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Abstract We computed the leading order Wilson coeffi-
cients relevant to all the exclusive b → s�+�− decays in
the framework of the two Higgs doublet model (2HDM)
with a softly broken Z2 symmetry by including the O(mb)

corrections. We elucidate the issue of appropriate match-
ing between the full and the effective theory when deal-
ing with the (pseudo-)scalar operators for which keeping the
external momenta different from zero is necessary. We then
make a phenomenological analysis by using the measured
B(Bs → μ+μ−) and B(B → Kμ+μ−)high−q2 , for which
the hadronic uncertainties are well controlled, and we discuss
their impact on various types of 2HDM. A brief discussion
of the decays with τ -leptons in the final state is provided too.
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1 Introduction

Physical processes driven by the flavor changing neutral cur-
rents (FCNC) are forbidden in the Standard Model (SM) at
tree level. Since they occur through loops, their measure-
ments offer a low-energy window to the particle content in the
loops. In other words, they do not only represent a fine test of
validity of the SM, but they also offer an opportunity to look
for the effects of physics (particles) beyond the SM (BSM) at
low energies. The main obstacle to the accurate comparison
between the SM theory and the experimental data lies in the
fact that the non-perturbative QCD effects are not under full
theoretical control. While the solution to non-perturbative
QCD is lacking, in some situations the hadronization effects
can be solved by means of numerical simulations of QCD
on the lattice (LQCD). Over the past couple of decades we
witnessed huge progress in reducing the uncertainties in the
LQCD results. Nowadays, an excellent theoretical control of
the neutral meson mixing processes promoted those FCNC
processes to viability tests of the New Physics (NP) model
candidates. Besides the oscillation frequencies of the neutral
meson systems, the processes based on b → s transitions
received a great deal of attention in the particle physics com-
munity. While the inclusive and exclusive processes based
on the penguin-induced b → sγ decay have been, and still
are, a very significant constraint when building a NP model,
the processes based on b → s�+�− received huge attention
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because they allow one to access another types of penguin and
box diagrams. With the advent of the Large Hadron Collider
(LHC) the measurement of B(Bs → μ+μ−) became possi-
ble [1] and the result appeared to be somewhat lower than
predicted [2]. The spectrum of dB(B → Kμ+μ−)/dq2 has
been measured [3] too and in the range of large q2’s it appears
to be larger than predicted [4–9]. A full angular analysis
of B(B → K ∗μ+μ−) [3,10] and B(Bs → φμ+μ−) [11]
revealed discrepancies in several observables with respect to
their SM predictions [12–19]. Moreover, the recent measure-
ments of RK = B′(B → Kμ+μ−)/B′(B → Ke+e−) [20]
and RK ∗ = B′(B → K ∗μ+μ−)/B′(B → K ∗e+e−) [21]
were shown to be significantly lower than predicted [22].1

Those new experimental data helped discarding several NP
models and are currently used as constraints in building a NP
model.

Simultaneously with the research of FCNC processes, the
LHC experiments allowed observing the missing ingredient
of the SM, the Higgs boson, the mass of which has been
found to be mh = 125.09(24) GeV [23]. While this was a
milestone of the LHC, the pending question of hierarchy of
scales remains open and a quest for physics BSM contin-
ues. One of the minimalistic approaches to building a model
of physics BSM is to extend the Higgs sector by introduc-
ing an extra Higgs doublet. Phenomenology in the scenar-
ios with two Higgs doublets appears to be very rich and
the associated models are generically called the two Higgs
doublet models (2HDM), cf. e.g. [24–27]. Nowadays the
experimental search of the additional Higgs bosons is one
of the main goals at LHC, in particular that of the charged
Higgs boson [28]. Like in the SM, introducing fermions to
the 2HDM context results in a plethora of new parameters.
To restrain the number of those parameters and to prevent the
appearance the FCNC at tree level it is common to assume a
peculiar pattern of Yukawa couplings. To test those assump-
tions one needs to compare many measured observables with
theoretical expressions derived in SM with the extended
Higgs sector. In this paper we elaborate a few lessons one
can learn from the measured b → sμ+μ− processes about
2HDM with a softly broken Z2 symmetry. In doing so we
will use two observables, namely B(Bs → μ+μ−) and
B(B → Kμ+μ−)high−q2 , which are very well measured
experimentally and for which the theoretical control of the
corresponding hadronic uncertainties is established by the
LQCD computations [29]. For other observables the theo-
retical uncertainties are not as well assessed and one might
run a risk of interpreting the unknown hadronic uncertain-
ties as signals of physics BSM. We should also emphasize
that 2HDM alone cannot explain RSM

K (∗)
> Rexp

K (∗)
because

only the scalar and pseudoscalar operators can generate lep-

1 We use B′(B → K (∗)�+�−) to indicate that the decay rate has not
been fully integrated but only within the window q2 ∈ [1, 6] GeV2.

ton flavor universality violation in this framework, which
is not enough to accommodate the observed deviation from
the SM. A study along the line we are pursuing here has
been initiated in Ref. [30] in which the authors computed
the Wilson coefficients in the Aligned 2HDM (A2HDM),
for the operators relevant to the Bs → μ+μ− decay. In this
paper we revisit their computation and extend it to include
the operators that are needed for the phenomenological anal-
ysis of B → K (∗)�+�− and other similar decays. While we
broadly agree with the results of Ref. [30], there are a cou-
ple of points in which we disagree. We will examine those
points, compute the remaining Wilson coefficients and use
our results to discuss the phenomenological consequences on
the 2HDM scenarios by comparing B(Bs → μ+μ−)2HDM

and B(B → Kμ+μ−)2HDM
high−q2 with their experimental val-

ues. We will then discuss the consequences on the similar
decays with τ -leptons in the final state.

The remainder of this paper is organized as follows: In
Sect. 2 we remind the reader of the main general constraints
on the spectrum of scalars in 2HDM and perform a scan of
parameters by assuming the lowest CP-even Higgs state to
be the one measured at LHC. In Sect. 3 we write the low-
energy effective theory and present our results for all the
Wilson coefficients in Sect. 4. We compare our results with
the existing ones (in the limits in which the comparison can
be made) in Sect. 5 and elucidate the subtleties related to
the matching procedure in the between the full (2HDM) and
effective theories in Sect. 6. Phenomenological discussion is
made in Sects. 7 and 8. We briefly conclude in Sect. 9.

2 General constraints on 2HDM

In this section we remind the reader of the basic ingredients
of 2HDM, enumerate the parameters of the model and list the
main general constraints on the spectrum of scalars which are
then used to perform a scan of allowed parameters to obtain
the allowed ranges of the Higgs masses and couplings.

2.1 2HDM

We consider a general CP-conserving 2HDM with a softly
broken Z2 symmetry. The most general potential can then be
written as

V (�1,�2) = m2
11�

†
1�1+m2

22�
†
2�2+m2

12(�
†
1�2+�

†
2�1)

+ λ1

2
(�

†
1�1)

2 + λ2

2
(�

†
2�2)

2

+ λ3�
†
1�1�

†
2�2 + λ4�

†
1�2�

†
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+ λ5

2
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2 + (�

†
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2], (1)

123



Eur. Phys. J. C (2017) 77 :796 Page 3 of 21 796

where the term proportional to m2
12 accounts for the soft

breaking of Z2.2 The scalar doublets �a (a = 1, 2) can be
parameterized as

�a(x) =
(

φ+
a (x)

1√
2

[va + ρa(x) + iηa(x)]

)
, (2)

with v1,2 ≥ 0 being the vacuum expectation values, satisfy-

ing vSM =
√

v2
1 + v2

2; it is already known from experiment

that vSM = 246.22 GeV [32]. In the following, for notational
simplicity, we will drop the argument of the Higgs fields. Two
of the six fields are Goldstone bosons, while the remaining
ones are four massive scalars: two CP-even states (h, H ), one
CP-odd state (A), and one charged Higgs (H±). These fields
are defined as(

φ+
1

φ+
2

)
=
(

cos β − sin β

sin β cos β

)(
G+
H+

)
,(

η1

η2

)
=
(

cos β − sin β

sin β cos β

)(
G0

A

)
, (3)

and(
ρ1

ρ2

)
=
(

cos α − sin α

sin α cos α

)(
H
h

)
. (4)

The mixing angles α and β satisfy

tan β = v2

v1
,

tan 2α = 2(−m2
12 + λ345v1v2)

m2
12(v2/v1 − v1/v2) + λ1v

2
1 − λ2v

2
2

,

(5)

with λ345 ≡ λ3 +λ4 +λ5. The masses of the physical scalars
can be written in terms of parameters which appear in the
potential as

m2
H = M2 sin2(α − β) +

(
λ1 cos2 α cos2 β

+λ2 sin2 α sin2 β + λ345

2
sin 2α sin 2β

)
v2, (6)

m2
h = M2 cos2(α − β) +

(
λ1 sin2 α cos2 β

+λ2 cos2 α sin2 β − λ345

2
sin 2α sin 2β

)
v2, (7)

m2
A = M2 − λ5v

2, (8)

2 We remind the reader that the Z2 symmetry (�1 → ±�1, �2 →
∓�2) of the Lagrangian forbids transitions �1 ↔ �2. Soft breaking
of Z2 means that such transitions may occur only due to dimension-
2 operators (terms proportional to m2

12 in Eq. (1)) so that Z2 remains
preserved at very short distances, cf. discussion in Ref. [31].

Table 1 Couplings ζ f in various types of 2HDM

Model ζd ζu ζ�

Type I cot β cot β cot β

Type II − tan β cot β − tan β

Type X (lepton specific) cot β cot β − tan β

Type Z (flipped) − tan β cot β cot β

m2
H± = M2 − λ4 + λ5

2
v2, (9)

where the Z2 breaking term is now parameterized via M2 ≡
m2

12

sin β cos β
.

In the Yukawa sector, the Z2 symmetry becomes particu-
larly important as it prevents the flavor changing processes to
appear at tree level [33]. Furthermore it enforces each type of
the right-handed fermion to couple to a single Higgs doublet.
Four choices are then possible and they are called Type I, II,
X (lepton specific) and Z (flipped) 2HDM [26,27].3 To be
more specific, we first write the Yukawa Lagrangian as

LY =−
√

2

v
H+{ū [ζd Vmd PR−ζu muV PL ] d+ζ� ν̄m�PR�}

− 1

v

∑
f,ϕ0

i ∈{h,H,A}
ξ

ϕ0
i
f ϕ0

i [ f̄ m f PR f ]+h.c., (10)

where u and d stand for the up- and down-type quark,
� is a lepton flavor, f stands for a generic fermion, V
for the Cabibbo–Kobayashi–Maskawa (CKM) matrix, and
PL ,R = (1 ∓ γ5)/2. A specific choice of parameters ζ f cor-
responds to the above-mentioned types of 2HDM, which we

also summarize in Table 1. Notice that the couplings ξ
ϕ0
i
f

appearing in the neutral Lagrangian part can be mapped onto
the charged ones via

ξ hf = sin(β − α) + cos(β − α)ζ f ,

ξ H
f = cos(β − α) − sin(β − α)ζ f ,

ξ A
u = −iζu, ξ A

d,� = iζd,�. (11)

2.2 General constraints and scan of parameters

To perform a thorough scan of scalars in a general 2HDM
we use the general constraints summarized below.

3 The model that we call Type Z or flipped 2HDM is sometimes referred
to as Type Y.
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• Stability:
To ensure that the scalar potential is bounded from below,
the quartic couplings should satisfy the relations [25]

λ1,2 > 0, λ3 > −(λ1λ2)
1/2, and

λ3 + λ4 − |λ5| > −(λ1λ2)
1/2. (12)

Furthermore, the stability of the electroweak vacuum
implies that

m2
11+ λ1v

2
1

2
+ λ3v

2
2

2
= v2

v1

[
m2

12 − (λ4+λ5)
v1v2

2

]
,

(13)

m2
22+ λ2v

2
2

2
+ λ3v

2
1

2
= v1

v2

[
m2

12 − (λ4+λ5)
v1v2

2

]
,

(14)

which then allows us to express m2
11 and m2

22 in terms
of the soft Z2 breaking term m2

12 and the quartic cou-
plings λ1−5. These constraints should be combined with
the necessary and sufficient condition that the minimum
developed at (v1, v2) is global [34]:

m2
12

(
m2

11 − m2
22

√
λ1/λ2

) (
tan β − 4

√
λ1/λ2

)
> 0.

(15)

• Perturbative unitarity:
An important constraint on the spectrum of scalars within
2HDM stems from the unitarity requirement of the S-
wave component of the scalar scattering amplitudes. That
condition implies the following inequalities [35,36]:

|a±|, |b±|, |c±|, | f±|, |e1,2|, | f1|, |p1| < 8π, (16)

where

a± = 3

2
(λ1 + λ2) ±

√
9

4
(λ1 − λ2)2 + (2λ3 + λ4)2,

b± = 1

2
(λ1 + λ2) ± 1

2

√
(λ1 − λ2)2 + 4λ2

4,

c± = 1

2
(λ1 + λ2) ± 1

2

√
(λ1 − λ2)2 + 4λ2

5,

e1 = λ3 + 2λ4 − 3λ5, e2 = λ3 − λ5,

f+ = λ3 + 2λ4 + 3λ5, f− = λ3 + λ5,

f1 = λ3 + λ4, p1 = λ3 − λ4. (17)

• Electroweak precision tests:
Finally, the additional scalars contribute to the gauge
boson vacuum polarization. As a result, the electroweak
precision data provide important constraint. In particular
the T parameter bounds the mass splitting between mH

and mH± in the scenario in which h is identified with
the SM-like Higgs, cf. Ref. [37] for example. The gen-
eral expressions for the parameters S, T andU in 2HDM
can be found in Ref. [38]. To derive the bounds on the
scalar spectrum we consider the following values and the
corresponding correlation matrix [39]:

�SSM = 0.05 ± 0.11,

�T SM = 0.09 ± 0.13,

�USM = 0.01 ± 0.11,

corr =
⎛
⎝ 1 0.90 −0.59

0.90 1 −0.83
−0.59 −0.83 1

⎞
⎠ . (18)

The χ2 function is then expressed as

χ2 =
∑
i, j

(Xi − XSM
i )(σ 2)−1

i j (X j − XSM
j ), (19)

where the vectors of central values and uncertain-
ties are denoted X = (�S,�T,�U ) and σ =
(0.11, 0.13, 0.11), while the elements of the covariance
matrix are obtained via σ 2

i j ≡ σicorri jσ j .

As mentioned above, we identify the lightest CP-even
state h with the SM-like scalar observed at the LHC with
mass mh = 125.09(24) GeV [32]. To forbid the dangerous
decays h → AA which could over-saturate the total width
of h (� �SM

h ), we assume that mA > mh/2. Moreover, we
impose the alignment condition | cos(β −α)| ≤ 0.3, in order
to ensure that the couplings of h to V = W, Z remain con-
sistent with the values measured so far, which appear to be
in good agreement with the SM predictions [40]. The above-
mentioned constraints are then imposed onto a set of ran-
domly generated points in the intervals:

tan β ∈ (0.2, 50), α ∈
(
−π

2
,
π

2

)
,

∣∣M2
∣∣ ≤ (1.2 TeV)2,

mH± ∈ (mW , 1.2 TeV), mH ∈ (mh, 1.2 TeV),

mA ∈ (mh/2, 1.2 TeV) . (20)

A scan of parameters consistent with the constraints listed
above favors the moderate and small values of tan β ∈
(0.2, 15]. To see that the larger values of tan β cannot be
discarded it is sufficient to examine Eq. (6) in the alignment
limit. For that reason, and in addition to the free scan, we per-
form a second scan with mH ≈ |M |, which helps us probing
higher values of tan β, and we then combine results of both
scans. The combined results are shown in Fig. 1 in two planes,
(tan β,mH±) and (mA,mH±). From the right panel of Fig. 1
we observe that the additional scalars become mass degen-
erate in the decoupling region (M2 � v2), as it can be easily
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Fig. 1 Results of the scan described in the text

deduced from Eqs. (6)–(9). We should also emphasize that
the results of our scans agree with what has been previously
reported in the literature, cf. [41–44].

In Sect. 8 we will confront the points allowed by our scan
with the experimental measurements of exclusive b → s
decays.

3 Effective Hamiltonian

The most general effective Hamiltonian describing the b →
s�� transitions, made of dimension six operators, is given
by [45]

Heff = −4GF√
2
VtbV

∗
ts

×
∑
i

(Ci (μ)Oi (μ) + C ′
i (μ)O′

i (μ)) + h.c., (21)

where

O9 = e2

(4π)2 (s̄γμPLb)(�̄γ
μ�), OS = e2

(4π)2 (s̄ PRb)(�̄�), (22)

O10 = e2

(4π)2 (s̄γμPLb)(�̄γ
μγ5�), OP = e2

(4π)2 (s̄ PRb)(�̄γ5�),

(23)

OT = e2

(4π)2 (s̄σμνb)(�̄σ
μν�), OT 5 = e2

(4π)2 (s̄σμνb)(�̄σ
μνγ5�),

(24)

and O7 = e/(4π)2mb(s̄σμν PRb)Fμν is the electromag-
netic penguin operator. The operators with a flipped chiral-
ity, O′

7,9,10,S,P , are obtained from O7,9,10,S,P by replacing
PL ↔ PR in the quark current.

The dimension six operators appearing in Eq. (21) are
sufficient to match the one-loop amplitude when the exter-
nal fermion momenta are neglected. This, however, is not
true if the computation is made with external momenta dif-
ferent from zero which is, in general, necessary when deal-
ing with (pseudo-)scalar operators. For example, in order to
get a correct expression for the Wilson coefficient CP one

needs to consider the external momenta, which then leads
to CP ∝ m�mb/m2

W , c.f. [30]. We therefore need to select
all situations in which one can obtain the terms of the form
(m�mb/m2

W )OP , such as

e2

(4π)2

m�

m2
W

(s̄/qPib)(�̄Pj�), or
e2

(4π)2

mb

m2
W

(s̄ Pi b)(�̄/qPj�),

(25)

which can obviously be reduced to (m�mb/m2
W )OP . As an

example,

α

4π

m�

m2
W

(
s̄/qPLb

) (
�̄γ5�

) = α

4π

m�mb

m2
W

(s̄ PRb)
(
�̄γ5�

)
− α

4π

m�ms

m2
W

(s̄ PLb)
(
�̄γ5�

)
= m�mb

m2
W

OP − m�ms

m2
W

O′
P

� m�mb

m2
W

OP . (26)

We should stress at this point that in the course of our
computation the contributions proportional to the chiral-
ity flipped operator O′

S,P are suppressed by a factor of
ms which is why they are readily neglected. A compli-
cation arises when encountering the operators with inser-
tion of /pb + /ps in the leptonic current, with the conven-
tion b(pb) → s(ps)�−(p−)�+(p+), where we also use
q = pb − ps = p+ + p−. A way to deal with that,
adopted in Ref. [30], consists in setting ps = 0, so that
/pb + /ps = /q + 2/ps = /q = /p+ + /p−, and in this way
one can again, like in the previous example, use the equa-
tions of motion. That way to deal with the problem in hands,
however, leads to an incomplete expression forCP , for exam-
ple. If, instead, one keeps all the momenta nonzero, we get
a complete result. At this point we just emphasize that the
matching should be performed by keeping all the external
momenta different from zero and the contributions stemming
from dimension-seven operators can be neglected at the very
end of computation. We further elucidate this problem in
Sect. 6 where we also propose a general framework for the
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Fig. 2 Photon penguin diagrams generated by the charged Higgs bosons

appropriate matching between the full and effective theories
in a case in which the (pseudo-)scalar bosons are explicitly
taken into account. Before closing this section we could also
argue that a term (m�mb/m2

W )OP could be obtained from
the dimension-eight operators, such as

α

4π

1

m2
W

(s̄(/p+ − /p−)Pib)(�̄(/pb + /ps)Pj�). (27)

Such terms, however, never appear in our calculations and
we will limit our discussion to the dimension-seven operators
only.

4 Wilson coefficients

After unambiguously matching the full with the effective
theories we obtain the one-loop expressions for the Wilson
coefficients generated by the additional scalar particles. We
summarize our results in this section. For clarity we will write
them as

C7 = CNP ,γ
7 , (28)

C9 = CNP ,γ
9 + CNP, Z

9 , (29)

C10 = CNP, Z
10 , (30)

CP = CNP, box
P + CNP, Z

P + CNP, A
P (31)

CS = CNP, box
S + CNP, h

S + CNP, H
S (32)

where the superscripts denote the types of diagrams that
contributes to a given Wilson coefficient, namely, the box
diagrams, the γ, Z -penguins and the (pseudo-)scalar pen-
guins. These coefficients should be added to the (effective)
ones obtained in the SM: C7 = −0.304, C9 = 4.211,
C10 = −4.103, and CS,P � 0 [46].4

Henceforth, we neglect the s-quark mass and give all our
results in the unitary gauge. To check the consistency of our
formulas, we also performed the computation in the Feyn-
man gauge. In the remainder of this section we present our

4 Special attention should be paid to the scalar penguin with the SM-like
Higgs to avoid the double counting since it also appears with modifica-
tions in A2HDM.

resulting expressions for each of the coefficients appearing
in Eqs. (30)–(32). We use the standard notation,

xq = m2
q

m2
W

, xH± = m2
H±

m2
W

, xϕ0
i

=
m2

ϕ0
i

m2
W

, (33)

where q ∈ {b, t}, and ϕ0
i ∈ {h, H, A}.

4.1 γ -penguins in 2HDM

The γ -penguin diagrams induced by the charged Higgs are
shown in Fig. 2. The off-shell and on-shell contributions can
be matched onto the Wilson coefficients C7 and C9, respec-
tively, we obtain

CNP,γ
7 = − |ζu |2 xt

72

[
7x2

H± − 5xH±xt − 8x2
t

(xH± − xt )3

+ 6xH±xt (3xt − 2xH±)

(xH± − xt )4 log

(
xH±

xt

)]

− ζ ∗
u ζd

xt
12

[
3xH± − 5xt
(xt − xH±)2 + 2xH±(3xt − 2xH±)

(xt − xH±)3

× log

(
xt
xH±

)]
(34)

and

CNP,γ
9 = |ζu |2 xt

108

[
38x2

H± − 79xH± xt + 47x2
t

(xH± − xt )3

−6(4x3
H± − 6x2

H± xt + 3x3
t )

(xH± − xt )4 log

(
xH±

xt

)]

+ ζ ∗
u ζd

xt xb
108

[−37x2
H± + 8xH± xt + 53x2

t

(xH± − xt )4

+6(2x3
H± + 6x2

H± xt − 9xH± x2
t − 3x3

t )

(xH± − xt )5
log

(
xH±

xt

)]
.

(35)

The dominant terms in both CNP,γ
7 and CNP,γ

9 come from
the top quark contribution and are proportional to |ζu |2. The

123



Eur. Phys. J. C (2017) 77 :796 Page 7 of 21 796

b

s

H±
t

t Z

3.1

b

s

t

H± Z

H±

3.2

b

s

t Z

H±

b

3.3

b

s

H±

t

Z
s

3.4

Fig. 3 Z penguin diagrams generated by the additional scalars
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Fig. 4 Box diagrams generated by the additional scalars

term proportional to ζ ∗
u ζd inCNP,γ

9 is suppressed by m2
b, thus

it indeed is subdominant.

4.2 Z -penguins in 2HDM

The Z -penguin diagrams contribute significantly to the Wil-
son coefficientsCP ,C9 andC10 through the diagrams shown
in Fig. 3. The leading order expressions for C9 and C10 read

CNP,Z
9 = CNP,Z

10 (−1 + 4 sin2 θW ), (36)

CNP,Z
10 = |ζu |2 x2

t

8 sin2 θW

[
1

xH± − xt
− xH±

(xH± − xt )2

× log

(
xH±

xt

)]

+ ζ ∗
u ζd

xt xb
16 sin2 θW

[
xH± + xt

(xH± − xt )2 − 2xt xH±

(xH± − xt )3

× log

(
xH±

xt

)]
. (37)

Similarly, for CP we obtain

CNP,Z
P = ζ ∗

u ζd

√
xbx� xt

16 sin2 θW

[
xt − 3xH±

(xH± − xt )2 + 2x2
H±

(xH± − xt )3 log

(
xH±

xt

)]

+ |ζu |2
√
xbx� xt
216{

38x2
H± + 54x2

H± xt − 79xH± xt − 108xH+x2
t + 47x2

t + 54x3
t

(xH± − xt )3

− 6(4x3
H± + 9x3

H± xt − 6x2
H± xt − 18x2

H± x2
t + 9xH± x3

t + 3x3
t )

(xH± − xt )4

× log

(
xH±

xt

)
− 3

2 sin2 θW

×
[

2x2
H± + 36x2

H± xt − 7xH± xt − 72xH± x2
t + 11x2

t + 36x3
t

(xH± − xt )3

− 6xt (6x3
H± − 12x2

H± xt + 6xH± x2
t + x2

t

(xH± − xt )4 log

(
xH±

xt

)]}
. (38)

4.3 Charged Higgs boxes in 2HDM

The box diagrams, peculiar for 2HDM, are drawn in Fig. 4.
At low energy they contribute to the Wilson coefficients CS

and CP ; we have

CNP, box
S =

√
x�xb xt

8(xH± − xt ) sin2 θW

×
{
ζ�ζ

∗
u

(
xt

xt − 1
log xt − xH±

xH± − 1
log xH±

)

+ ζuζ
∗
�

[
1 − xH± − x2

t

(xH± − xt )(xt − 1)
log xt

− xH±(xt − 1)

(xH± − xt )(xH± − 1)
log xH±

]

+ 2ζdζ
∗
� log

(
xt
xH±

)}
(39)

and

CNP, box
P =

√
x�xb xt

8(xH± − xt ) sin2 θW

×
{
ζ�ζ

∗
u

(
xt

xt − 1
log xt − xH±

xH± − 1
log xH±

)

− ζuζ
∗
�

[
1 − xH± − x2

t

(xH± − xt )(xt − 1)
log xt
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− xH±(xt − 1)

(xH± − xt )(xH± − 1)
log xH±

]

− 2ζdζ
∗
� log

(
xt
xH±

)}
. (40)

In addition toCNP, box
S,P , the tensor and (axial-)vector operators

receive contributions but suppressed by the lepton mass, i.e.
by x� = m2

�/m
2
W . These coefficients are negligible even for

decays with τ ’s in the final state as it can be verified by using
the expressions we provide in Appendix C.2.

4.4 Scalar penguins in 2HDM

We now turn to the effective coefficients CNP, A
P , CNP, h

S and

CNP, H
S , generated by the scalar penguin diagrams shown

in Fig. 5. We recall that the total ultraviolet divergence
coming from these diagrams is proportional to the factor
(1+ ζuζd)(ζu − ζd), which vanishes due to the Z2 symmetry
(cf. Table 1).5

The penguins with the CP-odd Higgs give rise to

CNP, A
P = −

√
x�xb

sin2 θW

ζ�xt
2xA

×
{

ζ 3
u xt
2

[
1

xH± − xt
− xH±

(xH± − xt )2 log

(
xH±

xt

)]

+ ζu

4

[
− 3xH± xt − 6xH± − 2x2

t + 5xt
(xt − 1)(xH± − xt )

+ xH±(x2
H± − 7xH± + 6xt )

(xH± − xt )2(xH± − 1)
log xH±

− x2
H±(x2

t − 2xt + 4) + 3x2
t (2xt − 2xH± − 1)

(xH± − xt )2(xt − 1)2 log xt

]}
,

(41)

where we used ζ f ∈ R; (1 + ζuζd)(ζu − ζd) = 0. Similarly,
the penguins with the CP-even Higgs lead to

CNP, h
S =

√
x�xb

sin2 θW

xt
2xh

[sin(β − α) + cos(β − α)ζ�]

×
[
g1 sin(β − α) + g2 cos(β − α)

− g0
2v2

m2
W

λhH+H−

]
,

CNP, H
S =

√
x�xb

sin2 θW

xt
2xH

[cos(β − α) − sin(β − α)ζ�]

5 Notice that this is not true in general. For instance, in the A2HDM the
divergences are canceled by contributions coming from the radiatively
induced misalignment of the Yukawa matrices. The alignment is only
preserved at all scales in the context of Z2-symmetric models [30].

×
[
g1 cos(β − α) − g2 sin(β − α)

− g0
2v2

m2
W

λH
H+H−

]
, (42)

where λ
ϕ0
i
H+H− are the trilinear couplings defined in Appendix

B. The functions g0,1,2 are given in Appendix C along with
the amplitudes generated by each of the diagrams shown in
Fig. 5.

5 Comparison with other computations

In this section we compare our Wilson coefficients with the
results obtained in previous studies. Before doing so we
should emphasize the novelties of the present work:

(i) The result for C9 in a general 2HDM with a Z2 symme-
try is new.

(ii) The subleading terms O(mb) to C9,10 have been
neglected in the previous computations, and they are
included here.

(iii) We provided an independent computation of the coeffi-
cients CS and CP , and elucidate inconsistencies present
in Ref. [30], cf. Sect. 6, where we propose a general
prescription for matching procedure when the external
momenta are not neglected.

The effective coefficients CS and CP , in the context of
Type II 2HDM, were first computed in Refs. [47–52]. In these
papers tan β was assumed to be very large, which consider-
ably simplifies the computation because in that case only the
box diagrams give significant contributions. We agree with
these results if we keep only the leading terms in tan β in our
expressions, namely

CP = −CS � tan2 β

√
x�xb

4 sin2 θW

xt
xH± − xt

log

(
xH±

xt

)
.

(43)

Along the same lines, the leading order QCD corrections to
the same coefficients were included in Ref. [53]. Recently,
the computation of CS and CP was extended to the con-
text of a general A2HDM, which comprises all four types
of 2HDM with Z2 symmetry discussed here but without the
usual assumption of large tan β [30]. We agree with their gen-
eral results, except for the expression forCNP, Z

P which differs
from the one reported in the present paper. The disagreement
comes from the fact that the authors of Ref. [30] worked
with the assumption ps = 0, which appears not to be fully
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Fig. 5 Higgs penguin diagrams generated by the additional scalars

appropriate.6 By keeping ps �= 0 one realizes that the com-
putation of Z -penguin leads to two independent terms, one
proportional to pH = pb + ps and the other to q = pb − ps .
By using the equations of motion, CP,S correctly receive
contributions from the terms proportional to q, but not from
those proportional to pH . With ps = 0 only one invariant

6 We should emphasize that we were able to reproduce the expression
for CNP, Z

P reported in Ref. [30] by taking ps = 0, which, however, is
not an appropriate assumption as we argue in the text.

appears, because pH ≡ q, and thus the resulting CP,S also
receive spurious contributions from pH .

Regarding the other Wilson coefficients, the first compu-
tations of C7 for a general 2HDM have been performed in
Ref. [54], then in Refs. [55–57] where the leading and sub-
leading QCD corrections were included too. Our results are
consistent with those, as well as with the expression for C10

presented in Ref. [51] and more recently in Ref. [30]. The
only difference with respect to those results is that we include
the subleading terms in mb.
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6 Matching procedure

In this section we discuss in more detail the matching of the
one-loop amplitudes when the nonzero external momenta
are considered. We stress once again that keeping external
momenta nonzero is necessary to obtain the correct val-
ues for the Wilson coefficients CS,P . As we mentioned in
Sect. 3 the insertion of external momenta result in dimension-
seven operators which can be simplified by using equations
of motion, except in the cases when the lepton momenta
are to be contracted with the quark current and/or the quark
momenta to be contracted with the lepton current. The ampli-
tudes which need a special treatment, which give rise to the
terms ∝ m�mb/m2

W , are

A�
i j = α

4π

1

mW
(s̄(/p− − /p+)Pib)(�̄Pj�),

Aq
i j = α

4π

1

mW
(s̄ Pi b)(�̄(/pb + /ps)Pj�),

AV �
i j = α

4π

1

mW
(s̄(/p− − /p+)γμPib)(�̄γ

μPj�),

AVq
i j = α

4π

1

mW
(s̄γμPib)(�̄(/pb + /ps)γ

μPj�),

(44)

where i, j = L , R and s, b, � are the fermion spinors. Note
again that our convention is b(pb) → s(ps)�−(p−)�+(p+),
and q = pb− ps = p++ p−. In our calculation, specifically,
the amplitude Aq

i j appeared in the computation of the Z -

penguin diagrams, whileA�
i j andAVq

i j are encountered when
computing the box diagrams.

In order to keep our discussion general, we first extend the
Hamiltonian (21) and include the following operators:

H′
eff = −4GF√

2
VtbV

∗
ts

∑
i, j=L ,R

(CT �
i j (μ)OT �

i j (μ)

+ CT q
i j (μ)OT q

i j (μ)) + h.c., (45)

where

OT �
i j = e2

(4π)2

1

mW
(s̄γ μPib)∂

ν(�̄σμν Pj�),

OT q
i j = − e2

(4π)2

1

mW
∂ν(s̄σμν Pib)(�̄γ

μPj�),

(46)

with i, j = L , R.7 We reiterate that even though these oper-
ators are suppressed by 1/mW , they are necessary to unam-
biguously match the loop induced amplitudes with the effec-
tive field theory. The above choice of the basis of dimension-
seven operators is convenient since they do not contribute to

7 Notice that we are not computing the QCD corrections to the Wilson
coefficients and therefore, at this order, we do not make distinction
between the ordinary and the covariant SU (3)c derivative.

B(Bs → μ+μ−), while for the other decays their hadronic
matrix elements are easy to calculate.

By using the Fierz rearrangement and by applying the field
equations, the amplitudes (44) are reduced to

A�
LL ↔ −OT �

LL + O9
m�

mW
, (47)

A�
LR ↔ −OT �

LR + O9
m�

mW
, (48)

AV �
LL ↔ −OT q

LL +
(
O′

S − OT − OT 5

4

)
m�

mW
, (49)

AV �
LR ↔ OT q

LR +
(
O′

S + OT − OT 5

4

)
m�

mW
, (50)

Aq
LL ↔ OT q

LL + O′
9 − O′

10

2

mb

mW
+ O9 − O10

2

ms

mW
, (51)

Aq
LR ↔ OT q

LR + O′
9 + O′

10

2

mb

mW
+ O9 + O10

2

ms

mW
, (52)

AVq
LL ↔ OT �

LL + OS − OP

2

mb

mW

+
(
O′

S − O′
P − OT − OT 5

2

)
ms

2mW
, (53)

AVq
LR ↔ −OT �

LR + O′
S + O′

P

2

ms

mW

+
(
OS + OP + OT + OT 5

2

)
mb

2mW
. (54)

To remain completely general, in the above equations we also
kept the lepton mass and the mass of s-quark different from
zero. As an example we show the validity of Eq. (49). Using
p− − p+ = 2p− − q, and by the multiple use of the field
equations, we can write

AV �
LL = α

4π

2

mW
(s̄ /p−γμPLb)(�̄γ

μPL�)

− α

4π

1

mW
(s̄/qγμPLb)(�̄γ

μPL�)

= α

4π

1

mW
[4(s̄ PLb)(�̄/p−PL�)

− 2(s̄γμPR /p−b)(�̄γ
μPL�)

+ ms(s̄γμPLb)(�̄γ
μPL�) + mb(s̄γμPRb)(�̄γ

μPL�)

− 2(s̄ PLb)(�̄/pb PL�)]
Fierz= α

4π

1

mW
[4m�(s̄ PLb)(�̄PL�) − 4(s̄ PL�)(�̄PR /p−b)

+ ms(s̄γμPLb)(�̄γ
μPL�)

+ mb(s̄γμPRb)(�̄γ
μPL�) − (s̄ PLb)(�̄(/pb + /ps)PL�)

+ m�(s̄ PLb)(�̄γ5�)]. (55)

By applying the Fierz identity once again, we arrive at

AV �
LL

Fierz→ m�

mW

(
O′

S − OT − OT 5

4

)
− OT q

LL . (56)
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Clearly, for the appropriate matching of these amplitudes to
the effective theory, the operators appearing in Eq. (21) are
not enough and the extended basis given in Eq. (45) is nec-
essary. Once the matching is performed, the operators from
Eq. (21) could be neglected since they are 1/mW suppressed
with respect to the dominant (dimension six) ones.

This delicate point can then be verified explicitly by com-
puting the Wilson coefficients CT q

RL and CT q
RR which come

from the Z -penguin diagrams and the coefficients CT �
LL =

(CT �
LR)∗ generated by the box diagrams. Their explicit expres-

sion is given in Appendix C.1.
We can now easily understand the source of our disagree-

ment with Ref. [30]. If one sets ps = 0 in Aq
RR of Eq. (44),

then just like in Ref. [30] one could write /pb + /ps = /pb = /q
which, by means of the equations of motion, yields

Aq
RR = m�

mW

α

4π
(s̄ PRb)

(
�̄(PR − PL)�

) = √
x� OP , (57)

which then in the actual computation gives a contribution to
CP . With our procedure, we understand that this contribu-
tion does not come from CP but actually from

√
x�C

T q
RL . In

other words, by using our definition of operators and of the
effective Hamiltonian, we find

Aq
RR = √

x� OP + 2
α

4π
(s̄ PRb)(�̄/ps PR�). (58)

Had we set ps = 0 we would have missed the contribution
of the dimension-seven operator. We emphasize, once again,
that Aq

RR is a non-trivial operator with derivative which can-
not be straightforwardly simplified by means of equations of
motion.

Finally, after a comparison between ours and the result for
CP presented in Ref. [30] we find8

CRef.[17]
P =

[
CP +

√
x�

2 sin2 θW
CT q
RR

](this work)

. (59)

In other words, the Wilson coefficient CP of Ref. [30] con-
tains the Wilson coefficient of the operator OT q

RR , the matrix
element of which is not equal to the matrix element of the
operator OP but is, instead, suppressed by mW as we explic-
itly check in the next section. For that reason the Wilson
coefficient of Ref. [30] is not well defined unless the basis of
dimension-seven operators is explicitly specified.

7 Bs → µ+µ− and B → Kµ+µ− in 2HDM

In this section we give the expressions for B(Bs → μ+μ−)

and B(B → Kμ+μ−) to which we also include the contri-
butions of the operators given in Eq. (46). Those additional

8 Notice also that the notation of Ref. [30] is such that their Wilson
coefficient CP , which we can call C̃P , is related to our’s via CP =√
x�xbC̃P/ sin2 θW .

operators were necessary for the appropriate matching pro-
cedure between the full and the effective theories. However,
since they are suppressed by 1/mW they are expected to be
negligible with respect to the dominant operators entering
the effective Hamiltonian (21). The purpose of this exercise
is to check whether or not the size of the matrix elements
of the operators (46) is indeed numerically insignificant for
phenomenology.

7.1 Bs → μ+μ−

On the basis of Lorentz invariance and invariance of the
strong interaction with respect to parity, one can easily verify
that Bs → μ+μ− is not affected by the operators OT q

i, j and

OT �
i, j , with i, j = L , R. The expression for the decay rate of

this process remains the standard one

B(Bs → �+�−)th = τBs
α2G2

FmBsβ�

16π3

∣∣VtbV ∗
ts

∣∣2

× f 2
Bsm

2
�

⎡
⎣
∣∣∣∣∣C10 − C ′

10 + m2
Bs

(CP − C ′
P )

2m�(mb + ms)

∣∣∣∣∣
2

+ ∣∣CS − C ′
S

∣∣2 m2
Bs

(m2
Bs

− 4m2
�)

4m2
�(mb + ms)2

⎤
⎦ , (60)

where β� =
√

1 − 4m2
�/m

2
Bs

. To compare Eq. (60) with the

available experimental value, one needs to take into account
the effects of Bs − Bs oscillations which, to a good approx-
imation, amounts to [58]

B(Bs → �+�−)exp ≈ 1

1 − ys
B(Bs → �+�−)th, (61)

where ys = ��Bs/(2�Bs ) = 0.061(9), experimentally
established by the LHCb Collaboration [59]. As we men-
tioned before, the dimension-seven operators (46) were cho-
sen in such a way that they do not contribute the Bs → �+�−
decay amplitude.

7.2 B → Kμ+μ−

In contrast to Bs → �+�−, the decay B → K�+�− receives
contributions from the operators of the extended basis (46).
To write the decay amplitude in a compact form, it is conve-
nient to use the formalism of helicity amplitudes (HAs). In
the absence of the (pseudo-)scalar operators, the total ampli-
tude can be schematically written as

M = ML
μ �̄γ μPL� + ML

μν �̄σμν PL� + (L ↔ R). (62)

By describing the decay mode as B → KV ∗ → K�+�−,
where V ∗ is a virtual vector boson, one can decompose the
total decay amplitude in terms of HAs,
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AL(R)
m = ML(R)

μ ε
μ∗
V (m), and AL(R)

mn

= ML(R)
μν ε

μ∗
V (m)εν∗

V (n), (63)

where ε
μ
V (m) (with m, n = 0, t,±) are the V ∗-boson polar-

ization vectors, explicitly defined in Appendix A. We repeat
that the above decomposition is valid as long as the scalar
and the pseudoscalar operators are not present. To incorpo-
rate those contributions unambiguously one can assume the
lepton masses to be unequal (m�1 �= m�2 ) and then apply the
Ward identities,

�̄1γ5�2 = qμ

m�1 + m�2

�̄1γμγ5�2, �̄1�2 = qμ

m�1 − m�2

�̄1γμ�2,

(64)

to absorb the (pseudo-)scalar terms in the time-like coeffi-
cients AL(R)

t . By taking the limit m�1 = m�2 in the final
expression one ends up with the desired HAs and the total
decay amplitude, from which is then easy to compute the
decay rate [60]. Notice that the contributions fromC (′)

S,P enter
the amplitudes AS and At defined as

At = lim
m�1→m�2

(AL
t − AR

t ), (65)

AS = lim
m�1→m�2

[
m�1 − m�2√

q2
(AL

t + AR
t )

]
. (66)

More details regarding this point can be found in Ref. [60].
We also need to stress that all the helicity amplitudes are
the q2-dependent functions, Ai ≡ Ai (q2). By applying the
method briefly sketched above we obtain

d

dq2 B(B → K�+�−)th

= 2(q2 − m2
�)

3
[|AL

0 |2 + |AR
0 |2]

+ 2m2
� |At |2 + q2 − 4m2

�

2
|AS|2

+ q2 + 2m2
�

3
[|AL

t0 − AL
0t |2 + |AR

t0 − AR
0t |2]

+ 4m2
�Re[AL∗

0 AR
0 ]

+ 8(q2 − 4m2
�)

3
|AT 5|2 + 4(q2 − 4m2

�)

3
× Re[A∗

T 5(A
L
t0 − AL

0t ) − (L ↔ R)] + 4m2
�

× Re[AL∗
0t (AR

0t − AR
t0) − AL∗

t0 (AR
0t − AR

t0)]
− 2m�

√
q2 Im[(AL

0 + AR
0 )∗(AL

t0 − AL
0t + (L ↔ R))],

(67)

where the explicit expressions for the helicity amplitudes are

AL(R)
0 (q2) = NK

λ
1/2
B

2
√
q2

[
f+(q2)[(C9 + C ′

9) ∓ (C10 + C ′
10)]

+ fT (q2)
2mb

mB + mK
(C7 + C ′

7)

− fT (q2)
q2

mW (mB + mK )
[CT q

L ,L(R) + CT q
R,L(R)]

]
,

(68)

At (q
2) = −NK f0(q

2)
m2

B − m2
K√

q2

×
[
C10 + C ′

10 + q2
(
CP + C ′

P

)
2m�(mb − ms)

]
, (69)

AS(q
2) = NK f0(q

2)
m2

B − m2
K

mb − ms

(
CS + C ′

S

)
, (70)

AL(R)
0t (q2) = iNKλ

1/2
B

[
fT (q2)

CT

mB + mK

+ f+(q2)
CT �
L ,L(R) + CT �

R,L(R)

2mW

]
, (71)

AL(R)
t0 (q2) = −iNK fT (q2)

CT λ
1/2
B

mB + mK
, (72)

AT5(q
2) ≡ AL(R)

+− = iNK fT (q2)
CT 5λ

1/2
B

mB + mK
, (73)

where the normalization factor also accounts for the remain-
ing phase space, namely

|NK (q2)|2 = τBd
α2

emG2
F |VtbV ∗

ts |2
512π5m3

B

λ
1/2
q

q2 λ
1/2
B . (74)

For brevity, in the above formulas, we used λq = λ(
√
q2,m�,

m�) and λB = λ(mB,mK ,
√
q2), where λ(a, b, c) ≡ [a2 −

(b − c)2][a2 − (b + c)2]. The kinematic conventions and
the form factor definitions are collected in Appendix A. In
the limit in which the derivative operators vanish we retrieve
the usual expression for differential branching fraction [60].
The choice of dimension-seven operators (46) is convenient
also because their matrix elements are proportional to the
original hadronic matrix elements multiplied by iqμ. As it
can be seen from the above expressions the coefficients CT �

i, j

and CT q
i, j enters the above formulas with the explicit 1/mW -

suppression factor. In other words, with the above formulas
and by using the Wilson coefficients presented in the pre-
vious sections, we see that the derivative operators (46) are
indeed irrelevant for phenomenology. Their presence is there-
fore essential for the unambiguous matching procedure in the
computation of Wilson coefficients but they do not alter the
phenomenological analysis even at the sub-percent level.
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Fig. 6 Results of the scan given in Fig. 1 after imposing the constraints coming from B(Bs → μ+μ−)exp and B(B → Kμ+μ−)
exp
high q2 to 3σ

accuracy. Blue points are allowed by all observables, while gray points are excluded by B(Bs → μ+μ−), and the red ones are excluded by
B(B → Kμ+μ−)high q2

8 Phenomenology and discussion

In this section we use our results for Wilson coefficients and
compare the experimental data for the exclusive b → s�+�−
modes with various types of 2HDM. We decided to focus
on B(Bs → μ+μ−)exp = (2.8+0.7

−0.6) × 10−9 [1], and
B(B → Kμ+μ−)

exp
high q2 = (8.5 ± 0.3 ± 0.4) × 10−8 [3],

where “highq2” means that the decay rate has been integrated
over the interval q2 ∈ [15, 22] GeV2. The reason for opting
for these decay modes is that the relevant hadronic uncer-
tainties are under good theoretical control. The hadronic
quantity entering the Bs → μ+μ− decay amplitude is
the decay constant, fBs . It has been abundantly computed
by means of numerical simulations of QCD on the lattice
(LQCD) and its value is nowadays one of the most accu-
rately computed hadronic quantities as far as B(s)-mesons
are concerned [29]. The hadronic form factors entering the
B → Kμ+μ− decay amplitude have been directly com-
puted in LQCD only in the region of large q2’s [62,63],
which explains why we use B(B → Kμ+μ−)

exp
high q2 to

do phenomenology. Furthermore, since the bin correspond-
ing to q2 ∈ [15, 22] GeV2 is rather wide and away from
the very narrow charmonium resonances, the assumption of
quark–hadron duality is likely to be valid [61]. By using the
recent LQCD results for the form factors provided by the
HPQCD [62] and MILC Collaborations [63], the SM results
are

B(B → Kμ+μ−)high q2

=
{

(10.0 ± 0.5) × 10−8
∣∣∣∣
HPQCD

, (10.7 ± 0.5) × 10−8
∣∣∣∣
MILC

}
,

(75)

both being about 2σ larger than the experimental value mea-
sured at LHCb.9 Since the current disagreement between the-
ory and experiment needs to be corroborated by more data,
we decided to impose all the constraints to 3σ accuracy. We
will then discuss the impact of B(B → Kμ+μ−)

exp
high q2 on

2HDM if the current discrepancy remains, i.e. by requiring
the 2HDM to compensate the disagreement between theory
(SM) and experiment at the level of 2σ and more. Notice also
that the measuredB(Bs → μ+μ−)exp is slightly smaller than
predicted, B(Bs → μ+μ−)SM = (3.65 ± 0.23) × 10−9[2].

We now use the results of our scan from Sect. 2.2, and
we require the 3σ agreement between experiment and the-
ory, which means that we add the generic 2HDM Wilson
coefficients derived in the previous section to the SM val-
ues. The result, in the (tan β,mH±) plane, is shown in Fig. 6
for each type of 2HDM discussed in Sect. 2. We learn that
both B(Bs → μ+μ−) and B(B → Kμ+μ−)high q2 exclude

9 In the following we will average the results obtained by using the two
sets of form factors obtained in LQCD.
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Table 2 Allowed values of low tan β (at 99% CL) for the different
2HDMs. See text for details

Model Type I Type II Type X Type Z

tan β > 1.0 > 0.9 > 1.0 > 0.9

the low tan β � 1 region regardless of the type of 2HDM
considered. The limit of exclusion of low tan β coming from
B(B → Kμ+μ−)high q2 is slightly larger than the one aris-
ing from B(Bs → μ+μ−). The limit on low tan β obtained
in this way for each of our four models is given in Table 2.

Besides excluding tan β � 1, it may appear as a surprise
that the large tan β are not excluded by these data. The reason
for that is the fact that the (pseudo-)scalar Wilson coefficient,
with respect to the dominant (axial-)vector one, comes with a
term proportional to (mBs/mW )2 which suppresses the large
tan β values. This feature can be easily verified in the Type II
model for which the coefficientsCS,P , in the large tan β limit,
are given in Eq. (43). This is why only a small number of
points have been eliminated from our scan of Type II model
at large tan β but relatively light mH± .

Since the SM value is in slight tension with B(B →
Kμ+μ−)

exp
high q2 at the 2.1σ level, we can now check which

of the models discussed in this paper can be made consis-
tent with the experimental data if any disagreement beyond
2σ between theory (SM) and experiment is to be attributed
to 2HDM. It turns out that two such models are Type II and
Type Z 2HDM, which we illustrate in Fig. 7. For the other two
scenarios (Type I and Type X) the NP contributions are either
too small or already in conflict with B(Bs → μ+μ−)exp.
From Figs. 7 and 8 we see that in order to explain the discrep-
ancy one needs a relatively light charged scalar: (i) mH± �
735 GeV and tan β > 2.3 in the Type II scenario, and (ii)
mH± � 380 GeV and tan β > 3.5 for the Type Z scenario.
Since the masses of the additional scalars are correlated, we
see that mH and mA become bounded as well, cf. Fig. 8. In
the case of Type II and Type Z 2HDM an additional bound on
the charged Higgs has been recently derived from the inclu-

sive mode B(B → Xsγ ). After comparing the experimen-
tal spectra with theoretical expressions in which the higher
order QCD corrections have been included, the lower bound
mH± > 570 GeV (95% CL) was obtained in Ref. [64] (c.f.
also Ref. [65]). This bound is superposed on our results in
Figs. 7 and 8, which then also eliminates Type Z 2HDM.
Furthermore, we can say that the requirement of agreement
between theory and experiment to 2σ , for the quantities dis-
cussed in this section, reduces the available space of param-
eters for Type II 2HDM to mH± ∈ (570, 735) GeV, and
tan β ∈ (16, 35), while the available range of values for the
mass of the CP-odd Higgs becomes mA ∈ (145, 865) GeV.

In what follows we will assume that the 2σ disagreement
of the measure B(B → Kμ+μ−)

exp
high q2 with respect to the

SM prediction indeed remains as such in the future and dis-
cuss the consequences on the decays B(Bs → τ+τ−) and
B(B → K τ+τ−)high q2 if the Type II 2HDM is used to
explain the disagreement. From Eq. (60) we can see that

B(Bs → τ+τ−)

B(Bs → τ+τ−)SM = B(Bs → μ+μ−)

B(Bs → μ+μ−)SM

− |Cττ
S |2

|CSM
10 |2

m2
Bs

(mb + ms)2 , (76)

where the only remainingm� dependence comes from the last
numerator in the factor multiplying |CS−C ′

S|2 in Eq. (60). In
Fig. 9 we illustrate the validity of the above equality. Notice
that a tiny departure from equality comes from the large tan β

values which enhance the CS contribution. In other words,
the current experimental resultB(Bs → μ+μ−)exp, which is
slightly lower than the one predicted in the SM, is expected
to lead to B(Bs → τ+τ−)exp compatible or slightly lower
than predicted in the SM. The cancellation of the lepton mass
in B(Bs → �+�−)2HDM, discussed above, does not occur in
B(B → K�+�−)2HDM

high−q2 . As a result we obtain

B(B → K τ+τ−)Type II

B(B → K τ+τ−)SM � B(B → Kμ+μ−)Type II

B(B → Kμ+μ−)SM , (77)

Fig. 7 Results of the scan in Fig. 1 after imposing the b → s constraints to 2σ accuracy. The hatched area is excluded by B(B → Xsγ ) at
95% [64]. See Fig. 6 for the color code
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Fig. 8 Same as in Fig. 7 but in the (mA,mH± ) plane

Fig. 9 We show the branching fractions of the decay to τ -leptons with respect to their SM predictions, as obtained in the Type II 2HDM, consistent
with experimental results for the decays to muons in the final state

where we omitted the subscript “high-q2” to avoid too heavy
a notation. Illustration is provided in Fig. 9. We can rephrase
this observation with an equivalent statement:

B(B → K τ+τ−)Type II

B(B → Kμ+μ−)Type II <
B(B → K τ+τ−)SM

B(B → Kμ+μ−)SM . (78)

To be fully explicit, we obtain

B(B → K τ+τ−)

B(B → Kμ+μ−)

∣∣∣∣
high−q2

∈ (1.12, 1.14)SM, (1.0, 1.1)Type II.

(79)

9 Conclusion

In this paper we computed the leading order Wilson coef-
ficients relevant to the exclusive b → s�+�− decays in
the framework of 2HDM with a softly broken Z2 symme-
try. Most of these Wilson coefficients have been computed
previously but in the limit of large tan β, which we extend
here to a generic setup. We also included O(mb) corrections,
which were neglected in the previous computations. Regard-
ing the (pseudo-)scalar Wilson coefficients, we elucidated the
issue of unambiguous matching of the one-loop amplitudes

between the full and effective theories which requires extend-
ing the basis of operators in the effective theory by includ-
ing two types of operators suppressed by 1/mW (altogether,
eight new operators). We pointed out that for the appropriate
identification of the Z -penguin contribution to the Wilson
coefficient CP it is necessary to keep all external momenta
different from zero.

After having computed the full set of Wilson coefficients
we were able to make a phenomenological analysis by focus-
ing on B(Bs → μ+μ−) and B(B → Kμ+μ−)high−q2 ,
the quantities which are measured at LHC and for which
the hadronic uncertainties are under good theoretical control
(computed in LQCD). After carefully scanning the parame-
ter space of 2HDM with a softly broken Z2 symmetry, we
tested various types of 2HDM against the experimental data
for B(Bs → μ+μ−)exp and B(B → Kμ+μ−)

exp
high−q2 , and

found that to 3σ the values of low tan β � 1 are excluded
for all types of 2HDM considered here.

If, instead, we require the 2σ agreement with experiment,
then only Type II and Type Z models provide a viable descrip-
tion of the data. After combining ours with the bound on
the charged Higgs deduced from the inclusive b → sγ
decay, we find that the Type Z model can be discarded
and
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Type II : mH± ∈ (570, 735) GeV, mA ∈ (145, 865) GeV,

tan β ∈ (16, 35). (80)

We also discussed the repercussions of the current results on
the decays B(Bs → τ+τ−) and B(B → K τ+τ−)high−q2 .
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A Conventions and kinematics

Angular conventions

We adopt the same angular conventions for B(p) →
K (k)�+(p+)�−(p−) as those used in Refs. [60,66]. In the B-
meson rest frame, the leptonic and hadronic four-momenta
are chosen as qμ = pμ

+ + pμ
− = (q0, 0, 0, qz) and kμ =

(k0, 0, 0,−qz), where

q0 = m2
B + q2 − m2

K

2mB
, k0 = m2

B + m2
K − q2

2mB
, and

qz = λ1/2(mB,mK ,
√
q2)

2mB
.

In the dilepton rest frame the components of the leptonic
four-vectors are given by

pμ
− = (E�, |p�| sin θ�, 0, |p�| cos θ�),

pμ
+ = (E�,−|p�| sin θ�, 0,−|p�| cos θ�),

where E� = √
q2/2, and θ� is the angle between �− (in the

dilepton rest frame) and the line of flight of the two leptons
(in the B-meson rest frame). The momentum p� is given by

|p�| = λ1/2(
√
q2,m�,m�)

2mB
. (81)

Polarization vectors

In the B-meson rest frame we take the polarization vectors
of the virtual vector boson V ∗ to be

ε
μ
V (±) = 1√

2
(0,±1, i, 0), ε

μ
V (0) = 1√

q2
(qz, 0, 0, q0),

ε
μ
V (t) = 1√

q2
(q0, 0, 0, qz). (82)

These vectors are orthonormal and satisfy the completeness
relation,

∑
n,n′

ε
μ∗
V (n)εν

V (n′)gnn′ = gμν, (83)

where n, n′ ∈ {t, 0,±}, and gnn′ = diag(1,−1,−1,−1).

Hadronic matrix elements

For completeness we also give the definitions of the decay
constant ( fBs ) and of the form factors [ f+,0,T (q2)], quantities
which parametrize the hadronic matrix elements relevant to
the processes discussed in this paper:

〈0|b̄γμγ5s|Bs(p)〉 = i pμ fBs ,

〈K̄ (k)|s̄γμb|B̄(p)〉 =
[
(p + k)μ − m2

B − m2
K

q2 qμ

]
f+(q2)

+ m2
B − m2

K

q2 qμ f0(q
2),

〈K̄ (k)|s̄b|B̄(p)〉 = 1

mb − ms
qμ〈K̄ (k)|s̄γμb|B̄(p)〉

= m2
B − m2

K

mb − ms
f0(q

2),

〈K̄ (k)|s̄σμνb|B̄(p)〉 = −i(pμkν − pνkμ)
2 fT (q2, μ)

mB + mK
,

(84)

where for B → K�+�− the kinematically accessible q2 val-
ues lie in the interval 4m2

� ≤ q2 ≤ (mB −mK )2. Notice that
we do not write explicitly the scale dependence of the quark
masses, nor of the scalar and tensor densities and of the form
factor fT (q2). In the actual computations the MS values of
these quantities are taken at μ = mb.

B Feynman rules

In this appendix we collect the Feynman rules used in our
computation. For the couplings between the gauge bosons
and the scalars we have
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W+
ϕ0

i

W−

igmW λ
ϕ0
i

W+W − gμν ,

(85)

where λhW+W− = sin(β − α), λH
W+W− = cos(β − α) and

λA
W+W− = 0. Similarly, we also have

H−
γ

H+

p−

p+

ie(p− − p+)μ,

(86)

H±
ϕ0

i

W∓

pH±

pϕ0
i

±ig

2
λ

ϕ0
i

H±W ∓(pH± + pϕ0
i
)μ,

(87)

where λhH±W∓ = cos(β − α), λH
H±W∓ = − sin(β − α),

and λA
H±W∓ = ∓i , depending on the charges of the initial

particles. For the trilinear scalar interactions, we have

H+
ϕ0

i

H−

ivλ
ϕ0
i

H+H−

(88)

where the trilinear couplings read

λhH+H− = −m2
h[3 cos(α + β) + cos(α − 3β)] + 4 sin(2β) sin(β − α)m2

H± − 4M2 cos(α + β)

2v2 sin(2β)
,

λH
H+H− = −m2

H [3 sin(α + β) + sin(α − 3β)] + 4 sin(2β) cos(β − α)m2
H± − 4M2 sin(α + β)

2v2 sin(2β)
,

λA
H+H− = 0. (89)

These results agree with the ones given in Refs. [30,67] after
the appropriate change of basis and/or conventions.10

10 Notice that our λ is −λ of Ref. [30].

C Scalar penguins and auxiliary functions

In this appendix we give the expressions for the Wilson coef-
ficients generated by each diagram shown in Fig. 5. We also
give the expressions for the auxiliary functions ( fi and gi )
used in this paper.

The penguins arising from coupling to ϕ0
i ∈ {h, H, A}

contribute to the effective coefficient CS,P and can be gener-
ically written as

C
NP,ϕ0

i
S =

√
xbx�

sin2 θW

18∑
k=1

m2
t

mϕ0
i

Re

(
ξ

ϕ0
i

�

)
Ĉk,ϕ0

i , (90)

C
NP,ϕ0

i
P =

√
xbx�

sin2 θW

18∑
k=1

m2
t

mϕ0
i

i Im

(
ξ

ϕ0
i

�

)
Ĉk,ϕ0

i , (91)

where Ĉk,ϕ0
i is a common coefficient generated by the dia-

gram k, with k = 1, . . . , 18. Since, in our framework,
ζ h
� , ζ H

� ∈ R and ζ A
� ∈ i × R, it is clear that the CP-

even scalars h and H contribute only to CS , whereas the
CP-odd Higgs A contributes only to CP , as expected from
the assumption of CP conservation. We obtain in the unitary
gauge

Ĉ1,ϕ0
i = ξ

ϕ0
i

u

4

{
ζdζ

∗
u

xt
xH± − xt

[
1 − xH±

xH± − xt
log

(
xH±

xt

)]

+ |ζu |2 xt
2(xH± − xt )2

[
3xt − xH±

2
+ xH± (xH± − 2xt )

xH± − xt

× log

(
xH±

xt

)]}

+ ξ
ϕ0
i ∗

u

4

{
ζdζ

∗
u

[
� − xt

xH± − xt
− x2

H±
(xH± − xt )2 log xH±

+ xt (2xH± − xt )

(xH± − xt )2 log xt

]

+ |ζu |2 xt
2(xH± − xt )2

[
3xH± − xt

2
− x2

H±
xH± − xt

log

(
xH±

xt

)]}
,

(92)
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Ĉ2,ϕ0
i = −εϕ0

i

sin2 θWλ
ϕ0
i
H+H−

4πα(xH± − xt )

{
ζdζ

∗
u

[
xt

xH± − xt
log

(
xH±

xt

)
− 1

]

+ |ζu |2
[

x2
t

2(xH± − xt )2 log

(
xH±

xt

)
+ xH± − 3xt

4(xH± − xt )

]}
, (93)

Ĉ3,ϕ0
i = ξ

ϕ0
i

d

4
ζdζ

∗
u

[
− � + xH±

xH± − xt
log xH± − xt

xH± − xt
log xt

]
,

(94)

Ĉ4,ϕ0
i = 0, (95)

Ĉ5,ϕ0
i = 1

4

{
ξ

ϕ0
i ∗

u

[
� − 5x2

t − 13xt − 2

4(xt − 1)2 − 2x3
t − 6x2

t + 9xt − 2

2(xt − 1)3 log xt

]

+ ξ
ϕ0
i

u

[
�

2
− 2x2

t − xt − 7

4(xt − 1)2 − x3
t − 3x2

t + 3xt + 2

2(xt − 1)2 log xt

]}
,

(96)

Ĉ6,ϕ0
i = εϕ0

i

λ
ϕ0
i

W+W−
8

[
− 3� + x2

t − 2xt − 11

2(xt − 1)2

+ 3xt (x2
t − 3xt + 4)

(xt − 1)3 log xt

]
, (97)

Ĉ7,ϕ0
i = Ĉ8,ϕ0

i = 0, (98)

Ĉ9,ϕ0
i = λ

ϕ0
i
H+W−

8
ζ ∗
u

[
1

2
− � + xH± (xH± + 2) log xH±

(xH± − 1)(xH± − xt )

− xt (xt + 2) log xt
(xt − 1)(xH± − xt )

]
, (99)

Ĉ10,ϕ0
i = λ

ϕ0
i ∗
H+W−

4

{
− ζu

2

[
xt (xH± xt − 4xH± + 3xt )

(xt − 1)(xH± − xt )2 log xt

− xH± (xH± xt − 3xH± + 2xt )

(xt − 1)(xH± − xt )2 log xH±

+ xH±

xH± − xt

]
+ ζd

[
− � + xH± log xH±

xH± − xt
− xt log xt

xH± − xt

]}
,

(100)

where the couplings λ
ϕ0
i

W+W− and λ
ϕ0
i
H±W∓ are defined below

Eqs. (85) and (87), respectively. The coefficient εϕ0
i

= −1

for ϕ0
i = A, and +1 otherwise. Moreover, � = − 2μD−4

D−4 −
γE + log 4π − log

(
m2

W
μ2

)
+ 1 contains an ultraviolet diver-

gence which cancels out after summing up all the diagrams.
The diagrams (9.11)–(9.18) do not contribute in our compu-
tation, owing to the fact that we work in the unitary gauge.
To make sure that our resulting (total) expressions are gauge
independent we performed the computation in the Feynman
gauge too. In comparison with Ref. [30], we only disagree

with one of the signs in the expression for Ĉ5,ϕ0
i , which we

believe is a typo.
The auxiliary functions g0,1,2 used in Eq. (42) are defined

by

g0 = 1

4(xH± − xt )

{
ζdζ

∗
u

[
xt

xH± − xt
log

(
xH±

xt

)
− 1

]

+ |ζu |2
[

x2
t

2(xH± − xt )2 log

(
xH±

xt

)
+ xH± − 3xt

4(xH± − xt )

]}
(101)

g1 = −3

4
+ ζdζ

∗
u

xt
xH± − xt

[
1 − xH±

xH± − xt
log

(
xH±

xt

)]

+ |ζu |2 xt
2(xH± − xt )2

[
xH± + xt

2
− xH± xt

xH± − xt
log

(
xH±

xt

)]
,

(102)

g2 = ζd (ζdζ
∗
u + 1) f1(xt , xH± ) + ζd

(
ζ ∗
u

)2
f2(xt , xH± )

+ ζd |ζu |2 f3(xt , xH± )

+ ζu |ζu |2 f4(xt , xH± ) − ζ ∗
u |ζu |2 f5(xt , xH± )

+ ζu f6(xt , xH± ) − ζ ∗
u f7(xt , xH±), (103)

with

f1(xt , xH±) = 1

2(xH± − xt )
[−xH± + xt

+ xH± log xH± − xt log xt ], (104)

f2(xt , xH±) = 1

2(xH± − xt )

[
xt − xH±xt

xH± − xt
log

(
xH±

xt

)]
,

(105)

f3(xt , xH±) = 1

2(xH± − xt )

[
xH± − x2

H± log xH±

xH± − xt

+ xt (2xH± − xt ) log xt
xH± − xt

]
, (106)

f4(xt , xH±) = 1

4(xH± − xt )2

[
xt (3xH± − xt )

2

− x2
H±xt

xH± − xt
log

(
xH±

xt

)]
, (107)

f5(xt , xH±) = 1

4(xH± − xt )2

[
xt (xH± − 3xt )

2

− xH±xt (xH± − 2xt )

xH+ − xt
log

(
xH±

xt

)]
, (108)
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f6(xt , xH±) = 1

2(xH± − xt )

[
xt (x2

t − 3xH±xt + 9xH± − 5xt − 2)

4(xt − 1)2 + xH±(xH±xt − 3xH± + 2xt ) log xH±

2(xH± − 1)(xH± − xt )

+ x2
H±(−2x3

t + 6x2
t − 9xt + 2) + 3xH±x2

t (x
2
t − 2xt + 3) − x2

t (2x
3
t − 3x2

t + 3xt + 1)

2(xt − 1)3(xH± − xt )
log xt

]
, (109)

f7(xt , xH±) = 1

2(xH± − xt )

[
(x2

t + xt − 8)(xH± − xt )

4(xt − 1)2 − xH±(xH± + 2)

2(xH± − 1)
log xH±

+ xH±(x3
t − 3x2

t + 3xt + 2) + 3(xt − 2)x2
t

2(xt − 1)3 log xt

]
. (110)

Notice that in the above expressions we assumed the cou-
plings ζ f ∈ C in order to keep our formulas as general as
possible, although in the body of the paper we consistently
used ζ f ∈ R.

C.1 Wilson coefficients for the derivative operators

In this subsection we present the explicit expressions for the
Wilson coefficients relevant to the derivative operators given
in Eq. (46). From the Z -penguins we obtain

CT q
RR = |ζu |2

√
xbxt
72

{
3(x2

H± − 5xH±xt − 2x2
t )

(xH± − xt )3

+ 18xH±x2
t

(xH± − xt )4 log

(
xH±

xt

)

−2 sin2 θW

[
7x2

H± − 5xH±xt − 8x2
t

(xH± − xt )3

−6xH±xt (2xH± − 3xt )

(xH± − xt )4 log

(
xH±

xt

)]}

+ζ ∗
u ζd

√
xbxt
24

{
3(xH± − 3xt )

(xH± − xt )2 − 6xH±(xH± − 2xt )

xH± − xt

× log

(
xH±

xt

)

+4 sin2 θW

[
5xt − 3xH±

(xH± − xt )2 + 2xH±(2xH± − 3xt )

(xH± − xt )3

× log

(
xH±

xt

)]}
, (111)

and CT q
RL = CT q

RR

(
1 − 1

2 sin2 θW

)
. Similarly, from the box

diagrams we get

CT �
LL = −ζuζ

∗
�

√
x�xt

4(xH± − xt ) sin2 θW[
− 1

(xH± − 1)
+ xH±(1 − xH±) log xt

(xH± − xt )(xt − 1)(xH± − 1)

− xH±(xt + 1 − 2xH±) log xH±

(xH± − xt )(xH± − 1)2

]
, (112)

and CT �
LL = (CT �

LR)∗.

C.2 Wilson coefficients suppressed by m�

In addition to the Wilson coefficients given in Sect. 2, in
the computation of the box diagrams one gets contributions
suppressed by the lepton mass. For completeness, we give
these contributions here. We obtain

CNP, box
T (5) = ζ ∗

u ζ�

√
xbx�xt

32(xH± − xt ) sin2 θW

×
[

xt log xt
(xt − 1)(xH± − xt )

− xH± log xH±

(xH± − 1)(xH± − xt )
+ xt − log xt − 1

(xt − 1)2

]
(113)

and

CNP, box
9 = x�xt

16 sin2 θW

{
|ζu |2|ζ�|2

[
− 1

xH± − xt

+ xt
(xH± − xt )2 log

(
xH±

xt

)]

+ 2Re[ζuζ ∗
� ]
[

(xt + 2) log xt
(xH± − xt )(xt − 1)

− (xH± + 2) log xH±

(xH± − xt )(xH± − 1)

]}
+ 2

√
x� Re

(
CT �
LL

)
,

(114)

CNP, box
10 = x�xt

16 sin2 θW

{
|ζu |2|ζ�|2

[
− 1

xH± − xt

+ xt
(xH± − xt )2 log

(
xH±

xt

)]

+ 2Re[ζuζ ∗
� ]
[

(xt − 2) log xt
(xH± − xt )(xt − 1)

− (xH± − 2) log xH±

(xH± − xt )(xH± − 1)

]}
. (115)
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