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Abstract We analyze the stability of self-gravitating sys-
tems which dynamics is investigated using the collision-
less Boltzmann equation, and the modified Poisson equa-
tion of Eddington-inspired Born–Infield gravity. These equa-
tions provide a description of the Jeans paradigm used to
determine the critical scale above which such systems col-
lapse. At equilibrium, the systems are described using the
time-independent Maxwell–Boltzmann distribution function
f0(v). Considering small perturbations to this equilibrium
state, we obtain a modified dispersion relation, and we find a
new characteristic scale length. Our results indicate that the
dynamics of self-gravitating astrophysical systems can be
fully addressed in the Eddington-inspired Born–Infeld grav-
ity. The latter modifies the Jeans instability in high densities
environments, while its effects become negligible in star for-
mation regions.

1 Introduction

In General Relativity (GR), matter is minimally coupled with
the metric and the Einstein–Hilbert Lagrangian, which is lin-
ear in the Ricci scalar, gives rise to second order field equa-
tions. These are able to explain the dynamics of the particles
up to a solar system scale, but they fail at scales of galax-
ies and beyond. The dynamics of self-gravitating systems
and the current period of accelerated expansion of the Uni-
verse cannot be explained by just baryonic matter. Thus, GR
needs to incorporate two unknown components to explain
the dynamics at both galactic/extragalactic and cosmological
scales. Specifically, almost ∼68% of the total amount of the
matter and energy in the Universe should be in form of the
cosmological constant, or more in general of dark energy,
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while ∼26% should be in the form of invisible and exotic
particles, named dark matter. Nevertheless their fundamental
nature is still unknown [1–4]. The need to incorporate them
has been interpreted as a breakdown of GR at astrophysi-
cal and cosmological scales, opening the door to alternative
theories of gravity.

Generalizations of the gravitational action have been
extensively explored to overcome the need of these two exotic
components. On th one hand these are motivated by their
capability to explain the dynamics of self-gravitating sys-
tems and the accelerated expansion of the Universe without
resorting to dark matter and/or dark energy [5–14]. On the
other hand, they are also motivated by the fact that GR is not
the quantum theory of gravity needed to describe the space-
time near the singularities, which, as is well known, seem-
ingly cannot be avoided [15]. Although a quantum theory of
gravity should be able to overcome such problems, there also
exists the possibility to avoid singularities modifying the cou-
pling between matter and gravity. In this context, Eddington-
inspired Born–Infeld (EiBI) gravity has been recently pro-
posed [16]. EiBI gravity is inspired by the Born–Infeld action
for non-linear electrodynamics, with the Ricci tensor replac-
ing the field tensor Fμν . This structure was motived by some
classes of string theories where the Born–Infeld electrody-
namics arises as a low-energy effective theory [17,18]. One of
the most interesting features is that EiBI is equivalent to GR in
the vacuum while it introduces modifications in dense matter
environments, where GR is experimentally not well probed.
EiBI is able to describe, with only a single extra parameter
(κ), astrophysical objects such as the Sun [19] and the internal
structure of compact objects [20–26], and the cosmological
expansion of the Universe [22,27–31] (for comprehensive
reviews see [7,12] and the references therein).

Briefly, the gravitational action of EiBI gravity takes the
following form:
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S = 2

κ

∫
d4x

(√|gμν + κRμν |−λ
√−g

)
+Smatter[g, φM ],

(1)

where Rμν is the symmetric part of the Ricci tensor, φM

represents the matter field, and λ is a constant. The latter is
linked to the cosmological constant in such a way that one
obtains asymptotically flat solutions setting λ = 1. Finally,
the field equations are built varying the action as in the Pala-
tini approach. As in other modified theories of gravity, the
Palatini approach is not equivalent to a pure metric one. How-
ever, the latter contains ghosts that can be eliminated only
adding extra terms in the gravitational action [32,33]. The
higher order curvature terms account for both non-linear mat-
ter coupling and for avoiding singularities. Such correction
terms also appear in the non-relativistic limit, where EiBI
gravity leads to a modified Poisson equation given by

∇2Φ(r, t) = 4πGρ(r, t) + κ

4
∇2ρ(r, t), (2)

where Φ(r, t) is the gravitational potential, and ρ(r, t) is the
matter density. Let us note that by setting κ = 0, the previous
equation immediately reduces to the standard Poisson equa-
tion ∇2Φ(r, t) = 4πGρ(r, t). The tightest constraint in the
literature on the EiBI parameter has been obtained compar-
ing the electromagnetic and gravitational interactions inside
atomic nuclei: |κ| < 10−3 kg−1 m5 s−2 [37].

In this paper, we analyze the kinetic theory of the Jean
instability for self-gravitating systems in EiBI gravity. This
mechanism constitutes, on the theoretical side, a remarkable
instrument to retain/rule out modified theories of gravity at
astrophysical level. In fact, although a self-gravitating sys-
tem collapses under the gravitational force induced by the
modified Poisson equation and gives rise to star formation,
we expect that the effects of the EiBI gravity are totally neg-
ligible in star formation environments while they must show
some deviations from GR in compact objects collapsing into
Black Holes.

The paper is organized as follows: in Sect. 2 we compute
the dispersion relation for an homogeneous self-gravitating
system in EiBI gravity; in Sect. 3 we analyze the dispersion
relation in low and high frequency regimes, and we study the
unstable modes that led to the collapse of the structure; in
Sect. 4 we give our conclusion and remarks.

2 Dispersion relation of a collisionless self-gravitating
system

The standard approach to describing the collapse of a self-
gravitating system, either a star formation regions such as
interstellar clouds which physical conditions change from
hot X-ray emitting plasma to cold molecular gas, or compact

objects collapsing into Black Hole, is the Jeans instability
[34]. The latter is usually described by a distribution function
of the particles f (r, v, t) which is solution of the Boltzman–
Vlasov system of equations:

[
∂

∂t
+ (v · ∇r ) − (∇Φ(r, t) · ∇v)

]
f (r, v, t) = Icoll, (3)

∇2Φ(r, t) =
[

4πG + κ

4
∇2

]
ρ(r, t), (4)

where the mass density distribution reads

ρ(r, t) =
∫

f (r, v, t)dv. (5)

Here Icoll is the collision term and, since we analyze a colli-
sionless system, it can be neglected (Icoll = 0).

To study the effect of the EiBI gravity, Eqs. (3)–(5) must
be linearized. Assuming that the unperturbed potential Φ0 is
locally constant in the system, one can set ∇Φ0 = 0. This is
generally known as Jeans swindle [34]. Thus, in small pertur-
bations regime, the distribution function and the gravitational
potential can be written as

f (r, v, t) = f0(r, v) + ε f1(r, v, t), (6)

Φ(r, t) = Φ0(r) + εΦ1(r, t), (7)

where ε � 1 for small perturbations. Thus, at the first order,
the Boltzman–Vlasov system of equations can be recast in
the Fourier space as follows:

−iω f1 + v · (ik f1) − (ikΦ1) · ∂ f0
∂v

= 0, (8)

−k2Φ1 = 4πG
∫

f1(r, v, t)dv − κ

4
k2

∫
f1(r, v, t)dv,

(9)

and the dispersion relation reads

1 +
(

4πG

k2 − κ

4

)∫
k · ∂ f0

∂v

v · k − ω
dv = 0. (10)

Assuming the local thermodynamical equilibrium, the
background distribution function of the particles can be
described using the Maxwell–Boltzman distribution. There-
fore, f0(v) is given by

f0(v) = ρ0

(2πσ 2)
3
2

e− v2

2σ2 , (11)

where ρ0 is the matter density at equilibrium, and σ is the
thermal dispersion velocity of the particles. Finally, inserting
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the Maxwell–Boltzman distribution in Eq. (10) the dispersion
relation reads

1 −
(

4πG

k2 − κ

4

)
ρ0√
2πσ 3

k
∫

ve− v2

2σ2

kv − ω
dv = 0. (12)

The previous equation shows a singularity at ω = kv. More-
over, setting κ = 0, it reduces to the Newtonian dispersion
relation. Thus, one can infer the limit for the collapse set-
ting ω = 0 and computing the maximum wavelength of the
perturbations supported by the system, and above which the
system collapses. Specifically, in the Newtonian case, setting
ω = 0 one obtains the so-called Jeans wavenumber

k2
J = 4πGρ0

σ 2 , (13)

that can be used to define the Jeans mass as the mass enclosed
in a sphere of radius λJ = 2π/kJ , obtaining

MJ = π

6

√
1

ρ0

(
πσ 2

G

)
. (14)

On the one hand, perturbations having wavelength λ > λJ

are unstable, and they exponentially grow. On the other hand,
if the wavelength is less than the Jeans limit then perturba-
tions are strongly damped. In EiBI gravity, such limit as a
result is modified by the additional term in the Poisson equa-
tion. Therefore, from Eq. (12) we obtain

k∗2(ω = 0) =
(

σ 2

4πGρ0
+ κ

16πG

)−1
=

(
1 + κ

16πG
k2
J

)−1
k2
J ,

(15)

which corresponds to a mass

M∗ = π

6

√
1

ρ0

(
πσ 2

G
+ 4π2ρ0κ

16πG

)3

=
(

1 + k2
J

κ

16πG

)3/2
MJ .

(16)

Thus, the mass limit for the collapse of a self-gravitating
system depends on the EiBI parameter. It can be higher or
lower than the classical Jeans Mass and, as a consequence,
EiBI gravity can favor or disfavor the gravitational collapse
depending on the sign of κ .

3 Analysis of the collisionless dispersion relation

Equation (12) can easily be rewritten as

1 −
(
k2
J

k2 − κ

16πG
k2
J

)
1√
2π

∫
xe− x2

2

β − x
dx = 0, (17)

where we have defined the following variables:

β = ω

kσ
; x = vx

σ
. (18)

Moreover, in EiBI gravity there naturally arises a new wave-
length

λEi B I =
√

π |κ|
4G

, (19)

which is equal to the one found at cosmological scale and
using fluid approach [22]. The EiBI wavelength allows us to
rewrite the dispersion relation in a more compact form

1 −
(
k2
J

k2 − k2
J

k2
EiBI

)
1√
2π

∫
xe− x2

2

β − x
dx = 0. (20)

Let us study the limit of high frequency perturbations
β � 1.
In this case, having no singularities, we can integrate Eq. (20)
along the real axis (ω = ωR + iωI ≈ ωR) obtaining

1 + 3k2k2
Jσ

4

ω4
R

− 3k4k2
Jσ

4

k2
EiBIω

4
r

+ k2
Jσ

2

ω2
R

− k2k2
Jσ

2

k2
EiBIω

2
R

= 0, (21)

which is a quadratic equation for ω2
R . Remembering the con-

dition β � 1, we find

ω2
R =

[
k2

(
3 + k2

J

k2
EiBI

)
− k2

J

]
σ 2, (22)

which for κ = 0 reduces to the classical Newtonian relation.
Thus, as for the Newtonian case, high frequency perturba-

tions with k2 > kJ (
k2

EiBI
3k2

EiBI+k2
J
) are quickly damped by the

self-gravitating system whenever the EiBI wavenumber sat-
isfies the condition k2

EiBI > −k2
J /2. On the contrary, high

frequency perturbations can be supported by the system as is
shown in Fig. 1 (magenta line).

More interesting is to consider the case of low frequency
perturbations β � 1, which in the Newtonian case led to
unstable modes. In such a limit, the integral in Eq. (20) can
be recast into the form

1√
2π

∫
xe− x2

2

β − x
dx ≈ 1 + ı

√
π

2
β. (23)

Therefore, splitting ω in its real and imaginary part, ω =
ωR + ıωI , and setting ωR = 0, we find

ωI = kσ

√
2

π

[
1 −

(
k2
J

k2 − k2
J

k2
EiBI

)−1]
, (24)
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Fig. 1 High frequency limit of growth rate of the Jeans instability. The
oscillations of the plasma are quickly damped (as for the Newtonian
case)

which gives unstable modes when ωI > 0, that is, for

(
k2
J

k2 − k2
J

k2
EiBI

)−1

< 1. (25)

In other words, the system supports perturbations having a
wavelength

λ2 > λ∗2 ≡ λ2
J − λ2

EiBI, (26)

while it shows a singularity for perturbations having λ =
λEiBI. Perturbations having λ < λ∗ are quickly damped by
the system staying stable. Next, while in Newtonian gravity
perturbations having λ > λJ we are capable to generate the
collapse of the system, in EiBI gravity the limit for the col-
lapse becoming lower or higher depending on the parameter
κ . This can be quickly understood looking at Eq. (16). Since
the EiBI modification depends on the coupling between mat-
ter and gravity, which is larger as the density increases [35],
its effects must be negligible in low density environments
like star formation regions where the condition λEiBI � λJ

must hold. This condition can be straightforwardly translated
into a density threshold,

ρ0 < ρ∗
0 = σ 2

π2κ
, (27)

which means that EiBI gravity does not affect systems having
density below ρ∗

0 . On the one hand, the interstellar medium
has temperatures ranging from 10 to 100 K, while matter
density ranges from ρ0 ∼ 10−18 to ρ0 ∼ 10−16 kg m−3. Set-
ting |κ| < 10−3 kg−1 m5 s−2 [37] it follows that the density

0.0 0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

k kJ

GR
5 10 5
1 10 4
3 10 4
1 10 3
3 10 3

I

4
G

Fig. 2 The growth rate of the Jeans instability versus k/kJ for different
values of the EiBI parameter. Here the dispersion relation is illustrated
for the cases corresponding to κ < 0

threshold is ρ∗
0 ≈ 107 kg m−3. As expected, ρ0 < ρ∗

0 in a star
formation region. Therefore, EiBI gravity can be neglected.
On the other hand, high density and temperature systems
such as a Hyper Massive Neutron Star (HMNS, [36]) are
one of the most promising laboratories to probe EiBI grav-
ity. Those systems arise from the merger of a neutron star
binary, and they are expected to collapse to a rotating black
hole having a massive accretion torus. The temperature of
those systems lies in the range [5, 50] × 1010 K with a par-
ticle number density ∼ 1039 cm−3. The collapse of such a
system is considered as one of the possible sources of short
gamma ray bursts. For such systems, with ρ∗

0 ≈ 1015 kg m−3

and ρ0 ≈ 1018 kg m−3, EiBI gravity affects the kinetic insta-
bility producing deviations from the GR.

Figures 2 and 3 display the growth rate of the unstable
roots of Eq. (24) as a function of the normalized wavenum-
ber k/kJ and for different values of the EiBI parameter κ .
Specifically, Fig. 2 illustrates the growth rate for a few cases
corresponding to negative values of κ , while Fig. 3 is devoted
to positive values of κ . Figure 2 illustrates that the growth
rate is larger for lower values of κ , while as κ is closer to
zero (which corresponds to the Newtonian solution) the sys-
tem shows unstable modes for k < k∗, and stable modes for
k > k∗. Nevertheless, the Jeans mass as a result is higher (see
Eq. (16)); therefore the collapse of the HMNS is disfavored
with respect to the Newtonian case.

More interesting is the growth rate for positive values of
κ shown in Fig. 3. In this case the dispersion relation has a
singularity at k = kEiBI. The physical behavior around such
a point can only be described by more complex physical the-
ories where a singularity does not occur. Therefore, the study
here presented shows also the limit of the Jeans instability in
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Fig. 3 The growth rate of the Jeans instability versus k/kJ for different
values of the EiBI parameter. Here the dispersion relation is illustrated
for the cases corresponding to κ > 0

EiBI gravity, which cannot be blindly applied in the points
around k = kEiBI.

Notice that such dramatic changes in ωI correspond to a
phase transition of the system. In thermodynamic systems,
phase transitions occur when the free energy, or the parti-
tion function, has singularities for some choice of variables,
such as the temperature. For example, in the phenomenon
of superconductivity, certain materials, when cooled below a
critical temperature TC , pass into the superconducting state
characterized by zero electrical resistance and by the com-
plete ejection of magnetic field lines from the interior of the
superconductor. In other systems, other physical parameters
play the role of the temperature. For example, quantum phase
transitions can be obtained by varying the magnetic field or
the pressure at zero temperature.

In our case, a significant physical parameter is the
wavenumber k and the critical value of k, which marks the
phase transition is kEiBI. Indeed, waves having wavenumbers
smaller than kEiBI and satisfying the condition k < k∗ give
rise to unstable modes that favor the collapse of the HMNS
into a black hole. Meanwhile, waves having wavenumber
higher than the EiBI wavenumber show only stable solutions
that do not produce the collapse of the structure even for
kEiBI < k < k∗.

We further remark that the extra modes k ∼ kEiBI do not
exist in Newtonian gravity where the singularity in k = kEiBI

is absent in such a model (see Fig. 3), and also that this mode
does not depend on the approximation made to compute the
dispersion relation in Eq. (24) since it is straightforward to
highlight that such a singularity is also present in the general
expression of the dispersion relation given in Eq. (10). There-
fore, this sort of phase transition could be an indication that

the general paradigm of the Jeans instability, which works
fine in GR and in other modified gravity models [38], does
not work anymore in EiBI gravity for k > kEiBI.

4 Conclusions and remarks

We have investigated the impact of the recently proposed
EiBI gravity theory on the gravitational collapse of a self-
gravitating system. We have solved the collisionless Boltz-
mann equation together with the modified Poisson equa-
tion of EiBI gravity to study the kinetic instability of self-
gravitating system, and we have computed the correspond-
ing dispersion relation leading to a new gravitational scale
length. We studied both the high and low frequency limits
of the dispersion relation. In the high frequency limit, the
self-gravitating system behaves as in Newtonian gravity, not
supporting the propagation of the perturbations. In the low
frequency limit EiBI gravity may introduce a modification
to the Jeans instability. Although EiBI gravity modified the
Jeans mass needed for the collapse, it does not affect the star
formation because of the low density environments where it
happens. Nevertheless, in higher density environments such
as HMNS the higher order terms of EiBI gravity produce a
departure from the Newtonian growth rate, which could be
both an indication that the standard Jeans paradigm does not
hold anymore, or that effective new modes are present that
could serve as a mechanism to generate a black hole from
massive stars.
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