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Abstract We investigate whether a self-interacting Brans–
Dicke theory in d = 5 without matter and with a time-
dependent metric can describe, after dimensional reduction to
d = 4, the FLRW model with accelerated expansion and non-
relativistic matter. By rewriting the effective 4-dimensional
theory as an autonomous 3-dimensional dynamical system
and studying its critical points, we show that the ΛCDM
cosmology cannot emerge from such a model. This result
suggests that a richer structure in d = 5 may be needed to
obtain the accelerated expansion as well as the matter content
of the 4-dimensional universe.

1 Introduction

Several observations (such as SNe Ia, baryon acoustic oscilla-
tions, and the cosmic microwave background, see for instance
[1]) indicate that the universe is currently undergoing an
accelerated expansion. In the framework of the Standard Cos-
mological Model, such an expansion is only possible if mat-
ter with unusual properties is added as a source of Einstein’s
Equations (EEs) [2]. The simplest candidate is the cosmo-
logical constant, but there is a huge discrepancy between
its theoretical value and the one that follows from observa-
tions [3]. Models with scalar or vector fields (generically
known as dark energy, see [4] for a review of these and other
candidates) have also been considered as the source of the
accelerated expansion. Since none of these proposals is free
of problems, several alternatives that avoid the introduction
of dark energy have been investigated. Among them we can
mention theories of gravity that go beyond General Rela-
tivity [5] and inhomogeneous cosmological models [6]. Yet
another interesting proposal is based on the hypothesis that
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the dimensionality of the universe is actually greater than
four. The common theme in the many realizations of this
idea is that an effective energy-momentum tensor of purely
geometrical origin, generated by the reduction of some the-
ory of gravitation defined in d > 4 to d = 4, is used to
describe the accelerated expansion and/or ordinary matter.

In particular, the reduction of gravitational theories from
d = 5 to d = 4 has been repeatedly explored in the liter-
ature [7]. An appealing example of this type was presented
in [8], where the energy-momentum of ordinary matter in
d = 4 arises from the extra-dimensional sector of the theory
defined by GAB = 0.1 More generally, theories in which the
matter content in d = 4 is induced by dimensional reduction
of the vacuum equations of a gravitational theory defined in
d = 5 are known today as induced matter theories (IMTs) [7].
Among many examples of IMTs that have been studied we
can mention Brans–Dicke (BD) theory [9–14],2 f (R) theo-
ries [17,18], and f (R, T ) theories [19]. Here we shall investi-
gate the possibility of describing the accelerated expansion of
the 4-dimensional universe as well as ordinary pressure-less
matter starting from BD theory in the presence of a potential
in d = 5.3

We shall begin by showing in Sect. 2 that, in an appropriate
cosmological setting, the d = 5 self-interacting BD theory
is equivalent to a self-interacting BD theory in d = 4 plus
an extra scalar field (associated to the time-dependent metric
coefficient of the fifth dimension). In Sect. 3, we write the
d = 4 field equations as an autonomous three-dimensional
dynamical system, and obtain its critical points, under the
assumption that they are deSitter-like (namely, requiring that

1 Latin capital indices A, B... go from 0 to 4, Greek indices go from 0
to 3, and latin indices, from 1 to 3.
2 For d = 5 BD theory with matter see [15,16].
3 The cosmological evolution in self-interacting BD theory has been
examined both in d = 4 (see for instance [20–22]) and in d = 5 [23].
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Ḣ = 0). We pay special attention to dependence of the eigen-
values of the linearization matrix associated to each critical
point with the BD parameter ω, and search for ranges of the
latter such that a given critical point is a stable one. In the
case such an interval exists, we check whether the system at
the critical point can describe the accelerated expansion of
the 4-dimensional universe, as well as the pressure-less mat-
ter contained in it. We close with some comments in Sect.
4.

2 Brans–Dicke theory in d = 5 and its reduction to
d = 4

Our starting point is BD theory of gravity in five dimensions,
with the action in the Jordan frame given by

(5)S = 1

2κ5

∫
d5y

√
(5)γ

[
φ (5)R − ω

φ
γ AB∇Aφ∇Bφ

−2V (φ)

]
, (1)

where (5)γ , is the determinant of the 5-dimensional metric
γAB , φ is the BD scalar field directly coupled to the 5-
dimensional Ricci scalar (5)R, ∇A is the covariant derivative
in d = 5, ω is the BD parameter and V (φ) is the scalar field
potential. The variation of the action with respect to γAB

yields

(5)GAB = κ5
(5)TAB + ω

φ2

[
∇A φ∇B φ − γAB

2
∇Cφ∇C φ

]

+ 1

φ

[
∇A∇Bφ − γAB

(5)�φ
]

− V (φ)

φ
γAB, (2)

where (5)� = ∇ A∇A, and (5)GAB is the Einstein tensor in
d = 5, given by (5)GAB = (5)RAB − 1

2γAB
(5)R.

Variation of the action given in Eq. (1) w.r.t. φ results in

2ω

φ

(5)�φ − ω

φ2 ∇Cφ∇C φ + (5)R − 2V ′(φ) = 0, (3)

where the prime (′) denotes derivative with respect to φ.
Taking the trace of Eq. (2) we find

(5)R = ω

φ2 ∇Cφ∇C φ + 8

3

(5)�φ

φ
+ 10

3

V (φ)

φ
, (4)

which, when substituted in (3) yields

(5)�φ = − 5V (φ)

3ω + 4
+ 3V ′(φ)

3ω + 4
. (5)

We shall show next how Eqs. (2) and (5) are reduced to d = 4
in a particular cosmological setting, giving as a result the
usual BD theory with the addition of an extra scalar field,

whose dynamics and coupling to φ are determined by the
reduction.4

In the coordinate chart
{
yA

} = {xμ, z} we consider the
5D line element

ds2
5

= γABdyAdyB = dt2−a2(t)(dr2+r2d�2)−ξ2(t)dz2,

(6)

where t is the time, (r, θ, φ) are spherical coordinates on the
hypersurfaces t = constant, z = constant, z is the coordinate
along the extra dimension, which we assume to be space-
like, and ξ(t) is the metric coefficient associated to the extra
dimension. The metric describing the standard cosmological
model in d = 4 is recovered by restricting this line element
to a hypersurface 
0 defined by z = z0=constant.

In order to obtain the effective field equations in d =
4 from the dimensional reduction of Eqs. (2) and (5), the
following expressions were employed:

∇μ∇νφ = DμDνφ, (7a)

∇z∇zφ = −ξ (Dαξ)
(Dαφ

)
, (7b)

(5)�φ = �φ + (Dαξ) (Dαφ)

ξ
, (7c)

(5)Rμν = Rμν − DμDνξ

ξ
, (7d)

(5)Rzz = ξ �ξ, (7e)

where Dα denotes the 4D covariant derivative and � =
DαDα . A long but straightforward calculation using all these
expressions leads to the equations of the effective theory in
d = 4. The equation for the BD field that follows from Eq.
(5) is

φ̈ + 3H φ̇ + ξ̇

ξ
φ̇ = − 5V (φ)

3ω + 4
+ 3V ′(φ)

3ω + 4
. (8)

From Eq. (2), with A = B = 0, it follows that

3H2 + 3H
ξ̇

ξ
= ω

2

(
φ̇

φ

)2

− 3H
φ̇

φ
− ξ̇

ξ

φ̇

φ
− V (φ)

φ
. (9)

The spatial components of Eq. (2), corresponding to A = i
and B = j , can be written as

2Ḣ + 3H2 + ξ̈

ξ
+ 2H

ξ̇

ξ

= −ω

2

(
φ̇

φ

)2

+ H
φ̇

φ
− V (φ)(3ω − 1) + 3φV ′(φ)

φ(3ω + 4)
.

(10)

4 For a generalization of this procedure to an arbitrary number of dimen-
sions see [24].
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Table 1 Critical points of the system given by Eqs. (14)–(15) with Ḣ = 0. As explained in the text, only P2±, P5±, and P6 will be considered in
the subsequent analysis. The parameter β is given by β = 1

Γ −1

Critical point λ x z y2 Restriction on ω

P1 − 5
3 0 1 − 2 –

P2± 0 −3±√−15−12ω
ω+2 −x − 3 0 ω ≤ − 15

12

P3 0 −4 1 0 ω = − 5
4

P4 0 − 8
3 − 1

3 0 ω = − 23
16 .

P5± β −3±√−15−12ω
ω+2

−6x(ω+1)−9ω−6
(3+x)(ω+2)

0 ω ≤ − 15
12

P6 − 1 1
ω+1 1 − 1

6
12ω2+31ω+20

(ω+1)2 − 1.33 ≤ ω ≤ −1.25

Finally, setting with A = B = z in Eq. (2), we obtain

3Ḣ+6H2 = −ω

2

(
φ̇

φ

)2

+ φ̇

φ

ξ̇

ξ
−V (φ)(3ω − 1) + 3φV ′(φ)

φ(3ω + 4)
.

(11)

These equations reduce to those presented in [11], when the
vacuum and homogeneous case is considered in the latter.
We shall show next that Eqs. (8)–(11) can be written as an
autonomous 3-dimensional dynamical system.

3 Dynamical system

Techniques from dynamical systems theory have been suc-
cessfully applied to cosmology, see for instance [25–28] for
some recent examples. In terms of the variables (see for
instance [29])

x = φ̇

Hφ
, (12a)

y = 1

H

√
V (φ)

3φ
, (12b)

z = ξ̇

Hξ
, (12c)

λ = −φ
V ′(φ)

V (φ)
. (12d)

Equation (9) is written as

y2 = −1 + 1

6
ωx2 − 1

3
xz − z − x (13)

and acts as a constraint. From Eq. (11) it follows that

Ḣ

H2 = 2x + 2z − 1

2
ωx2 + xz + 3 y2

3ω + 4
(ω + λ + 3). (14)

The actual dynamical system follows from Eqs. (8)–(10), and
it is given by

dx

dτ
= − x

Ḣ

H2 − x2 − 3x − xz − 3(5 + 3λ)

3ω + 4
y2, (15a)

dz

dτ
= − (z + 2)

Ḣ

H2 − z2 + 4x + z − ωx2 + xz

+ 3(5 + 3λ)

3ω + 4
y2, (15b)

dλ

dτ
=xλ [1 − λ(Γ − 1)] , (15c)

where
d

dτ
= d

d ln a
and Γ = V ′′(φ)V (φ)

V ′(φ)2 is assumed to be

a function of λ.
Table 1 shows the critical points of the system given by

Eqs. (14)–(15), under the assumption that Ḣ = 0, which
corresponds to a de Sitter expansion compatible with the
latest observations, as mentioned in Sect. 1. We shall discard
the critical point P1, since it leads to y2 < 0. Points P3 and
P4 shall also be discarded because each of them is associated
to a single value of ω. Hence we shall focus the analysis on
P2±, P5±, and P6.

We shall study next the dynamical system given above by
applying standard techniques, which include the introduc-
tion of new variables centered at the critical point, and the
linearization of the system. From the linearization it is possi-
ble to calculate the Hubble parameter as a sum of terms each
having a power of the expansion factor, where each power
is given by an eigenvalue of the linearization matrix at the
given critical point (for details, see [30] and the references
therein). Hence we shall begin with the analysis of the behav-
ior of the eigenvalues of the linearization matrix with ω. The
aim will be to obtain ranges for ω such that a given critical
point is a stable node (for which all the eigenvalues must be
real and negative), or a stable focus (characterized by one
real and negative eigenvalue, and two complex eigenvalues
with negative real parts).

The linearization matrix of the system in Eqs. (14)–(15)
at a given critical point is given by
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A=

⎡
⎢⎢⎣

A11|c − (λc−2ω−1)xc2+2(3λc−3ω+1)xc+3(3λc+5)
(3 ω+4)

−ωxc3+(zc−3(ω−2))xc2+6(zc+2)xc+9(zc+1)
2(3 ω+4)

A21|c − (λc−2ω−1)(ωxc2−2(zc−1)xc−12zc)
2(3 ω+4)

− (1−zc)ωxc2+2(zc−1)(zc+3)xc+6(zc2−1)
2(3 ω+4)

λc (1 − λc (Γ (λc) − 1)) 0 − dΓ (λ)
dλ

∣∣∣
λc

λc
2xc − 2Γ (λc)λcxc + 2xc λc + xc

⎤
⎥⎥⎦

(16)

where

A11|c = − 1

2(3 ω + 4)

[
4(3ω − 3λc − 1)zc

+3(λc − 2ω − 1)ωxc
2 + (6(ω − 2)λc + 34ω + 12

+(−4λc + 8ω + 4)zc)xc
]
,

A21|c = − 2

3ω + 4
[(λc − 2ω − 1)(zc − 1)ωxc+]

×(−λc + ω + 1)(zc
2 + 2zc − 3).

We shall analyze next the behavior with ω of the eigen-
values of this matrix at each critical point.

3.1 P2±

Since λ = 0 for these critical points, it follows from the
expression of the matrix A, given in Eq. (16), that the eigen-
values do not depend on the explicit expression of Γ . Hence,
the results that follow will be valid for φ = φc = 0 and
(V ′/V )

∣∣
φc

finite, or V ′(φc) = 0.

3.1.1 P2+

The eigenvalues of the matrix A for this critical point are
given by

a1(ω) = − 1

2(3ω + 4)(ω + 2)2

[
−30ω − 24 − 9ω2

+√−15 − 12ω (10ω + 3ω2 + 8)

− (−2304ω6 + 4116ω5

+ 48906ω4 + 105600ω3 + 99600ω2 + 43776ω

+ 7296 + √−15 − 12ω (−2976ω5 − 10134ω4

−11424ω3 − 3888ω2 + 768ω + 384))1/2
]
, (17)

a2(ω) = 3 − √−15 − 12ω

ω + 2
− a1(ω), (18)

a3(ω) = −3 + √−15 − 12ω

ω + 2
. (19)

Figure 1 shows the behavior with ω of the real part of each
eigenvalue associated to P2+. The plots show that there are
no values of ω such that the real parts of the three eigenvalues

are real and negative. Consequently, P2+ cannot be a stable
point, and the behavior of the system close to P2+ cannot
approach the one currently displayed by the ΛCDM model.

3.1.2 P2−

The eigenvalues in this case are given by the following
expressions:

a1(ω) = 1

2(3ω + 4)(ω + 2)2

[√
6(1216 + 7296ω

+ 16600ω2 + 17600ω3 + 8151ω4 + 686ω5

− 384ω6 + √−15 − 12ω (−64 − 128ω + 648ω2

+ 1904ω3 + 1689ω4 + 496ω5))1/2 + 9ω2 + 30ω

+24 + (3ω2 + 10ω + 8)
√−15 − 12ω

]
, (20)

a2(ω) = 3 + √−15 − 12ω

ω + 2
− a1(ω), (21)

a3(ω) = −3 + √−15 − 12ω

ω + 2
. (22)

Figure 2 shows the plots of the real part of each eigenvalue
associated to P2−. The plots show that there is no interval of

Fig. 1 Real parts of the eigenvalues corresponding to P2+. The curves
corresponding to a1 and a2 are superposed to the left of approx. ω =
− 1.64, and they show a discontinuity at ω = − 4/3
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Fig. 2 Real parts of the eigenvalues corresponding to P2−. The curves
corresponding to a1 and a2 are not superposed only near ω = −1.25,
and they show a divergence for ω = −2

values of ω such that the real parts of the three eigenvalues
are negative.

3.2 P5±

The critical points P5± depend on the expression for the
potential through the condition λ = β (see Table 1). Since
the eigenvalues for arbitrary values of ω and β are given by

long algebraic expressions, we restrict here to the potential
V (φ) = V0φ

n , such that β = λ = −n for every value of
V0 and n. This choice is justified by the fact that several
effective quantum field theories can be related to his kind of
self-interacting potential [31]. In particular, we shall exam-
ine the cases n = 2 and n = 4, frequently considered in
cosmological scenarios (see for instance [21,32,33]).

3.2.1 P5+

The real parts of the eigenvalues corresponding to the critical
point P5+ are plotted in Fig. 3 for n = 2 and n = 4. None of
the cases is associated to a stable critical point with Ḣ = 0.

3.2.2 P5−

The eigenvalues are plotted in Fig. 4 for n = 2 and n = 4,
and they fail to comply with the condition that their real parts
be negative.

3.3 P6

The expressions for the eigenvalues in this case are the fol-
lowing:

a1(ω) = −
dΓ (λ)

dλ

∣∣∣
λc

+ 1

ω − 1
, (23)

a2(ω) = a3(ω) = −4ω + 5

ω − 1
, (24)

Fig. 3 Real parts of the eigenvalues corresponding to P5+, for n = 2 (left), and n = 4 (right). The latter shows a discontinuity for ω = −2. The
plots for a1 and a2 are superposed for ω � − 1.7 (left) and ω � − 3.2 (right)
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Fig. 4 Real parts of the eigenvalues corresponding to P5−, with n = 2 (left) and n = 4 (right). a1 and a2 are singular at ω = −2

with Γ (−1) = 0.5 The eigenvalues are shown in Fig. 5 for
dΓ (λ)

dλ

∣∣∣
λc

= −1.8. We see that, in spite of the fact that the real

parts of the three eigenvalues are negative, the eigenvalue a1

could be associated to non-relativistic matter ( i.e. is such
that Re(a1) = − 3) only for a unique value of ω. Note that,
although this conclusion follows from a particular value of
dΓ (λ)

dλ

∣∣∣
λc

, the same will happen for any other value of the

derivative compatible with the restrictions, due to the specific
form of the dependence of a1 with the derivative. Hence, P6

should also be discarded.

4 Discussion

We have examined whether a 4-dimensional universe in
accelerated expansion and containing non-relativistic matter
can be obtained by dimensional reduction of a self-interacting
BD theory defined in d = 5. The study required rewriting
the equations of the system as an autonomous 3-dimensional
dynamical system. The analysis of the eigenvalues of the
linearized system shows that it has no stable equilibrium
points subject to the condition Ḣ = 0, except for the criti-
cal point P6, which is a stable critical point but can describe
non-relativistic matter only for a unique value of ω (given a

value of dΓ (λ)
dλ

∣∣∣
λc

compatible with the restrictions). Hence,

the model cannot mimic the �CDM dynamics. This conclu-
sion was obtained in full generality for P2± and P6, and for

5 The explicit form of the potential can in principle be obtained from

any function Γ (λ) such that Γ (−1) = 0, and dΓ (λ)
dλ

∣∣∣
λ=−1

= constant,

and from the definition of λ.

Fig. 5 Plot of the real parts of the eigenvalues corresponding to P6,

for dΓ (λ)
dλ

∣∣∣
λc

= −1.8

V (φ) = V0φ
n and n = 2, 4 in the case of P5±. The failure

of the model presented here in describing both the acceler-
ated expansion and the matter content of the 4-dimensional
universe should perhaps be taken as an indication that more
complex models are needed, such as those presented in [11],
where the metric coefficient of the extra dimension is a func-
tion of both time and the extra coordinate. We hope to come
back to these ideas in a future publication.
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