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Abstract In the present paper the possibility of eternal uni-
verses in Gauss-Bonnet theories of gravity in four dimen-
sions is analysed. It is shown that, for zero spatial curvature
and zero cosmological constant, if the coupling is such that

0 < f ′(φ) ≤ c exp(
√

8√
10

φ), then there are solutions that are
eternal. Similar conclusions are found when a cosmological
constant turned on. These conclusions are not generalized
for the case when the spatial curvature is present, but we are
able to find some general results about the possible nature
of the singularities. The presented results correct some dubi-
ous arguments in Santillan (JCAP 7:008, 2017), although the
same conclusions are reached. On the other hand, these past
results are considerably generalized to a wide class of situ-
ations which were not considered in Santillan (JCAP 7:008,
2017).

1 Introduction

One of the main interests in higher derivative gravity theories
is that they can describe inflation by the addition of a higher
order curvature to the Einstein–Hilbert action [1,2]. This is
achieved without the addition of dark energy or scalar fields.
An important role in this context is played by the Gauss-
Bonnet invariant, since it appears in QFT renormalization in
curved space times [3]. In addition, the Gauss-Bonnet term
arises in low-energy effective actions of some string theories.
For instance, the tree-level string effective action has been
calculated up to several orders in the α′ expansion in [4–
10]. The result is that there is no moduli dependence of the
tree-level couplings. However, one loop corrections to the
gravitational couplings have been considered in the context
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of orbifold compactifications of the heterotic superstring [11,
12]. It has been shown in that reference that there are no
moduli dependent corrections to the Einstein term while there
are non trivial curvature contributions. They appear as the
Gauss-Bonnet combination multiplied by a function of the
modulus field.

The results described above partially motivated the study
of cosmological consequences of the Gauss-Bonnet term.
In four dimensions, this term does not have any dynamical
effect. However, when this term is non-minimally coupled
with any other field such as a scalar field φ, the resulting
dynamics is non trivial. Several cosmological consequences
has been exploited in recent literature, and we refer the reader
to [13–35] and references therein. But the aim of the present
letter is not focused in inflationary aspects of the theory,
instead in the characterization of singular and eternal solu-
tions of the theory. It is important to mention that there exist
preliminary works on this subject, examples are given in [36–
58]. In particular, the results of [36–38] suggest the existence
of singular solutions as well as regular solutions. The singular
solutions are confined to an small portion of the phase space,
while the non singular fill the rest. This situation is different
than in GR, where the Gauss–Bonnet term is absent, and the
powerful Hawking–Penrose theorems apply [59,60]. Related
work can be found in [61,62].

In the present work we are going to provide evidence for
these claims, when a cosmological constant is turned on or
when the spatial curvature is vanishing. In addition, some
partial results about the case with k = ±1 will be also pre-
sented.

This work is organized as follows. In Sect. 2, generali-
ties of Gauss-Bonnet models are briefly reviewed. Section 3
reviews some general arguments given in [63] for zero spa-
tial curvature and vanishing cosmological constant. These
arguments are valid for any model of these characteristics.
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Section 4 contains an analysis of eternal universes which
avoid some dubious arguments in [63]. The calculations pre-
sented in this section are particularly explicit, since they are
an important part of this paper. In Sect. 5 the results of Sect. 4
are generalized to the case where the cosmological constant
is turned on. In Sect. 6, the results of Sect. 3 are generalized
for the case in which the scalar curvature k is turned on. The
obtained results are not as universal as the ones in Sect. 3, but
some partial conclusions concerning the possible type of sin-
gularities can be obtained. In Sect. 7 the results of Sect. 4 are
partially generalized to the case where the spatial curvature
is turned on. Section 8 contains a discussion of the obtained
results and open perspectives.

2 Gauss–Bonnet equation

The model that will be considered here is a generalization
of the Gauss-Bonnet one. Recall that a pure Gauss–Bonnet
gravity model is described in D-dimensions by the following
action

Sp =
∫

dDx
√−gG, (2.1)

with G being the Gauss-Bonnet invariant

G ≡ R2 − 4Rαβ R
αβ + Rαβγ δR

αβγ δ. (2.2)

The signature to be employed in the following is (−,+, . . . ,

+). The equations of motions δS = 0 that arise by min-
imizing the action with respect to variations δgμν are the
following

−1

2
Rρσ R

ρσ gαβ − ∇α∇β R − 2Rρβασ R
σρ

+1

2
gαβ�R + �Rαβ + 1

2
R2gαβ − 2RRαβ

−2∇β∇αR + 2gαβ�R − 1

2
R + Rαβ = 0. (2.3)

In four dimensions, the term
√−gG can be expressed as a

total derivative
√−gG = ∂αK

α,

K α = √−gεαβγ δεμν
ρσ �

ρ
μβ

[ Rσ
νγ δ

2
+ �σ

λγ �λ
νδ

3

]
. (2.4)

Therefore in D = 4 and with a manifold without boundary,
this model is irrelevant. However, the following modified
action

Sm =
∫

d4x
√−g

{
1

2κ2 R − 1

2
∂μφ∂μφ+V (φ)+ f (φ)G

}
,

(2.5)

is non trivial from the physical point of view, as the Gauss-
Bonnet is coupled to the real scalar field φ by the coupling

f (φ). Due to this coupling, this modified lagrangian it is not
a total derivative and contributes to the equations of motion.

In the following, a Gauss–Bonnet model with a poten-
tial V (φ) will be considered, as in references [64,65]. The
equation for the scalar field φ in this case is given by

∇2φ + f ′(φ)G − V ′(φ) = 0. (2.6)

The equations of motion for the metric gμν are more involved.
The variation of the action throws the following result

0 = 1

κ2

(
−Rμν + 1

2
gμνR

)

+ 1

2
∂μφ∂νφ − 1

4
gμν∂ρφ∂ρφ

+ 1

2
gμν f (φ)G + V (φ) − 2 f (φ)RRμν

+ 2∇μ∇ν ( f (φ)R) − 2gμν∇2 ( f (φ)R)

+ 8 f (φ)Rμ
ρR

νρ − 4∇ρ∇μ
(
f (φ)Rνρ

)
− 4∇ρ∇ν

(
f (φ)Rμρ

) + 4∇2 (
f (φ)Rμν

)
+4gμν∇ρ∇σ

(
f (φ)Rρσ

) − 2 f (φ)Rμρστ Rν
ρστ

+4∇ρ∇σ

(
f (φ)Rμρσν

)
.

However, by taking into account the following identities

∇ρRρτμν = ∇μRντ − ∇νRμτ ,

∇ρRρμ = 1

2
∇μR,

∇ρ∇σ R
μρνσ = ∇2Rμν − 1

2
∇μ∇νR

+ Rμρνσ Rρσ − Rμ
ρR

νρ,

∇ρ∇μRρν + ∇ρ∇νRρμ = 1

2

(∇μ∇νR + ∇ν∇μR
)

− 2Rμρνσ Rρσ + 2Rμ
ρR

νρ,

∇ρ∇σ R
ρσ = 1

2
�R,

which are consequences of the Bianchi identities, the last
expression can be written as [66]

0 = 1

κ2

(
−Rμν + 1

2
gμνR

)

+
(

1

2
∂μφ∂νφ − 1

4
gμν∂ρφ∂ρφ + V (φ)

)

+ 1

2
gμν f (φ)G − 2 f (φ)RRμν + 4 f (φ)Rμ

ρR
νρ

− 2 f (φ)Rμρστ Rν
ρστ

+ 4 f (φ)RμρσνRρσ + 2
(∇μ∇ν f (φ)

)
R

− 2gμν
(
∇2 f (φ)

)
R − 4

(∇ρ∇μ f (φ)
)
Rνρ
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− 4
(∇ρ∇ν f (φ)

)
Rμρ + 4

(
∇2 f (φ)

)
Rμν

+4gμν
(∇ρ∇σ f (φ)

)
Rρσ − 4

(∇ρ∇σ f (φ)
)
Rμρνσ .

(2.7)

The Eqs. (2.6) and (2.7) are the full system of equations
describing the theory.

The following discussion is focused on the isotropic and
homogeneous vacuums of the model with zero spatial curva-
ture. The corresponding distance element for these vacuums
is given by

g4 = −dt2 + a2(t)
3∑

i=1

dx2
i .

The formulas for the Levi–Civita connection and the curva-
ture of this background are well known, they are explicitly

�t
i j = a2Hδi j ,

�i
j t = �i

t j = Hδi j ,

Rit j t = −
(
Ḣ + H2

)
δi j ,

Ri jkl = a4H2 (
δikδl j − δilδk j

)
,

Rtt = −3
(
Ḣ + H2

)
,

Ri j = a2
(
Ḣ + 3H2

)
δi j ,

R = 6Ḣ + 12H2. (2.8)

The other components are all zero.

3 Models without potential with flat spatial metric

For the case V (φ) = 0, by assuming that the spatial curvature
is k = 0, the corresponding equations of motion (2.6) and
(2.7) reduce to

φ̇2

2
= 3H2(1 + ḟ (φ)H), (3.9)

φ̇2

2
= −2(H2 + Ḣ)(1 + ḟ (φ)H) − H2(1 + f̈ (φ)),

(3.10)

φ̈ = −3H φ̇ + 3H2 f ′(φ)(H2 + Ḣ). (3.11)

Our aim is to characterize the behavior of the solutions of
these equations, without finding explicit solutions.

3.1 General analysis

The following analysis is focused on the two Eqs. (3.9)-
(3.10). From Eq. (3.9) it is immediately deduced that

φ̇2

6H2 = 1 + ḟ H ≥ 0. (3.12)

This implies that the inequality

H f ′(φ)φ̇ ≥ −1,

is satisfied during the whole evolution of the universe. On the
other hand, the Eq. (3.10) can be expressed by use of (3.9)
as follows

φ̇2

2
= −2(H2 + Ḣ)(1 + ḟ (φ)H) − H2(1 + f̈ (φ))

= −2H2(1 + ḟ (φ)H) − 2Ḣ(1 + ḟ (φ)H)

− H2(1 + f̈ (φ))

= − φ̇2

3
− 2Ḣ(1 + ḟ (φ)H) − H2(1 + f̈ (φ))

where in the last step (3.9) was taken into account. The last
identity is equivalent to

5φ̇2

6
+ H2 = −2Ḣ(1 + ḟ (φ)H) − H2 f̈ (φ).

It may be easily seen that the right term is a total derivative,
thus the last equality can be expressed as

5φ̇2

6
+ H2 = −2

dH

dt
− d( ḟ H2)

dt
≥ 0.

In other words

d

dt
(2H + ḟ H2) ≤ 0.

By integrating the last inequality the following bound is
obtained

H(2 + ḟ H) ≤ C0, t ≥ 0, (3.13)

with C0 being the value of the quantity H(2+ ḟ H) at t = 0.
This bound is valid for times t > 0. Furthermore, it can be
easily generalized for two arbitrary times t1 and t2 such that
t2 > t1, with the left hand of the inequality referred to the
time t2 and the right hand to t1.

The inequality (3.13) derived above has important conse-
quences. Assume for a moment that the initial condition is
such that C0 < 0. The inequality (3.12) shows that the factor
2 + ḟ H ≥ 1, therefore this case corresponds to H < 0.
Thus, for this initial condition, the universe is contracting at
t = 0. By taking into account (3.13) and that 2 + ḟ H ≥ 1 it
follows that

H ≤ C0

2 + ḟ H
≤ 0, t ≥ 0. (3.14)

Thus the universe is always contracting in the future if it
is contracting at t = 0. This is an universal conclusion, no
matter the form of the coupling f (φ). Furthermore, for the
past, the equation (3.13) is converted into

H ≥ C0

2 + ḟ H
≥ C0, t ≤ 0, (3.15)
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Again, in the last step the inequality 2 + ḟ H ≥ 1 was taken
into account.

Suppose now that the initial condition is C0 > 0. Then

H ≤ C0

2 + ḟ H
≤ C0, t ≥ 0. (3.16)

For the past, the Eq. (3.13) is converted into

H ≥ C0

2 + ḟ H
≥ 0, t ≤ 0, (3.17)

Thus, if the universe is expanding at t = 0, it was expand-
ing always in the past. Again, this is an universal conclusion,
without reference to the particular form of the coupling f (φ).
These results show in particular that there are no cyclic cos-
mologies for these models.

We have made the analogous analysis when a cosmolog-
ical constant � �= 0 is turned on. But we have obtained no
universal conclusions in this case. In fact, when the curva-
ture is turned on, the resulting inequalities are analogous to
the ones above but with the replacement C0 → C0 + �t . In
particular, cyclic cosmologies are allowed when the cosmo-
logical constant is turned on.

3.2 The behavior of the scalar field

Consider now the behavior of φ and φ̇. First, by taking
into account that ḟ (φ) = f ′(φ)φ̇, the Eq. (3.9) becomes
a quadratic algebraic relation for φ̇. Its solution is

φ̇ = H

2

[
6H2 f ′(φ) ±

√
36H4 f ′(φ)2 + 24

]
. (3.18)

If the negative branch is chosen in (3.18) then the time deriva-
tive is given by

2φ̇ = H

[
6H2 f ′(φ) −

√
36H4 f ′(φ)2 + 24

]
. (3.19)

It is convenient to express this formula as

2φ̇ = 6H3 f ′(φ)

[
1 −

√
1 + 24

36H4 f ′(φ)2

]
. (3.20)

By taking into account that
√

1 + x ∼ 1 + x/2 for x <<

1 and
√

1 + x ∼ √
x for x >> 1, one can draw several

conclusions. First, it follows from (6.93) that if f ′(φ) →
±∞ and H is finite, then φ̇ → 0. Also, if f ′(φ) �= 0 then
φ̇ → 0 when H → ±∞. Instead, if f ′(φ) = 0 then it
may happen that φ̇ → ±∞ when H → ±∞, as follows
from (3.19). For this reason, a coupling f ′(φ) which never
reaches a zero will be chosen. An example of this may be
a coupling f ′(φ) > 0 with a global minimum f ′

m > 0. In
addition, this condition implies that φ̇ → 0 when H → 0
and f ′(φ) is finite, this is directly seen by use of (6.93).

Note however, that there may be an indetermination when
H → 0 and f ′(φ) → ±∞. Consider first the case

H2 f ′(φ) → c, with c a constant. Then H3 f ′(φ) → 0 and
from (6.93) it is clear that φ̇ → 0. If instead H2 f ′(φ) → 0
then H3 f ′(φ) → 0 and again it is seen from (6.93) and that√

1 + x ∼ √
x for x >> 1 that φ̇ → 0 in this case. Finally,

when H2 f ′(φ) → ±∞ it is seen from the same formula
and that

√
1 + x ∼ 1 + x/2 for x << 1 that φ̇ → 0 again.

In other words, there is no way in which φ̇ → ±∞ if the
coupling f ′(φ) is never zero.

Now, if φ̇ is interpreted as a function of the two variables
( f ′(φ), H) given by (3.19), then the properties shown above
show that it vanishes at the point ( f ′

m, 0) and at any point of
the infinite. The fact that φ̇ is a continuous function shows that
it must have a minimum and a maximum somewhere. In fact,
the restriction of this function to any straight line in the space
( f ′(φ), H) connecting the point ( f ′

m , 0) with some point of at
the infinite interpolates between the two zeros continuously.
The Bolzano theorem implies the presence of a minimum
or a maximum in any of these directions. These directions
are parametrized an “angular” coordinate ϑ and since the
function φ̇ is well behaved, these extrema varies continuously
with the angle. As the angular coordinate 0 ≤ ϑ < 2π is
compact, it follows that there should exist a global minimum
φ̇1 and a global maximum φ̇2. Therefore

φ̇2 ≤ φ̇ ≤ φ̇1,

and, by simple integration of the last expression, it follows
that

φ0 + φ̇1t ≤ φ ≤ φ0 + φ̇2t, t ≥ 0,

φ0 + φ̇2t ≤ φ ≤ φ0 + φ̇1t, t ≤ 0. (3.21)

This means that the values of φ are bounded by two linear
time functions, and therefore are bounded for any finite time
value t .

4 The possibility of eternal universes

Consider again the Eqs. (3.9)–(3.11) with the branch in which
φ̇ is bounded, that is, the branch described by (6.93). In the
following, it will be assumed that f ′(φ) and f ′′(φ) are not
divergent for any finite value of φ. Suppose that the universe
falls into a singularity at a given finite time, which can be
chosen when t → ±0, by a shift of time. The choice t → 0
is for simplicity, the singularity may be at any value t0 by
a choice of a convenient parametrization. Our aim is to find
situations in which this assumption gives a contradiction. In
these situations, the universe will be eternal.

The analysis given in the present section avoid some dubi-
ous arguments presented in [63], although similar conclu-
sions are obtained. The dubious argument is the one below
the formula (3.21) of that paper. We suspect that this formula
may be a trivial one due to a numerical computer error. Thus,
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the present analysis will avoid such types of arguments. Since
the results of this section are crucial, the calculations will be
as explicit as possible and will not rely in any computer algo-
rithm. All the tools to be used in the following sections are
all analytical and its validity can be seen directly.

Assume first that the singularity in the curvature comes
from the behavior H → ±∞ when t → 0, either from
negative or positive times. Since one is working in the branch
for which φ̇ is bounded, the first Eq. (3.9) shows that

lim
t→0

(1 + H ḟ ) = 0, (4.22)

otherwise φ̇ → ±∞, which is not in the selected branch.
The last is a necessary condition, and implies that φ̇ → 0 at
t → 0 in such a way that H φ̇ → −1/ f ′(φ0), φ0 being the
value of φ at the singularity.

The third Eq. (3.11), together with the fact that H φ̇ →
−1/ f ′(φ0) at t → 0, imply that

lim
t→0

φ̈ = − 3

f ′(φ0)
+ lim

t→0
3H2 f ′(φ)(H2 + Ḣ). (4.23)

In these terms, there are several situations to analyse. In all
the following sections, the case f ′(φ) > 0 or f ′(φ) < 0
will be considered. The reason is that, otherwise, the bounds
(4.25) may not be satisfied, and this bounds are crucial for
the following.

The case of unbounded scalar field acceleration φ̈ and
H → ±∞

A first possibility is that the acceleration φ̈ is divergent at
the singularity. From (4.23) it follows that this possibility is
equivalent to

lim
t→0

3H2 f ′(φ)(H2 + Ḣ) → ±∞. (4.24)

From (3.10), and by taking (3.9) into account, it follows that
φ̇ → 0 implies that

2Ḣ(1 + H ḟ ) + H2(1 + f̈ ) → 0. (4.25)

As it will be shown below, this is impossible to satisfy. As φ̈

is divergent, so is f̈ = f ′(φ)φ̈ + f ′′(φ)φ̇2, since it has been
assumed that f ′(φ) is never zero. But the term multiplying
Ḣ in (4.25) tends to zero. Thus, Ḣ should be much more
divergent that H2, as it should cancel the divergent second
term in (4.25). This second term diverges as φ̈H2, which
clearly explode faster than H2 if φ̈ → ±∞. Thus, it follows
that Ḣ >> H2 near the singularity and this, together with
(3.11) imply that

φ̈ ∼ 3H2 f ′(φ0)Ḣ → ±∞. (4.26)

The last two relations (4.25)–(4.26) combine to give

2Ḣ(1 + H ḟ ) + 3H4 f ′(φ0)
2 Ḣ → 0. (4.27)

This limit is not true, since 1 + H ḟ + 3H4 f ′(φ0)
2 →

3H4 f ′(φ0)
2 by (5.57), and this quantity is divergent as H4.

Furthermore, this quantity is also multiplying Ḣ in (4.27),
which is also highly divergent. This contradiction shows that,
for this branch, it is impossible to have a singularity with
unbounded acceleration for H → ±∞. Thus, the only pos-
sibility is that H is finite.

The case of unbounded scalar field acceleration φ̈, H2 <

∞ and Ḣ → ±∞

Assume that H → H0 and that Ḣ is divergent. Then from
(3.9) it follows, for t → 0, that

φ̈ ∼ 3H2
0 f ′(φ0)Ḣ → ±∞. (4.28)

On the other hand (3.10) can be expressed, by use of (3.9) as
follows

φ̇2

2
= −(H2 + Ḣ)

φ̇2

3H2 − H2(1 + f̈ (φ)),

This is equivalent to

5φ̇2

6
+ H2 = − φ̇2 Ḣ

3H2 − H2 f̈ (φ)

Thus, near the singularity

5φ̇2
0

6
+ H2

0 = − φ̇2
0 Ḣ

3H2
0

−3H4
0 f 2(φ0)Ḣ − f ′′(φ0)H

2
0 φ̇2

0 , (4.29)

where in the last step the equality f̈ = f ′(φ)φ̈ + f ′′(φ)φ̇2

was used, together with the asymptotic behavior (4.28). Here
φ̇0 is the velocity of the scalar field, which is not necessarily
zero in this case, but we are working in the branch in which it
is finite. Now, the left hand of (5.62) is bounded by definition,
since φ̇0 and H0 are finite by our assumptions. But the right
hand of (5.62) can be expressed as

5φ̇2
0

6
+ H2

0 = −
(

φ̇2
0

3H2
0

+ 3H4
0 f

′2(φ0)

)

×Ḣ − f ′′(φ0)H
2
0 φ̇2. (4.30)

Both terms multiplying Ḣ in the right hand are positive
defined, and it is impossible to fix a value of H0 and φ0

for which they cancel. Thus, the right hand is divergent, but
the left is not which is absurd. Thus, there does not exist such
singularity in this type of models, in the chosen branch, if H0

is different from zero.
However, there is a further possibility, that is, that H →

0 and Ḣ → ±∞. This limit is better studied by looking
directly to Eqs. (3.9)–(3.11). The equation (3.9) for H → 0

123



85 Page 6 of 13 Eur. Phys. J. C (2018) 78 :85

shows that φ̇ → 0. Thus 1 + ḟ H → 1. The Eq. (3.10)
reduces to

− 2Ḣ − H2 f̈ (φ) → 0, (4.31)

and the Eq. (3.11)

φ̈ → 3H2 f ′(φ)Ḣ . (4.32)

Clearly, there is an indetermination of the type 0.∞ in both
equations. But taking into account that f̈ = f ′(φ)φ̈ +
f ′′(φ)φ̇2 in (4.31) and by taking into account (4.32) and
that f ′′(φ) is finite in this branch, it is obtained that

−2Ḣ − H2 f̈ (φ) → −2Ḣ − 3H4 f ′(φ)2 Ḣ

→ −2Ḣ → ∞. (4.33)

The contradiction between (4.33) and (4.31) shows that this
regime also does not exist.

The case with bounded scalar field acceleration φ̈

A further possibility is that the limit (4.23) is finite, which
means that the acceleration φ̈ is bounded. This implies that

lim
t→0

3H2 f ′(φ)(H2 + Ḣ) = l0, (4.34)

where l0 is a finite number. There are three possibilities to
consider. One is that H → 0 and that Ḣ → ±∞ in such
a way that (4.34) holds. But this possibility is easily ruled
out as follows. From (3.9) it is seen that φ̇ → 0. Thus, the
Eq. (3.10) and the assumption of bounded acceleration imply
that Ḣ → 0, which is a contradiction. The second possibility
is that H is finite and Ḣ → ±∞. But this clearly does
not satisfy (4.34). In addition, if H and Ḣ are finite, there
is no singularity and the universe is eternal. Thus, the only
possibility for having a singular curvature is that H → ±∞
and Ḣ → ±∞. By taking into account this, the last equation
gives the following necessary condition

lim
t→0

(H2 + Ḣ) = 0. (4.35)

On the other hand, from (3.9) and the conclusion that H →
±∞, it is seen that for this case H φ̇ → −1/ f ′(φ0), thus in
particular φ̇ → 0 at the singular point t → 0. This, combined
with (3.10) and (4.35) leads to the conclusion that

lim
t→0

H2(1 + f̈ (φ)) = 0. (4.36)

Thus, another necessary condition is that

lim
t→0

f̈ (φ) = −1. (4.37)

Since f̈ = f ′(φ)φ̈ + f ′′(φ)φ̇2 and φ̇ → 0 at t → 0, the last
condition is equivalent to

lim
t→0

φ̈ = − 1

f ′(φ0)
. (4.38)

This, combined with the formulas (4.23) and (4.34) shows
that

lim
t→0

H2(H2 + Ḣ) = 2

3 f ′2(φ0)
. (4.39)

The last condition puts several restrictions on the behavior
near the singularity. First, note that the solution of Ḣ+H2 =
0 is H = c/t . This suggest that it is convenient to parametrize
H near the singularity as

H = c

t + h(t)
, (4.40)

with h(t) being a function of time that goes to zero faster
than linearly. The condition (4.39) is then

lim
t→0

c2 − c − ch′(t)
(t + h(t))4 = 2

3c2 f ′2(φ0)
. (4.41)

As h(t) goes to zero faster than linearly, the last equation can
be satisfied only if c = 1 and

h′(t) = − 2

3 f ′2(φ0)
t4(1 + g(t)). (4.42)

with g(t) a function that goes to zero at t → 0, not necessarily
analytical. Therefore

h(t) = − 2

15 f ′2(φ0)
t5 + m(t). (4.43)

Here m(t) goes to zero faster than t5, and is not necessarily
analytic. The conclusion is that, near the singularity

H = 1

t − 2
15 f ′2(φ0)

t5 + m(t)
. (4.44)

Another way to justify this expression is to postulate that

H = 1

q(t)
,

with q(t) going to zero at t → 0. The condition H2(Ḣ +
H2) → cte at t → 0 becomes

lim
t→0

1 − q ′(t)
q(t)4 = 2

3 f ′2(φ0)
. (4.45)

Thus q ′(t) = 1 + l(t) with l(t) → 0 when t → 0. Therefore
q(t) = t + k(t) with k(t) → 0 when t → 0 faster than lin-
early. However (4.45) shows that k′(t)/t4 tends to a constant.
Integration of this expression will lead again to (4.44).

Now, the expression (4.44) combined with (4.36) and
(4.37) imply that

f̈ (φ) = −1 + αt2+ε + s(t), (4.46)

with ε > 0 and s(t) containing the terms that go to zero
even faster than t2+ε . One may consider the possibility that
f̈ goes to zero not like any power law, for instance as f̈ (φ) =
−1 + αt2u(t) with u(t) → 0 as t → 0 and non analytical.
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But we will argue below that this is not the case. The last
condition may be integrated to give

ḟ (φ) = −t + αt3+ε

3 + ε
+ r(t), (4.47)

where r(t) goes to zero faster than t3+ε . Finally, the fact that

φ̈ = − 1

f ′(φ0)
, → φ̇ = − t

f ′(φ0)
+ w(t), (4.48)

where w(t) goes to zero faster than linearly. All the obtained
expressions are valid in an small interval near t = 0.

There are further consequences that can be drawn from the
obtained expressions. By taking into account (4.44), (4.46)
and (4.48) the Eq. (3.9), namely

φ̇2

2
= 3H2(1 + ḟ (φ)H),

is converted near the singularity into

1

6

(
t − 2

15 f ′2(φ0)
t5 + m(t)

)3( t

f ′(φ0)
− w(t)

)2

= − 2

15 f ′2(φ0)
t5 + αt3+ε

3 + ε
+ m(t) + r(t).

But the coefficients proportional to t5 match only if

α = 3

2 f ′(φ0)2 , ε = 2.

This matching is in fact the justification for proposing that
f̈ (φ) = −1 + αt2+ε + s(t) near the singularity instead of
a generic f̈ (φ) = −1 + αt2u(t) with u(t) → 0 as t → 0.
Without this dependence, there will not be matching between
the quintic terms. Now, with the value of α just found it
follows by integrating f̈ (φ) = −1+αt2+ε+s(t) with respect
to time that

ḟ (φ) = −t + 3t5

10 f ′(φ0)2 + r(t), (4.49)

where r(t) goes faster than t5 and is not necessarily analytic.
It should be emphasized that the matching of the quintic

terms are necessary, but they do not insure the existence of a
solution. In fact, it is possible already to derive some inconsis-
tencies which suggest the existence of a huge class of models
for which there are eternal solutions. The last condition may
be combined with (4.48) to get further consequences which
are impossible to satisfy. The approximation (4.48) may be
integrated to give

φ = φ0 + δφ(t) = φ0 − t2

2 f ′(φ0)
+ W (t), (4.50)

where W (t) is the primitive of w(t), and grows faster than
quadratically. Both (4.49) and (4.50) combined give that

ḟ (φ(t)) � f ′(φ(t))φ̇(t)

�
[
f ′(φ0) + f ′′(φ0)δφ(t)

]
φ̇(t)�−t+ 3t5

10 f ′(φ0)2 ,

or explicitly

[
f ′(φ0) + f ′′(φ0)

(
− t2

2 f ′(φ0)
+ W (t)

)]

×
(

− t

f ′(φ0)
+ w(t)

)
� −t + 3t5

10 f ′(φ0)2 ,

up to higher order terms. Now, the left hand side may be
expanded to obtain

−t + f ′(φ0)w(t) + f ′′(φ0)t3

2 f ′(φ0)2 − f ′′(φ0)t2w(t)

2 f ′(φ0)

− f ′′(φ0)tW (t)

f ′(φ0)
+ f (φ0)w(t)W (t) � −t + 3t5

10 f ′(φ0)2 .

(4.51)

The linear terms clearly match. But there are problems to
match the other terms. In order to see this, one should take
into account that w(t) grows faster than linearly, and that its
primitive W (t) goes faster than quadratically. Now, the third
term in (4.51) is cubic, and since the right hand does not have
any cubic term, it should be cancelled somehow. It can not be
cancelled by the fourth or the fifth term, since the behavior of
w(t) or W (t) described above makes these terms of higher
order than three. The sixth term also is of higher order. But
it can be cancelled by second term by assuming that

w(t) = − f ′′(φ0)t3

2 f ′(φ0)3 + w2(t),−→

W (t) = − f ′′(φ0)t4

8 f ′(φ0)3 + W2(t).

On the other hand, w2(t) can not include a quadratic term.
If that were the case then the second term in (4.51) would
contain a quadratic term that can not be compensated, as V (t)
contains at least cubic terms. Thus, w2(t) goes to zero faster
than t3 and therefore W2(t) goes to zero faster than t4. From
here it is seen that the fourth and the fifth term of (4.51) go
like

− f ′′(φ0)t2v(t)

2 f ′(φ0)
− f ′′(φ0)tV (t)

f ′(φ0)

� f ′′(φ0)
2

4 f ′(φ0)4 t
5 + f ′′(φ0)

2

8 f ′(φ0)4 t
5,

up to higher order terms. This term match the quintic term
of (4.51) if and only if

3 f ′′(φ0)
2

8 f ′(φ0)4 = 3

10 f ′(φ0)2 .
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This gives the following numerical relation defining φ0

f ′′(φ0)
2 = 4 f ′(φ0)

2

5
. (4.52)

This is one of the mandatory conditions to be satisfied. How-
ever, there exist a lot of functions for which (4.52) is never
satisfied. For instance, there are a lot of couplings for which

0 ≤ f ′′(φ) ≤ 2 f ′(φ)√
5

.

This is satisfied for instance for

0 < f ′(φ) ≤ c exp

(
2√
5
φ

)
.

There are plenty of models that satisfy this constraint, as a
bound by an exponential is not a very restrictive condition.
Thus, for any of these models, for the coupling is bounded
by an exponential, the cosmological solutions corresponding
to our branch will be eternal.

5 Models with flat spatial metric and cosmological
constant � > 0 turned on

For the case with a cosmological constant � > 0 turned on,
by assuming that the spatial curvature is k = 0, the corre-
sponding equations of motion are given by .

φ̇2

2
+ � = 3H2(1 + ḟ (φ)H), (5.53)

φ̇2

2
− � = −2(H2 + Ḣ)(1 + ḟ (φ)H)

−H2(1 + f̈ (φ)), (5.54)

φ̈ = −3H φ̇ + 3H2 f ′(φ)(H2 + Ḣ). (5.55)

In analogous way than in Eqs. (3.18)–(4.25), it may be show
that the negative branch of the scalar field φ̇ is bounded in
this case. Based on this, the following analysis can be done.

The case of unbounded scalar field acceleration φ̈ and
H → ±∞

As before, consider the possibility is that the acceleration φ̈

is divergent at the singularity. This possibility is equivalent
to

lim
t→0

3H2 f ′(φ)(H2 + Ḣ) → ±∞. (5.56)

Assume that H → ±∞ at the singularity t → 0, either from
the left or the right. As φ̇ is bounded then (5.53) holds only
if

1 + H ḟ → 0, φ̇H → − 1

f ′(φ0)
, (5.57)

with φ0 is the value of φ at the singularity. Since H2 → ∞
it is clear that φ̇ → 0. From (5.54), and by taking (5.53) into
account, it follows that φ̇ is bounded only if

2Ḣ(1 + H ḟ ) + H2(1 + f̈ ) → �

3
. (5.58)

By use of f̈ = f ′(φ)φ̈ + f ′′(φ)φ̇2, and by use of analo-
gous arguments than the ones below (4.25), it is obtained
that Ḣ >> H2 near the singularity and this, together with
(5.55) permits to conclude that

φ̈ ∼ 3H2 f ′(φ0)Ḣ → ±∞, (5.59)

at the singularity. The last two relations (5.57)–(5.58) com-
bine to give

2Ḣ(1 + H ḟ ) + 3H4 f ′(φ0)
2 Ḣ → �

3
. (5.60)

However, this limit can not be true, since 1 + H ḟ +
3H4 f ′(φ0)

2 → 3H4 f ′(φ0)
2 by (5.57), and this quantity

is divergent as H4. Furthermore, this quantity is also mul-
tiplying Ḣ in (4.27), which is also highly divergent. This
contradiction shows that, for this branch, it is impossible to
have a singularity with unbounded acceleration, unless H is
finite.

The case of unbounded scalar field acceleration φ̈, H2 <

∞ and Ḣ → ±∞

Consider now the possibility that H → H0 and that Ḣ is
divergent. Then from (5.53) it follows, for t → 0, that

φ̈ ∼ 3H2
0 f ′(φ0)Ḣ → ±∞. (5.61)

On the other hand (5.54) can be expressed, by use of (5.53)
as follows

φ̇2

2
− � = − (H2 + Ḣ)(φ̇2 + 2�)

3H2 − H2(1 + f̈ (φ)),

Therefore

5φ̇2

6
+ H2 − �

3
= − (φ̇2 + 2�)Ḣ

3H2 − H2 f̈ (φ)

Thus, near the singularity

5φ̇2
0

6
+ H2

0 − �

3
= − (φ̇2

0 + 2�)Ḣ

3H2
0

−3H4
0 f 2(φ0)Ḣ − f ′′(φ0)H

2
0 φ̇2,

(5.62)

where in the last step the equality f̈ = f ′(φ)φ̈ + f ′′(φ)φ2

was used, together with the asymptotic behavior (5.61). Here
φ̇0 is the velocity of the scalar field, which is not necessarily
zero in this case, but we are working in the branch in which it
is finite. Now, the left hand of (5.62) is bounded by definition,
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since φ̇ and H0 are finite by our assumptions. But the right
hand of (5.62) can be expressed as

5φ̇2
0

6
+ H2

0 − �

3
= −

(
φ̇2

0 + 2�

3H2
0

+ 3H4
0 f ′(φ0)

2
)

×Ḣ − f ′′(φ0)H
2
0 φ̇2. (5.63)

Both terms multiplying Ḣ in the right hand are positive
defined, and it is impossible to fix a value of H0 and φ0

for which they cancel. Thus, the right hand is divergent, but
the left is not which is absurd. Thus, there does not exist such
singularity in this type of models, in the chosen branch, if H0

is different from zero.
However, there is a further possibility, that is, that H → 0

and Ḣ → ±∞. But it is easy to see from Eqs. (5.53)–(5.55)
that the case H = 0 is not allowed when the cosmological
constant � is turned on. Thus, for divergent acceleration φ̈ →
±∞ there is no singularity in this branch.

The case with bounded scalar field acceleration φ̈

Next, consider the possibility that φ̈ is finite. The equation
(5.55) is the same as the one without cosmological constant,
since the derivative of � is simply zero. In view of this, the
discussions given in the previous sections show that H2 +
Ḣ → 0 near the singularity, and furthermore both H2 and Ḣ
are divergent at the singular point. It is not difficult to check
that the condition (4.34) and (4.35) that was obtained for the
case � = 0 also hold in this case. In addition (5.53) and
the fact that H2 → ∞ shows that H φ̇ → −1/ f ′(φ0) and
therefore φ̇ → 0 near the singularity. These conditions are
similar to the ones found for � = 0. The main difference
follows from Eq. (5.54). In fact, by taking into account that
H2 + Ḣ → 0, it is seen that Eq. (5.54) becomes

lim
t→0

H2(1 + f̈ (φ)) = �. (5.64)

This is different that condition (4.36) and in fact, it reduces
to that case only when � → 0. The resulting necessary
condition is that

lim
t→0

f̈ (φ) = −1. (5.65)

As f̈ = f ′(φ)φ̈ + f ′′(φ)φ̇2 and φ̇ → 0 at t → 0, the last
condition implies

lim
t→0

φ̈ = − 1

f ′(φ0)
. (5.66)

This, combined with H φ̇ → −1/ f ′(φ0) and the formulas
(4.23) and (4.34)1 shows that

1 Which are also valid in this case, as the equation of motion for φ

are unchanged by the presence of a cosmological constant. Note that
in presence of a potential V (φ) there appears a term proportional to

lim
t→0

H2(H2 + Ḣ) = 2

3 f ′2(φ0)
. (5.67)

This is exactly the condition (4.39) obtained in the previous
section, where it was shown to lead to (4.44). Thus formula
(4.44) applies in this case. The formula (4.44), combined
with (5.64) and (5.65) imply that

f̈ (φ) = −1 + �t2 + αt2+ε + s(t), (5.68)

with s(t) containing the terms that go to zero faster than
quadratically. Thus

ḟ (φ) = −t + �

3
t3 + αt3+ε

3 + ε
+ r(t), (5.69)

where r(t) goes to zero faster than t3. The formula (4.48) is
also unchanged. By taking into account

φ̇2

2
+ � = 3H2(1 + ḟ (φ)H),

it is seen that, near the singularity, the following relation
holds

1

6

(
t − 2

15 f ′2(φ0)
t5 + m(t)

)3[(
t

f ′(φ0)
− w(t)

)2

+ 2�

]

= − 2

15 f ′2(φ0)
t5 + �t3

3
+ αt3+ε

3 + ε
+ m(t) + r(t).

(5.70)

The coefficients proportional to t3 do match. The quintic
terms match when

α = 3

10 f ′(φ0)2 ,

and this, together with (5.69) imply that

ḟ (φ) = −t + �

3
t3 + 3t5

10 f ′(φ0)2 + r(t), (5.71)

where r(t) goes faster than t5 and is not necessarily analytic.
However, arguments analogous to the ones giving (4.51)
show that

−t + f ′(φ0)w(t) + f ′′(φ0)t3

2 f ′(φ0)2 − f ′′(φ0)t2w(t)

2 f ′(φ0)

− f ′′(φ0)tW (t)

f ′(φ0)
+ f (φ0)w(t)W (t)

� −t + �

3
t3 + 3t5

10 f ′(φ0)2 , (5.72)

should be satisfied. This reduces to (4.51) when � → 0. The
terms in (5.72) match by postulating that

w(t) = −αt3 + w2(t), W (t) = −αt4

4
+ W2(t)

Footnote 1 continued
V ′(φ), but for a constant potential (a cosmological constant) this term
do not contribute.
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which gives that two linear conditions whose solution is

α = − 2

5 f ′(φ0) f
′′
(φ0)

,

− 2

5 f ′(φ0) f
′′
(φ0)

+ f
′′
(φ0)

2 f ′2(φ0)
= �

3
. (5.73)

Note that the second condition (5.73) coincides with (4.52)
when � → 0, which is a good consistency test. Thus, the
second (5.73) can be interpreted as a generalization of (4.52).
There are a lot of couplings which do not satisfy this second
condition, as for the case � = 0. For these models we have
again eternal solutions, when the scalar field is in the negative
branch.

6 Spatial curvature k = ±1 turned on

The equations in this case are given by

φ̇2

2
= 3

(
H2 + k

a2

)
(1 + ḟ (φ)H), (6.74)

φ̇2

2
= −2(H2+ Ḣ)(1+ ḟ (φ)H) −

(
H2+ k

a2

)
(1+ f̈ (φ)),

(6.75)

φ̈ = −3H φ̇ + 3

(
H2 + k

a2

)
f ′(φ)(H2 + Ḣ). (6.76)

The Eq. (6.75) can be worked out further by adding and
subtracting a term proportional to k/a2, the result is

− φ̇2

2
= 2(1 + ḟ H)

(
H2 + k

a2

)

+2(1 + ḟ H)

(
Ḣ − k

a2

)

+(1 + f̈ )

(
H2 + k

a2

)
. (6.77)

The first term of the right hand side is proportional to φ2, this
follows directly from (6.74). Thus, (6.77) becomes

− 5φ̇2

6
= 2(1 + ḟ H)

(
Ḣ − k

a2

)
+(1+ f̈ )

(
H2+ k

a2

)
.

(6.78)

By taking into account the definition H = ȧ/a it follows that
some terms can be arranged as a total derivative as follows

− 5φ̇2

6
− H2 = d

dt

(
2H + H2 ḟ + k ḟ

a2

)
− k

a2 . (6.79)

The important point is that the left hand side is obviously
negative, thus the right hand is negative as well. Therefore

d

dt

(
2H + ḟ

(
H2 + k

a2

) )
− k

a2 ≤ 0.

Integration of the last inequality gives

2H + ḟ (H2 + k

a2 ) −
∫ t

0

k

a2(ξ)
dξ ≤ C0. (6.80)

Here C0 is the value of the quantity 2H + H2 ḟ + k ḟ /a2 at
t = 0. The left hand of the inequality is evaluated at a given
future time, which is denoted by t .

The inequality (6.80) is an important constraint for the
model. In order to visualize its consequences, assume that
at t the Hubble constant H is positive H > 0 and that it is
approaching a singularity at t0 > t > 0. Suppose that the
singularity comes from a behavior of the lapse function of
the form a(t) ∼ c(t0 − t)α . Then H ∼ α/(t− t0), and clearly
H > 0 only if α < 0, since t < t0. It is convenient to express
(6.80) as follows

2H + ḟ (H2 + k

a2 ) −
∫ t

0

k

a2(ξ)
dξ ≤ C0. (6.81)

By assumption H > 0, thus by multiplying the whole
inequality (6.81) by H gives

2H2 + H ḟ (H2 + k

a2 ) − H
∫ t

0

k

a2(ξ)
dξ ≤ C0H. (6.82)

Now, the addition of the term H2 + k
a2 to the last expression

shows that

2H2 + (1 + H ḟ )(H2 + k

a2 )

− H
∫ t

0

k

a2(ξ)
dξ ≤ C0H + H2 + k

a2 . (6.83)

By use of (6.74) it is directly seen that the second term of
(6.83) is proportional to φ̇2. Thus it follows that (6.83) is
given by

H2 − H
∫ t

0

k

a2(ξ)
dξ ≤ C0H + k

a2

− φ̇2

6
≤ C0H + k

a2 . (6.84)

The inequality (6.84) reduces to

H2 − k

a2 − H
∫ t

0

k

a2(ξ)
dξ ≤ C0H. (6.85)

Our assumption is that a(t) ∼ c(t0 − t)α with α < 0, thus the
scale factor is divergent at this stage. It is implicitly assumed
that t0 is the first singularity after t = 0. The inequality (6.85)
then becomes

α2

(t0 − t)2 − kc2(t0 − t)2α − α

t0 − t
I ≤ C0

α

t0 − t
. (6.86)

Here I is the value of the integral, which is finite since 1/a2(t)
does not have any singularity. But the important point to
remark is the following. The first term on the left hand is
positive and has the singular behavior 1/(t0 − t)2, which is
more explosive than the term 1/(t0 − t) of the right hand.
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The only way that the inequality (6.86) can be fulfilled is
that the second and the third term cancel this behavior. But
clearly, none of them can do the job. Note that, during all
the reasoning above, the value of C0, the value of k or the
behavior of the coupling f (φ) was immaterial.

Now, consider the case H < 0 in the past and falling into
a singularity H ∼ α

t−t0
at t = t0 < 0 due to a behavior

a(t) ∼ c(t − t0)α with α < 0. For past times t < 0 the
inequality obtained by integrating (6.80) is given by

C0 ≤
∫ 0

t

2k

a2(ξ)
dξ + 2H + ḟ

(
H2 + k

a2

)
. (6.87)

By multiplying by H and remembering that H < 0 it is
found that

H
∫ 0

t

2k

a2(ξ)
dξ + 2H2 + H ḟ

(
H2 + k

a2

)
≤ C0H.

(6.88)

As before, the addition of the term H2 + k
a2 converts this

expression into

H
∫ 0

t

2k

a2(ξ)
dξ + 2H2 ≤ C0H + H2 + k

a2 − φ̇2

4
. (6.89)

Thus, in particular,

H
∫ 0

t

2k

a2(ξ)
dξ + H2 − k

a2 ≤ C0H. (6.90)

By choosing k = 1 it is seen that the integral now is not
divergent, since the function a(t) do not have zeros. Denote
its value as I . Then the last bound is

− kα I

t + t0
+ α2

(t + t0)2 − k(t + t0)2α

c2 ≤ − C0α

t0 + t
. (6.91)

All the terms proportional to (t + t0)2α vanish near the sin-
gularity. It is impossible to satisfy this inequality, since the
term α2

(t+t0)2 is the most explosive one and is positive, thus the
left hand side of the inequality is larger than the right hand
side near a singularity, a clear contradiction. This is valid for
k = ±1 and k = 0. In short terms, by denoting β = −α, the
conclusions made about the past and future behavior can be
stated as follows.

Proposition The Gauss–Bonnet cosmology without poten-
tial and with spatial curvature k = ±1 or k = 0 does not
admit solutions for which there is a regime falling into a sin-
gularity of the form a(t) ∼ c/(t0−t)β , withβ > 0, neither in
the past or future, no matter the explicit form of the coupling
f (φ).

We have also considered the other two complementary
cases, namely H < 0 falling into a power law in the past and
H < 0 falling into a singularity in the future. But the bounds
that we found depend on the behavior of φ̇ and we can find
no conclusions in this case.

6.1 The negative branch of the scalar field

As for the flat case, the Eq. (6.74) becomes a quadratic alge-
braic relation for φ̇. Its solution is

φ̇ = 6H

(
H2 + k

a2

)
f ′(φ)

±
√

36H2

(
H2 + k

a2

)2

f ′(φ)2 + 24

(
H2 + k

a2

)
.

(6.92)

If the negative branch is chosen in (6.92)

φ̇ = 6H

(
H2 + k

a2

)
f ′(φ)

×

⎡
⎢⎢⎢⎣1 −

√√√√√1 + 24

36H2

(
H2 + k

a2

)
f ′(φ)2

⎤
⎥⎥⎥⎦ . (6.93)

The analysis goes essentially as in the case with k = 0, if the
coupling f ′(φ) is never zero, but there are more cases to take
into account. First, if H → H0, f ′(φ) → f ′(φ0) and a → 0,
then (6.93) shows that φ̇ is finite. The same happens when
H → H0, f ′(φ) → f ′(φ0) and a → ∞. When a → a0,
f ′(φ) → f ′(φ0) and H → 0 one has that φ̇2 < ∞. Also,
when a → a0, f ′(φ) → f ′(φ0) and H → ∞ it is obtained
that φ̇ → 0. In the case when a → a0, f ′(φ) → ±∞ and
H → H0 also φ̇ → 0.

Similar conclusions are obtained when H → 0, a →
∞ and f ′(φ) → f ′(φ0), or when H → ∞, a → 0 and
f ′(φ) → f ′(φ0) or even when H → ∞, a → ∞ and
f ′(φ) → f ′(φ0). From (6.93) it is seen that if f ′(φ) → ±∞
and

H2
(
H2 + k

a2

)
→ c,

with c a constant, then φ̇ → 0. Also, if f ′(φ) �= 0 then
φ̇ → 0 when H → ±∞ and a is finite and non zero. The
same holds when H → ±∞ and a goes to zero or infinite.
In addition, if k = −1 and (H2 + k

a2 ) → 0, with H and a

finite, then φ̇ → 0 as well. In addition when H → 0 it may
be possible to have

H

(
H2 + k

a2

)
→ ±∞, H2

(
H2 + k

a2

)
→ c,

with c a constant. In this case, φ̇ → ±∞. But this limit
implies that H → 0 and H2/a2 → c′, with c′ another
constant. Thus ȧ2/a4 tends to a constant value. Therefore
a ∼ t−1 near this limit, and this contradicts that H → 0.
Another possible dangerous limit is H → 0, a → 0 and
f ′(φ) → ∞ in such a way that H2 f ′(φ)2/a2 → 0, since
for this limit φ̇ → ∞. We suggest however that this limit
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do not take place. In fact, the limit H → c implies near this
region that a(t) ∼ exp(ct), and a(t) �= 0 even when c → 0.

If the suggestion made above is true, then there should
exist a global minimum φ̇1 and a global maximum φ̇2. There-
fore

φ̇2 ≤ φ̇ ≤ φ̇1,

and, by simple integration of the last expression, it follows
that

φ0 + φ̇1t ≤ φ ≤ φ0 + φ̇2t, t ≥ 0,

φ0 + φ̇2t ≤ φ ≤ φ0 + φ̇1t, t ≤ 0. (6.94)

Again, the values of φ are bounded by two linear time func-
tions, and therefore are bounded for any finite time t .

7 The possibility of eternal universes for k �= 0

In the present section the possibility of having eternal solu-
tions is considered, when the spatial curvature k = ±1 is
turned on. However, the results obtained below are less gen-
eral than the ones of the previous sections. In fact, the analysis
when the spatial curvature k is turned on is more difficult than
the case k = 0.

As before, it is assumed that f ′(φ) is never zero and is
never divergent for any finite value of φ. In other words, there
are no vertical asymptotes at finite φ values. Furthermore, we
will be working in the branch for which φ̇ is bounded for any
finite time.

The situation with k = 1 will be analysed first. The case
H → ±∞ and φ̈ → ±∞ with a → ∞ is identical to
the case with k = 0, which was shown to be non singular.
Consider now the case H → ±∞ and φ̈ → ±∞ with a → 0
. The equation (6.74) shows that 1 + H ḟ → 0 and thus
φ̇ → 0. By combining (6.74) with (6.75), together with the
condition that φ̇ → 0 gives that

2

(
Ḣ − 1

a2

)
(1 + ḟ H) +

(
H2 + 1

a2

)
(1 + f̈ ) → 0.

But since 1 + ḟ H → +0 it follows that (Ḣ − a−2)2 >>

H4, a−4. Otherwise the first term would not compensate the
second one. This means that Ḣ2 >> H4 and Ḣ2 > a−4. By
taking this into account, it follows from (6.76) that

φ̈ ∼ 3

(
H2 + 1

a2

)
f ′(φ)Ḣ .

The last equations combine to give

2

(
Ḣ − 1

a2

)
(1 + ḟ H) +

(
H2 + 1

a2

)2

f ′(φ)2 Ḣ → 0.

But as Ḣ2 >> a−4, the last equation implies that

2Ḣ(1 + ḟ H) +
(
H2 + 1

a2

)2

f ′(φ)2 Ḣ → 0.

However 1+ ḟ H → +0, and the remaining terms multiply-
ing Ḣ are strictly positive, thus this is never satisfied. The
same conclusions hold for a taking any finite value a0. No
singularity will appear in this situation.

Consider now the possibility that H2 < ∞, φ̈ → ∞ and
a → 0. If H → H0 then, near the singularity, a ∼ exp(H0t)
which contradicts our hypothesis that a → 0. Thus, the only
possibility is H0 = 0. Thus, as H → 0 and a → 0, a simple
inspection shows that the equation (6.74) is never satisfied. If
instead, one consider the same situation but with a → ±∞,
this case reduce to the one with k = 0 for which, as shown
in previous sections, there are no singularities.

Consider now the possibility that H2 < ∞ and a → a0

and Ḣ → ±∞. Since φ̇ is bounded, equation (6.74) shows
that 1 + ḟ H ≥ 0. The Eq. (6.75) together with (6.76) gives
the following requirement

−2Ḣ

[
1 + ḟ H +

(
H2 + 1

a2

)
f ′(φ)2

]
→ c,

with c a constant. But the term in parenthesis is strictly posi-
tive since 1+ ḟ H > 0. But our assumption is that Ḣ → ±∞,
so the requirement is impossible to satisfy.

Finally, one has to check the case H → H0, Ḣ → ±∞
and a → 0. As we saw above, this means that H0 = 0.
The Eq. (6.74) may be satisfied when 1 + ḟ H → 0. But as
H → 0, one has that 1+ ḟ H → 1, which is a contradiction.

The analysis given above is valid for φ̈ → ±∞. It is
impossible to have a singularity when k = 1 in this case.
However, the situation for finite φ̈ is more difficult to analyse
than for the case k = 0. The reason is that the analysis made
in (4.39)–(4.44) get much more complicated when the term
k/a2 is turned on. Thus, we have obtained no conclusions in
this case. In addition, for k = −1, the term H2 +k/a2 can be
zero if a potential singularity takes place at ȧ = 1 and a → 0,
since H2 + k/a2 → 0. This zero appears multiplying the
factor (6.74) and complicates the analysis of the singularity.
We hope to overcome these technical difficulties in a future.

8 Discussion

The results of the present work are the following. For a Gauss
Bonnet model without cosmological constant and zero spa-

tial curvature, if 0 < f ′(φ) ≤ c exp(
√

8√
10

φ), and the scalar
field is in some specific branch described in the text, then
exists a large class of solutions that are eternal. These con-
clusions were also obtained when the cosmological constant
is turned on. It is important however to emphasize that if the
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scalar field is in other branch, then the presented conclusions
do not apply and in fact singular solutions may appear. The
appearance of this solutions do not contradict the well known
Hawking singularity theorems, since it is not necessarily true
that these theories may be considered as GR coupled with
matter satisfying the strong energy conditions.

The analysis when the spatial curvature k is turned on is
more complicated. The problem is that for k = 0 the resulting
differential system only involves the Hubble constant H and
the scalar field, while for k = ±1 the system involves also the
scale factor, and this complicates the analysis considerably.
However, some partial results about the singularities were
found, independently of the form of the coupling f (φ). These
results are collected in the proposition of Sect. 6 in the text,
and exclude under certain circumstances some singularities
in the scale factor as a(t) ∼ c/(t − t0)β with β > 0. This
result is independent on the form of the coupling f ′(φ). We
hope to overcome some technical problems and to obtain
results related to the case k = ±1 in a near future.
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