one can see a discontinuity in the Gibbs free
energy, which demonstrates a zeroth-order phase transition.

Also, Fig. 12 shows different critical behaviors of dila-
tonic black holes in the presence of three nonlinear versions
of electrodynamics with respect to the changes in the tem-
perature values when other metric parameters are fixed. In
the case of T > Tc, we have no phase transition. When
T = Tc, the system experiences a second-order phase transi-
tion as we have discussed before. As temperature decreases
to Tf < T < Tc, a zeroth-order phase transition is observed.
Finally, at T = Tf the first-order phase transition occurs. It is
worth mentioning that this behavior is repeated in the Gibbs
free energy of all three types of black holes in the presence of
nonlinear electrodynamics and non-zero values of the dilaton
field.

It is important to note that, looking at Fig. 13, one may
wonder that, for fixed values of the parameters, and in the
absence of the dilaton field (α = 0), we do not observe a
zeroth-order phase transition in END and LND theories. This
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(a) α = 0

(b) α = 0.1 (c) α = 0.25

Fig. 10 P–v diagram for BID black holes. Here we have fixed β = 0.45, q = b = 1 and k = 1

is in contrast to the BID theory where a zeroth-order phase
transition occurred in the small range of nonlinear parame-
ters β even in the absence of a dilaton field (see Fig. 13a).
In this figure, the red portion curve shows this behavior as
we explained in the close-up of Fig. 11. It is one of the main
differences between these three versions of nonlinear elec-
trodynamics, which implies that their behaviors in the case of

small values of β completely differ. This indicates that, while
the nonlinearity can lead to a zeroth-order phase transition
in BI theory, this is not the case for EN and LN theories. In
other words, the presence of the dilaton field plays a crucial
role for the occurrence of a zeroth-order phase transition in
the context of END and LND electrodynamics.
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Fig. 11 Gibbs free energy for BID black holes versus pressure for
T = 0.732Tc. Here we have fixed q = b = 1, α = 0.025, β = 0.45

7 Closing remarks

In this paper, we have studied the critical behavior and
phase transition of exponential and logarithmic nonlin-
ear electrodynamics in the presence of the dilaton field,
which we labeled END and LND, respectively. We extended
the phase space by considering the cosmological con-
stant and a nonlinear parameter as thermodynamic vari-
ables. We introduced common conditions to find a solu-
tion in both theories, such as the potential and metric.
We have investigated these two nonlinear theories, sep-
arately. As the expansions of the END Lagrangian for
a large nonlinear parameter, β, and for BID are exactly
the same, it is expected that their critical behavior would
be the same, in the limit of β → ∞. We contin-
ued our calculation by obtaining the equation of state of
END black holes. We observed that P–v diagrams of
this theory are similar to those of the Van der Waals
gas. By applying the approach of the Van der Waals gas
to find the critical point, we concluded that this point
is exactly the same as in BID black holes. Besides, the
Gibbs free energy diagram confirmed the existence of a
phase transition, and finally the critical exponents were
obtained, which are exactly the same as the mean field
theory.

We also investigated the critical behavior of LND black
holes. Again, for β → ∞, the series expansion of the LND
Lagrangian is similar to the END and BID cases, so one

expects the critical behavior of this theory to be similar to
the BID and END theories in this limit. Our calculations
confirmed that the critical behavior of LND theory is exactly
the same as those of a Van der Waals gas system.

It is important to note that although the critical behavior
of END and LND electrodynamics, in the limit of large non-
linear parameter β, is similar to BID black holes explored
in Ref. [46]; however, for small values of β, the situation
quite differs and the behavior of these three types of nonlin-
ear electrodynamics are completely different. For example, it
was argued in [13] that BI black holes may have two, one or
zero critical points, however, this behavior is not seen for the
logarithmic and exponential cases, namely the second criti-
cal point is never seen in the absence/presence of the dilaton
field.

We also investigated the phase transition of END and LND
black holes. In addition to the usual critical (second-order)
and first-order phase transitions in END and LND black
holes, we observed that a finite jump in the Gibbs free energy
is generated by the dilaton–electromagnetic coupling con-
stant, α, for a certain range of pressure. This novel behavior
indicates a small/large black hole zeroth-order phase tran-
sition in which the response functions of the black holes
thermodynamics diverge. It is worthy to note that, for tem-
perature in the range Tf < T < Tc, a discontinuity occurs in
the Gibbs free energy diagram which leads to a zeroth-order
phase transition. We find that in the absence of a dilaton field,
we do not observe a zeroth-order phase transition in END and
LND theories. This is in contrast to the BI theory where a
zeroth-order phase transition occurred in a small range of
the nonlinear parameters β even in the absence of the dilaton
field. We conclude that, while in BI black holes the nonlinear-
ity can lead to a zeroth-order phase transition, this is not the
case for EN and LN black holes. In other words, the presence
of the dilaton field plays a crucial role for the occurrence of
a zeroth-order phase transition in the context of EN and LN
electrodynamics.

Finally, we would like to mention that the jump in the
Gibbs free energy is observed for three types of dilatonic
nonlinear electrodynamics, namely BID, END and LND.
However, in the absence of a dilaton field, a zeroth-order
phase transition occurs only for BI black holes, which means
that the nonlinearity is responsible for this phase transi-
tion. However, for LND and END black holes, it seems
that the dilaton field is responsible for this type of zeroth-
order phase transition. However, for BID theory, both dila-
ton field and nonlinear electrodynamics can lead to a zeroth-
order phase transition. This behavior and the physical rea-
sons behind it need further investigations in future stud-
ies.
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(a) BID black hole

(b) END black hole (c) LND black hole

Fig. 12 Gibbs free energy versus pressure for α = 0.2, β = 0.45 and q = k = b = 1
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(b) END black hole (c) LND black hole

Fig. 13 Gibbs free energy versus pressure for α = 0, β = 0.45 and q = k = b = 1
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