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Abstract A generalized Melvin solution for an arbitrary
simple finite-dimensional Lie algebra G is considered. The
solution contains a metric, n Abelian 2-forms and n scalar
fields, where n is the rank of G. It is governed by a set of n
moduli functions Hs(z) obeying n ordinary differential equa-
tions with certain boundary conditions imposed. It was con-
jectured earlier that these functions should be polynomials—
the so-called fluxbrane polynomials. These polynomials
depend upon integration constants qs , s = 1, . . . , n. In the
case when the conjecture on the polynomial structure for the
Lie algebra G is satisfied, it is proved that 2-form flux inte-
grals �s over a proper 2d submanifold are finite and obey
the relations qs�s = 4πnshs , where the hs > 0 are cer-
tain constants (related to dilatonic coupling vectors) and the
ns are powers of the polynomials, which are components of
a twice dual Weyl vector in the basis of simple (co-)roots,
s = 1, . . . , n. The main relations of the paper are valid for a
solution corresponding to a finite-dimensional semi-simple
Lie algebra G. Examples of polynomials and fluxes for the
Lie algebras A1, A2, A3, C2, G2 and A1 + A1 are presented.

1 Introduction

In this paper we start with a generalization of a Melvin solu-
tion [1], which was presented earlier in Ref. [2]. It appears
in the model which contains a metric, n Abelian 2-forms and
l ≥ n scalar fields. This solution is governed by a certain non-
degenerate (quasi-Cartan) matrix (Ass′), s, s′ = 1, . . . , n. It
is a special case of the so-called generalized fluxbrane solu-
tions from Ref. [3]. For fluxbrane solutions see Refs. [4–28]
and the references therein. The appearance of fluxbrane solu-
tions was motivated by superstring/M theory.

a e-mail: ivashchuk@mail.ru

The generalized fluxbrane solutions from Ref. [3] are gov-
erned by moduli functions, Hs(z) > 0, defined on the inter-
val (0,+∞), where z = ρ2 and ρ is a radial variable. These
functions obey a set of n non-linear differential master equa-
tions governed by the matrix (Ass′), equivalent to Toda-like
equations, with the following boundary conditions imposed:
Hs(+0) = 1, s = 1, . . . , n.

In this paper we assume that (Ass′) is a Cartan matrix
for some simple finite-dimensional Lie algebra G of rank n
(Ass = 2 for all s). According to a conjecture suggested
in Ref. [3], the solutions to the master equations with the
boundary conditions imposed are polynomials:

Hs(z) = 1 +
ns∑

k=1

P(k)
s zk, (1.1)

where the P(k)
s are constants. Here P(ns )

s �= 0 and

ns = 2
n∑

s′=1

Ass′ , (1.2)

where we denote (Ass′) = (Ass′)−1. The integers ns are
components of a twice dual Weyl vector in the basis of simple
(co-)roots [29].

The set of fluxbrane polynomials Hs defines a special solu-
tion to open Toda chain equations [30,31] corresponding to a
simple finite-dimensional Lie algebra G [32]. In Refs. [2,33]
a program (in Maple) for the calculation of these polynomi-
als for the classical series of Lie algebras (A-, B-, C- and
D-series) was suggested. It was pointed out in Ref. [3] that
the conjecture on the polynomial structure of Hs(z) is valid
for Lie algebras of the A- and C-series. In Ref. [34] the con-
jecture from Ref. [3] was verified for the Lie algebra E6 and
certain duality relations for six E6-polynomials were proved.
In Sect. 2 we present the generalized Melvin solution from
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Ref. [2]. In Sect. 3 we deal with the generalized Melvin solu-
tion for an arbitrary simple finite-dimensional Lie algebra
G. Here we calculate 2-form flux integrals �s = ∫

M∗ F
s ,

where Fs are 2-forms and M∗ is a certain 2d submanifold.
These integrals (fluxes) are finite when moduli functions are
polynomials. In Sect. 3 we consider examples of fluxbrane
polynomials and fluxes for the Lie algebras: A1, A2, A3, C2,
G2 and A1 + A1.

2 The solutions

We consider a model governed by the action

S =
∫

dDx
√|g|

{
R[g] − hαβg

MN ∂Mϕα∂Nϕβ

−1

2

n∑

s=1

exp[2λs(ϕ)](Fs)2
}

(2.1)

where g = gMN (x)dxM ⊗ dxN is a metric, ϕ = (ϕα) ∈ R
l

is a set of scalar fields, (hαβ) is a constant symmetric non-
degenerate l × l matrix (l ∈ N), Fs = d As = 1

2 F
s
MNdxM ∧

dxN is a 2-form, λs is a 1-form on R
l : λs(ϕ) = λsαϕα , s =

1, . . . , n; α = 1, . . . , l. Here (λsα), s = 1, . . . , n, are dila-
tonic coupling vectors. In (2.1) we denote |g| = | det(gMN )|,
(Fs)2 = Fs

M1M2
Fs
N1N2

gM1N1gM2N2 , s = 1, . . . , n.
Here we start with a family of exact solutions to field

equations corresponding to the action (2.1) and depending
on one variable ρ. The solutions are defined on the manifold

M = (0,+∞) × M1 × M2, (2.2)

where M1 is a one-dimensional manifold (say S1 or R) and
M2 is a (D-2)-dimensional Ricci-flat manifold. The solution
reads [2]

g =
( n∏

s=1

H2hs/(D−2)
s

){
wdρ ⊗ dρ

+
( n∏

s=1

H−2hs
s

)
ρ2dφ ⊗ dφ + g2

}
, (2.3)

exp(ϕα) =
n∏

s=1

H
hsλα

s
s , (2.4)

Fs = qs

(
n∏

s′=1

H
−Ass′
s′

)
ρdρ ∧ dφ, (2.5)

s = 1, . . . , n; α = 1, . . . , l, where w = ±1, g1 = dφ ⊗ dφ

is a metric on M1 and g2 is a Ricci-flat metric on M2. Here
qs �= 0 are integration constants, qs = −Qs in the notations
of Ref. [2], s = 1, . . . , n.

The functions Hs(z) > 0, z = ρ2, obey the master equa-
tions

d

dz

(
z

Hs

d

dz
Hs

)
= Ps

n∏

s′=1

H
−Ass′
s′ , (2.6)

with the following boundary conditions:

Hs(+0) = 1, (2.7)

where

Ps = 1

4
Ksq

2
s , (2.8)

s = 1, . . . , n. The boundary condition (2.7) guarantees the
absence of a conic singularity [in the metric (2.3)] for ρ =
+0.

The parameters hs satisfy the relations

hs = K−1
s , Ks = Bss > 0, (2.9)

where

Bss′ ≡ 1 + 1

2 − D
+ λsαλs′βh

αβ, (2.10)

s, s′ = 1, . . . , n, with (hαβ) = (hαβ)−1. In the relations
above we denote λα

s = hαβλsβ and

(Ass′) = (2Bss′/Bs′s′) . (2.11)

The latter is the so-called quasi-Cartan matrix.
We note that the constants Bss′ and Ks = Bss have a cer-

tain mathematical sense. They are related to scalar products
of certain vectors Us (brane vectors, or U -vectors), which
belong to a certain linear space (“truncated target space”, for
our problem it has dimension l + 2), i.e. Bss′ = (Us,Us′)
and Ks = (Us,Us) [35–37]. The scalar products of such
a type are of physical significance, since they appear for
various solutions with branes, e.g. black branes, S-branes,
fluxbranes etc. Several physical parameters in multidimen-
sional models with branes, e.g. the Hawking-like tempera-
tures and the entropies of black holes and branes, PPN param-
eters, Hubble-like parameters, fluxes etc., contain such scalar
products; see [36,37] and Sect. 3 of this paper. The rela-
tion (2.11) defines generalized intersection rules for branes
which were suggested in [35]. The constants Ks are invari-
ants of dimensional reduction. It is well known, see [37] and
the references therein, that Ks = 2 for branes in numerous
supergravity models, e.g. in dimensions D = 10, 11.

It may be shown that if the matrix (hαβ) has an Euclidean
signature and l ≥ n, and (Ass′) is a Cartan matrix for a
simple Lie algebraG of rank n, there exists a set of co-vectors
λ1, . . . , λn obeying (2.11) (for l = n see Remark 1 in the next
section). Thus the solution is valid at least when l ≥ n and
the matrix (hαβ) is positive-definite.
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The solution under consideration is a special case of the
fluxbrane (for w = +1, M1 = S1) and S-brane (w = −1)
solutions from [3] and [25], respectively.

If w = +1 and the (Ricci-flat) metric g2 has a pseudo-
Euclidean signature, we get a multidimensional generaliza-
tion of Melvin’s solution [1].

In our notations Melvin’s solution (without scalar field)
corresponds to D = 4, n = 1, l = 0, M1 = S1 (0 < φ <

2π ), M2 = R
2, g2 = −dt ⊗ dt + dx ⊗ dx and G = A1.

For w = −1 and g2 of Euclidean signature we obtain a
cosmological solution with a horizon (as ρ = +0) if M1 = R

(−∞ < φ < +∞).

3 Flux integrals for a simple finite-dimensional Lie
algebra

Here we deal with the solution which corresponds to a simple
finite-dimensional Lie algebra G, i.e. the matrix A = (Ass′)
is coinciding with the Cartan matrix of this Lie algebra. We
put also n = l, w = +1 and M1 = S1, hαβ = δαβ and denote
(λsa) = (λas ) = λs , s = 1, . . . , n.

Due to (2.9)–(2.11) we get

Ks = D − 3

D − 2
+ λ2

s , (3.1)

hs = K−1
s , and

λsλl = 1

2
Kl Asl − D − 3

D − 2
≡ �sl , (3.2)

s, l = 1, . . . , n. [Equation (3.1) is a special case of (3.2)].
It follows from (2.9)–(2.11) that

hi
h j

= K j

Ki
= Bj j

Bii
= Bji

Bii

B j j

Bi j
= A ji

Ai j
(3.3)

for any i �= j obeying Ai j , A ji �= 0; i, j = 1, . . . , n. It

may be readily shown from (3.3) that the ratios hi
h j

= K j
Ki

are
fixed numbers for any given Cartan matrix (Ai j ) of a simple
(finite-dimensional) Lie algebra G. (This follows from (3.3)
and the connectedness of the Dynkin diagram of a simple Lie
algebra.) The ratios (3.3) may be written as follows:

hi
h j

= K j

Ki
= r j

ri
(3.4)

i �= j , where ri = (αi , αi ) is the length squared of a simple
root αi corresponding to the Lie algebra G. Here we use
the notations Ai j = 2(αi , α j )/(α j , α j ); i, j = 1, . . . , n.
Equation (3.4) implies

Ki = 1

2
Kri , (3.5)

i = 1, . . . , n, where K > 0. (For simply laced (A, D, E)
Lie algebras all ri are equal.)

Remark 1 For large enough K in (3.5) there exist vectors
λs obeying (3.2) [and hence (3.1)]. Indeed, the matrix (�sl)

is positive-definite if K > K∗, where K∗ is some positive
number. Hence there exists a matrix , such that T = �.
We put (as) = (λas ) and get the set of vectors obeying (3.2).

Now let us consider the oriented 2-dimensional manifold
M∗ = (0,+∞) × S1. The flux integrals

�s =
∫

M∗
Fs =

∫ +∞

0
dρ

∫ 2π

0
dφ ρBs(ρ2)

= 2π

∫ +∞

0
dρ ρBs(ρ2), (3.6)

where

Bs(ρ2) = qs

n∏

l=1

(Hl(ρ
2))−Asl , (3.7)

are convergent for all s, if the conjecture for the Lie algebra G
(on polynomial structure of moduli functions Hs) is obeyed
for the Lie algebra G under consideration.

Indeed, due to the polynomial assumption (1.1) we have

Hs(ρ
2) ∼ Csρ

2ns , Cs = P(ns )
s , (3.8)

as ρ → +∞; s = 1, . . . , n. From (3.7), (3.8) and the equality∑n
1 Aslnl = 2, following from (1.2), we get

Bs(ρ2) ∼ qsC
sρ−4, Cs =

n∏

l=1

C−Asl
l , (3.9)

and hence the integral (3.6) is convergent for any s =
1, . . . , n.

By using the master equations (2.6) we obtain
∫ +∞

0
dρρBs(ρ2) = qs P

−1
s

1

2

∫ +∞

0
dz

d

dz

(
z

Hs

d

dz
Hs

)

= 1

2
qs P

−1
s lim

z→+∞

(
z

Hs

d

dz
Hs

)

= 1

2
nsqs P

−1
s , (3.10)

which implies [see (2.8)]

�s = 4πnsq
−1
s hs, (3.11)

s = 1, . . . , n.
Thus, any flux �s depends upon one integration constant

qs �= 0, while the integrand form Fs depends upon all con-
stants: q1, . . . , qn .
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We note that for D = 4 and g2 = −dt ⊗ dt + dx ⊗ dx ,
qs is coinciding with the value of the x-component of the sth
magnetic field on the axis of symmetry.

In the case of the Gibbons–Maeda dilatonic generalization
of the Melvin solution, corresponding to D = 4, n = l = 1
and G = A1 [5], the flux from (3.11) (s = 1) is in agreement
with that considered in Ref. [26]. For Melvin’s case and some
higher dimensional extensions (with G = A1) see also Ref.
[14].

Due to (3.4) the ratios

qi�i

q j� j
= ni hi

n j h j
= nir j

n j ri
(3.12)

are fixed numbers depending upon the Cartan matrix (Ai j )

of a simple finite-dimensional Lie algebra G.

Remark 2 The relation for flux integrals (3.11) is also valid
when the matrix (Ass′) is a Cartan matrix of a finite-
dimensional semi-simple Lie algebra G = G1 ⊕ · · · ⊕ Gk ,
where G1, . . . ,Gk are simple Lie (sub)algebras. In this case
the Cartan matrix (Ai j ) has a block-diagonal form, i.e.

(Ai j ) = diag
((

A(1)
i1 j1

)
, . . . ,

(
A(k)
ik jk

))
, where

(
A(a)
ia ja

)
is the

Cartan matrix of the Lie algebra Ga , a = 1, . . . , k. The set
of polynomials in this case splits in a direct union of sets of
polynomials corresponding to the Lie algebras G1, . . . ,Gk .
Equations (3.4) and (3.12) are valid, when the indices i, j
correspond to one ath block, a = 1, . . . , k. The quantities
qi�i and q j�

j corresponding to different blocks are inde-
pendent. Equation (3.5) should be replaced by

Kia = 1

2
K (a)ria , K (a) > 0, (3.13)

for any index ia corresponding to theath block;a = 1, . . . , k.
The existence of dilatonic coupling vectors λs obeying (3.2)
[(and (3.1)] just follows from the arguments of Remark 1, if
we put all K (a) = K > 0.

The manifold M∗ = (0,+∞) × S1 is isomorphic to the
manifold R

2∗ = R
2 \ {0}. The solution (2.3)–(2.5) may be

understood (or rewritten by pull-backs) as defined on the
manifoldR2∗×M2, where the coordinates ρ, φ are understood
as coordinates on R

2∗. They are not globally defined. One
should consider two charts with coordinates ρ, φ = φ1 and
ρ, φ = φ2, where ρ > 0, 0 < φ1 < 2π and −π < φ2 <

π . Here exp(iφ1) = exp(iφ2). In both cases we have x =
ρ cos φ and y = ρ sin φ, where x, y are standard coordinates
of R2. Using the identity ρdρ ∧ dφ = dx ∧ dy we get

Fs = qs

n∏

s′=1

(Hs′(x
2 + y2))−Ass′ dx ∧ dy, (3.14)

s = 1, . . . , n. The 2-forms (3.14) are well defined on R
2.

Indeed, due to the conjecture from Ref. [3] any polynomial
Hs(z) is a smooth function onR = (−∞,+∞) which obeys
Hs(z) > 0 for z ∈ (−εs,+∞), where εs > 0. This is valid
due to the conjecture from Ref. [3] Hs(z) > 0 for z > 0

and Hs(+0) = 1. Thus,
(∏n

s′=1

(
Hs′

(
x2 + y2

))−Ass′
)

is a

smooth function since it is a composition of two well-defined
smooth functions

(∏n
s′=1(Hs′(z))−Ass′

)
and z = x2 + y2.

Now we show that there exist 1-forms As obeying Fs =
d As which are globally defined onR2. We start with the open
submanifold R

2∗. The 1-forms

As =
(∫ ρ

0
dρ̄ρ̄Bs(ρ̄2)

)
dφ = 1

2

(∫ ρ2

0
dz̄Bs(z̄)

)
dφ

(3.15)

are well defined on R
2∗ (here dφ = (x2 + y2)−1(−ydx +

xdy)) and obey Fs = d As , s = 1, . . . , n. Using the master
equation (2.6) we obtain

As = qs
2Ps

(∫ ρ2

0
dz̄

d

dz̄

(
z̄

Hs(z̄)

d

dz̄
Hs(z̄)

))
dφ

= 2hs
qs

H
′
s(ρ

2)

Hs(ρ2)
ρ2dφ, (3.16)

s = 1, . . . , n. Here H ′
s = d

dz Hs . Due to the relation ρ2dφ =
−ydx + xdy, we obtain

As = 2hs
qs

H
′
s(x

2 + y2)

Hs(x2 + y2)
(−ydx + xdy), (3.17)

s = 1, . . . , n. The 1-forms (3.17) are well-defined smooth
1-forms on R

2.
We note that in the case of the Gibbons–Maeda solution

[5] corresponding to D = 4, n = l = 1 and G = A1 the
gauge potential from (3.16) coincides (up to notations) with
that considered in Ref. [7].

Now we verify our result (3.11) for flux integrals by using
the relations for the 1-forms As . Let us consider a 2d oriented
manifold (disk) DR = {(x, y) : x2 + y2 ≤ R2} with the
boundary ∂DR = CR = {(x, y) : x2 + y2 = R2}. CR is
a circle of radius R. It is an 1d oriented manifold with the
orientation (inherited from that of DR) obeying the relation∫
CR

dφ = 2π . Using the Stokes–Cartan theorem we get

∫

DR

Fs =
∫

DR

dAs =
∫

CR

As = 4πhs
qs

H
′
s(R

2)

Hs(R2)
R2, (3.18)

s = 1, . . . , n. By using the asymptotic relation (3.8) we find

lim
R→+∞

∫

DR

Fs = 4πhsns
qs

, (3.19)

s = 1, . . . , n, in agreement with (3.11).
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Remark 3 We note (for completeness) that the metric and
scalar fields for our solution with w = +1 and l = n can be
extended to the manifoldR2 ×M2. Indeed, in the coordinates
x, y the metric (2.3) and scalar fields (2.4) read as follows:

g =
( n∏

s=1

H2hs/(D−2)
s

){
dx ⊗ dx + dy ⊗ dy

+ f (−ydx + xdy)2 + g2
}
, (3.20)

ϕa =
n∑

s=1

hsλ
a
s ln Hs, (3.21)

a = 1, . . . , l. Here Hs = Hs(x2 + y2), s = 1, . . . , n, and
f = f (x2 + y2), where

f (z) =
(( n∏

s=1

(Hs(z))
−2hs

)
− 1

)
z−1, (3.22)

for z �= 0 and f (0) = limz→0 f (z) (the limit does exist).
The function f (z) is smooth in the interval (−ε,+∞) for
some ε > 0. Indeed, it is smooth in the interval (0,+∞)

and holomorphic in the domain {z|0 < |z| < ε} for a small
enough ε > 0. Since the limit limz→0 f (z) does exist the
function f (z) is holomorphic in the disc {z||z| < ε} and
hence it is smooth in the interval (−ε,+∞). This implies
that the metric is smooth on the manifold R

2 × M2. (See the
text after Eq. (3.14).) The scalar fields are also smooth on
R

2 × M2.

4 Examples

Here we present fluxbrane polynomials corresponding to the
Lie algebras A1, A2, A3, C2, G2, A1 + A1 and related fluxes.
Here as in [32] we use other parameters ps instead of Ps :

ps = Ps/ns, (4.1)

s = 1, . . . , n.
A1-case. The simplest example occurs in the case of the

Lie algebra A1 = sl(2). Here n1 = 1. We get [3]

H1 = 1 + p1z (4.2)

and

�1 = 4πq−1
1 h1, (4.3)

which is also valid for Melvin’s solution with D = 4 and
h1 = 2.

A2-case. For the Lie algebra A2 = sl(3) with the Cartan
matrix

(Ass′) =
(

2 −1
−1 2

)
(4.4)

we have [3,25,32] n1 = n2 = 2 and

H1 = 1 + 2p1z + p1 p2z
2, (4.5)

H2 = 1 + 2p2z + p1 p2z
2. (4.6)

We get in this case

(�1,�2) = 8πh(q−1
1 , q−1

2 ), (4.7)

where h1 = h2 = h.
A3-case. The polynomials for the A3-case read as follows

[32,33]:

H1 = 1 + 3p1z + 3p1 p2z
2 + p1 p2 p3z

3, (4.8)

H2 = 1 + 4p2z + 3
(
p1 p2 + p2 p3

)
z2

+ 4p1 p2 p3z
3 + p1 p

2
2 p3z

4, (4.9)

H3 = 1 + 3p3z + 3p2 p3z
2 + p1 p2 p3z

3. (4.10)

Here we have (n1, n2, n3) = (3, 4, 3) and

(�1,�2,�3) = 4πh(3q−1
1 , 4q−1

2 , 3q−1
3 ) (4.11)

with h1 = h2 = h3 = h.
C2-case. For the Lie algebra C2 = so(5) with the Cartan

matrix

(Ass′) =
(

2 −1
−2 2

)
(4.12)

we get n1 = 3 and n2 = 4. For C2-polynomials we obtain
[25,32]

H1 = 1 + 3p1z + 3p1 p2z
2 + p2

1 p2z
3, (4.13)

H2 = 1 + 4p2z + 6p1 p2z
2 + 4p2

1 p2z
3 + p2

1 p
2
2z

4. (4.14)

In this case we find

(�1,�2) = 4π(3h1q
−1
1 , 4h2q

−1
2 ) (4.15)

where h1 = 2h2.
G2-case. For the Lie algebra G2 with the Cartan matrix

(Ass′) =
(

2 −1
−3 2

)
(4.16)
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we get n1 = 6 and n2 = 10. In this case the fluxbrane
polynomials read [25,32]

H1 = 1 + 6p1z + 15p1 p2z
2 + 20p2

1 p2z
3

+ 15p3
1 p2z

4 + 6p3
1 p

2
2z

5 + p4
1 p

2
2z

6, (4.17)

H2 = 1 + 10p2z + 45p1 p2z
2 + 120p2

1 p2z
3

+ p2
1 p2(135p1 + 75p2)z

4

+ 252p3
1 p

2
2z

5 + p3
1 p

2
2

(
75p1 + 135p2

)
z6

+ 120p4
1 p

3
2z

7

+ 45p5
1 p

3
2z

8 + 10p6
1 p

3
2z

9 + p6
1 p

4
2z

10. (4.18)

We are led to the relations

(�1,�2) = 4π(6h1q
−1
1 , 10h2q

−1
2 ) (4.19)

where h1 = 3h2.
(A1 + A1)-case. For the semi-simple Lie algebra A1 + A1

we obtain n1 = n2 = 1,

H1 = 1 + p1z, H2 = 1 + p2z, (4.20)

and

(�1,�2) = 4π(q−1
1 h1, q

−1
2 h2), (4.21)

where h1 and h2 are independent, as well as the quantities
q1�

1 and q2�
2.

5 Conclusions

Here we have considered a multidimensional generaliza-
tion of Melvin’s solution corresponding to a simple finite-
dimensional Lie algebra G. We have assumed that the solu-
tion is governed by a set of n fluxbrane polynomials Hs(z),
s = 1, . . . , n. These polynomials define special solutions to
open Toda chain equations corresponding to the Lie algebra
G.

The polynomials Hs(z) depend also upon parameters qs ,
which are coinciding for D = 4 (up to a sign) with the values
of colored magnetic fields on the axis of symmetry.

We have calculated 2d flux integrals �s = ∫
Fs , s =

1, . . . , n. Any flux �s depends only upon one parame-
ter qs , while the integrand Fs depends upon all parame-
ters q1, . . . , qn . The relation for flux integrals (3.11) is also
valid when the matrix (Ass′) is a Cartan matrix of a finite-
dimensional semi-simple Lie algebra G.

Here we have considered examples of polynomials and
fluxes for the Lie algebras A1, A2, A3, C2, G2 and A1 + A1.
The approach of this paper will be used for a calculation of
certain flux integrals for forms Fs of arbitrary ranks corre-
sponding to certain fluxbrane solutions (of electric type by

p-brane notation or magnetic type by fluxbrane classifica-
tion1) governed by fluxbrane polynomials [38].

An open problem is to find the fluxes for the solutions
which are related to infinite-dimensional Lorentzian Kac–
Moody algebras, e.g. hyperbolic ones [39,40]. In this case
one should deal with phantom scalar fields in the model (2.1)
and non-polynomial solutions to Eqs. (2.6). Another possi-
bility is to study the convergence of flux integrals for non-
polynomial solutions for moduli functions corresponding to
non-Cartan matrices (Ass′) (e.g. for the model with two 2-
forms from Ref. [41]).
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