Regular Article - Theoretical Physics

On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra

V. D. Ivashchuk^{1,2,a}

¹ Center for Gravitation and Fundamental Metrology, VNIIMS, 46 Ozyornaya Str., Moscow 119361, Russia

² Institute of Gravitation and Cosmology, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow 117198. Russia

Received: 27 June 2017 / Accepted: 12 September 2017 / Published online: 30 September 2017 © The Author(s) 2017. This article is an open access publication

Abstract A generalized Melvin solution for an arbitrary simple finite-dimensional Lie algebra \mathcal{G} is considered. The solution contains a metric, n Abelian 2-forms and n scalar fields, where *n* is the rank of \mathcal{G} . It is governed by a set of *n* moduli functions $H_{s}(z)$ obeying *n* ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomialsthe so-called fluxbrane polynomials. These polynomials depend upon integration constants q_s , s = 1, ..., n. In the case when the conjecture on the polynomial structure for the Lie algebra \mathcal{G} is satisfied, it is proved that 2-form flux integrals Φ^s over a proper 2d submanifold are finite and obey the relations $q_s \Phi^s = 4\pi n_s h_s$, where the $h_s > 0$ are certain constants (related to dilatonic coupling vectors) and the n_s are powers of the polynomials, which are components of a twice dual Weyl vector in the basis of simple (co-)roots, $s = 1, \ldots, n$. The main relations of the paper are valid for a solution corresponding to a finite-dimensional semi-simple Lie algebra \mathcal{G} . Examples of polynomials and fluxes for the Lie algebras A_1 , A_2 , A_3 , C_2 , G_2 and $A_1 + A_1$ are presented.

1 Introduction

In this paper we start with a generalization of a Melvin solution [1], which was presented earlier in Ref. [2]. It appears in the model which contains a metric, n Abelian 2-forms and $l \ge n$ scalar fields. This solution is governed by a certain nondegenerate (quasi-Cartan) matrix $(A_{ss'})$, s, s' = 1, ..., n. It is a special case of the so-called generalized fluxbrane solutions from Ref. [3]. For fluxbrane solutions see Refs. [4–28] and the references therein. The appearance of fluxbrane solutions was motivated by superstring/M theory.

The generalized fluxbrane solutions from Ref. [3] are governed by moduli functions, $H_{s}(z) > 0$, defined on the interval $(0, +\infty)$, where $z = \rho^2$ and ρ is a radial variable. These functions obey a set of n non-linear differential master equations governed by the matrix $(A_{ss'})$, equivalent to Toda-like equations, with the following boundary conditions imposed: $H_s(+0) = 1, s = 1, \ldots, n.$

In this paper we assume that $(A_{ss'})$ is a Cartan matrix for some simple finite-dimensional Lie algebra \mathcal{G} of rank n $(A_{ss} = 2 \text{ for all } s)$. According to a conjecture suggested in Ref. [3], the solutions to the master equations with the boundary conditions imposed are polynomials:

$$H_s(z) = 1 + \sum_{k=1}^{n_s} P_s^{(k)} z^k,$$
(1.1)

where the $P_s^{(k)}$ are constants. Here $P_s^{(n_s)} \neq 0$ and

$$n_s = 2\sum_{s'=1}^n A^{ss'},$$
(1.2)

where we denote $(A^{ss'}) = (A_{ss'})^{-1}$. The integers n_s are components of a twice dual Weyl vector in the basis of simple (co-)roots [29].

The set of fluxbrane polynomials H_s defines a special solution to open Toda chain equations [30,31] corresponding to a simple finite-dimensional Lie algebra \mathcal{G} [32]. In Refs. [2,33] a program (in Maple) for the calculation of these polynomials for the classical series of Lie algebras (A-, B-, C- and D-series) was suggested. It was pointed out in Ref. [3] that the conjecture on the polynomial structure of $H_s(z)$ is valid for Lie algebras of the A- and C-series. In Ref. [34] the conjecture from Ref. [3] was verified for the Lie algebra E_6 and certain duality relations for six E_6 -polynomials were proved. In Sect. 2 we present the generalized Melvin solution from

^ae-mail: ivashchuk@mail.ru

Ref. [2]. In Sect. 3 we deal with the generalized Melvin solution for an arbitrary simple finite-dimensional Lie algebra \mathcal{G} . Here we calculate 2-form flux integrals $\Phi^s = \int_{M_*} F^s$, where F^s are 2-forms and M_* is a certain 2*d* submanifold. These integrals (fluxes) are finite when moduli functions are polynomials. In Sect. 3 we consider examples of fluxbrane polynomials and fluxes for the Lie algebras: A_1, A_2, A_3, C_2, G_2 and $A_1 + A_1$.

2 The solutions

We consider a model governed by the action

$$S = \int d^{D}x \sqrt{|g|} \left\{ R[g] - h_{\alpha\beta} g^{MN} \partial_{M} \varphi^{\alpha} \partial_{N} \varphi^{\beta} - \frac{1}{2} \sum_{s=1}^{n} \exp[2\lambda_{s}(\varphi)] (F^{s})^{2} \right\}$$
(2.1)

where $g = g_{MN}(x)dx^M \otimes dx^N$ is a metric, $\varphi = (\varphi^{\alpha}) \in \mathbb{R}^l$ is a set of scalar fields, $(h_{\alpha\beta})$ is a constant symmetric nondegenerate $l \times l$ matrix $(l \in \mathbb{N})$, $F^s = dA^s = \frac{1}{2}F^s_{MN}dx^M \wedge dx^N$ is a 2-form, λ_s is a 1-form on \mathbb{R}^l : $\lambda_s(\varphi) = \lambda_{s\alpha}\varphi^{\alpha}$, $s = 1, \ldots, n$; $\alpha = 1, \ldots, l$. Here $(\lambda_{s\alpha})$, $s = 1, \ldots, n$, are dilatonic coupling vectors. In (2.1) we denote $|g| = |\det(g_{MN})|$, $(F^s)^2 = F^s_{M_1M_2}F^s_{N_1N_2}g^{M_1N_1}g^{M_2N_2}$, $s = 1, \ldots, n$.

Here we start with a family of exact solutions to field equations corresponding to the action (2.1) and depending on one variable ρ . The solutions are defined on the manifold

$$M = (0, +\infty) \times M_1 \times M_2, \tag{2.2}$$

where M_1 is a one-dimensional manifold (say S^1 or \mathbb{R}) and M_2 is a (D-2)-dimensional Ricci-flat manifold. The solution reads [2]

$$g = \left(\prod_{s=1}^{n} H_s^{2h_s/(D-2)}\right) \left\{ w d\rho \otimes d\rho + \left(\prod_{s=1}^{n} H_s^{-2h_s}\right) \rho^2 d\phi \otimes d\phi + g^2 \right\},$$
(2.3)

$$\exp(\varphi^{\alpha}) = \prod_{s=1}^{n} H_s^{h_s \lambda_s^{\alpha}}, \qquad (2.4)$$

$$F^{s} = q_{s} \left(\prod_{s'=1}^{n} H_{s'}^{-A_{ss'}} \right) \rho \mathrm{d}\rho \wedge \mathrm{d}\phi, \qquad (2.5)$$

 $s = 1, ..., n; \alpha = 1, ..., l$, where $w = \pm 1, g^1 = d\phi \otimes d\phi$ is a metric on M_1 and g^2 is a Ricci-flat metric on M_2 . Here $q_s \neq 0$ are integration constants, $q_s = -Q_s$ in the notations of Ref. [2], s = 1, ..., n.

The functions $H_s(z) > 0$, $z = \rho^2$, obey the master equations

$$\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{z}{H_s}\frac{\mathrm{d}}{\mathrm{d}z}H_s\right) = P_s \prod_{s'=1}^n H_{s'}^{-A_{ss'}},\tag{2.6}$$

with the following boundary conditions:

$$H_s(+0) = 1,$$
 (2.7)

where

$$P_s = \frac{1}{4} K_s q_s^2, (2.8)$$

s = 1, ..., n. The boundary condition (2.7) guarantees the absence of a conic singularity [in the metric (2.3)] for $\rho = +0$.

The parameters h_s satisfy the relations

$$h_s = K_s^{-1}, \quad K_s = B_{ss} > 0,$$
 (2.9)

where

$$B_{ss'} \equiv 1 + \frac{1}{2-D} + \lambda_{s\alpha} \lambda_{s'\beta} h^{\alpha\beta}, \qquad (2.10)$$

s, s' = 1, ..., n, with $(h^{\alpha\beta}) = (h_{\alpha\beta})^{-1}$. In the relations above we denote $\lambda_s^{\alpha} = h^{\alpha\beta}\lambda_{s\beta}$ and

$$(A_{ss'}) = (2B_{ss'}/B_{s's'}).$$
(2.11)

The latter is the so-called quasi-Cartan matrix.

We note that the constants $B_{ss'}$ and $K_s = B_{ss}$ have a certain mathematical sense. They are related to scalar products of certain vectors U^s (brane vectors, or U-vectors), which belong to a certain linear space ("truncated target space", for our problem it has dimension l + 2), i.e. $B_{ss'} = (U^s, U^{s'})$ and $K_s = (U^s, U^s)$ [35–37]. The scalar products of such a type are of physical significance, since they appear for various solutions with branes, e.g. black branes, S-branes, fluxbranes etc. Several physical parameters in multidimensional models with branes, e.g. the Hawking-like temperatures and the entropies of black holes and branes, PPN parameters, Hubble-like parameters, fluxes etc., contain such scalar products; see [36,37] and Sect. 3 of this paper. The relation (2.11) defines generalized intersection rules for branes which were suggested in [35]. The constants K_s are invariants of dimensional reduction. It is well known, see [37] and the references therein, that $K_s = 2$ for branes in numerous supergravity models, e.g. in dimensions D = 10, 11.

It may be shown that if the matrix $(h_{\alpha\beta})$ has an Euclidean signature and $l \ge n$, and $(A_{ss'})$ is a Cartan matrix for a simple Lie algebra \mathcal{G} of rank *n*, there exists a set of co-vectors $\lambda_1, \ldots, \lambda_n$ obeying (2.11) (for l = n see Remark 1 in the next section). Thus the solution is valid at least when $l \ge n$ and the matrix $(h_{\alpha\beta})$ is positive-definite.

The solution under consideration is a special case of the fluxbrane (for w = +1, $M_1 = S^1$) and S-brane (w = -1) solutions from [3] and [25], respectively.

If w = +1 and the (Ricci-flat) metric g^2 has a pseudo-Euclidean signature, we get a multidimensional generalization of Melvin's solution [1].

In our notations Melvin's solution (without scalar field) corresponds to D = 4, n = 1, l = 0, $M_1 = S^1$ ($0 < \phi < 2\pi$), $M_2 = \mathbb{R}^2$, $g^2 = -dt \otimes dt + dx \otimes dx$ and $\mathcal{G} = A_1$. For w = -1 and g^2 of Euclidean signature we obtain a

For w = -1 and g^2 of Euclidean signature we obtain a cosmological solution with a horizon (as $\rho = +0$) if $M_1 = \mathbb{R}$ $(-\infty < \phi < +\infty)$.

3 Flux integrals for a simple finite-dimensional Lie algebra

Here we deal with the solution which corresponds to a simple finite-dimensional Lie algebra \mathcal{G} , i.e. the matrix $A = (A_{ss'})$ is coinciding with the Cartan matrix of this Lie algebra. We put also n = l, w = +1 and $M_1 = S^1$, $h_{\alpha\beta} = \delta_{\alpha\beta}$ and denote $(\lambda_{sa}) = (\lambda_s^a) = \lambda_s$, s = 1, ..., n.

Due to (2.9)–(2.11) we get

$$K_s = \frac{D-3}{D-2} + \lambda_s^2, \tag{3.1}$$

 $h_s = K_s^{-1}$, and

$$\boldsymbol{\lambda}_{s}\boldsymbol{\lambda}_{l} = \frac{1}{2}K_{l}A_{sl} - \frac{D-3}{D-2} \equiv \Gamma_{sl}, \qquad (3.2)$$

s, l = 1, ..., n. [Equation (3.1) is a special case of (3.2)]. It follows from (2.9)–(2.11) that

$$\frac{h_i}{h_j} = \frac{K_j}{K_i} = \frac{B_{jj}}{B_{ii}} = \frac{B_{ji}}{B_{ii}} \frac{B_{jj}}{B_{ij}} = \frac{A_{ji}}{A_{ij}}$$
(3.3)

for any $i \neq j$ obeying $A_{ij}, A_{ji} \neq 0$; i, j = 1, ..., n. It may be readily shown from (3.3) that the ratios $\frac{h_i}{h_j} = \frac{K_j}{K_i}$ are fixed numbers for any given Cartan matrix (A_{ij}) of a simple (finite-dimensional) Lie algebra \mathcal{G} . (This follows from (3.3) and the connectedness of the Dynkin diagram of a simple Lie algebra.) The ratios (3.3) may be written as follows:

$$\frac{h_i}{h_j} = \frac{K_j}{K_i} = \frac{r_j}{r_i}$$
(3.4)

 $i \neq j$, where $r_i = (\alpha_i, \alpha_i)$ is the length squared of a simple root α_i corresponding to the Lie algebra \mathcal{G} . Here we use the notations $A_{ij} = 2(\alpha_i, \alpha_j)/(\alpha_j, \alpha_j)$; i, j = 1, ..., n. Equation (3.4) implies

$$K_i = \frac{1}{2} K r_i, \tag{3.5}$$

i = 1, ..., n, where K > 0. (For simply laced (A, D, E)Lie algebras all r_i are equal.)

Remark 1 For large enough *K* in (3.5) there exist vectors λ_s obeying (3.2) [and hence (3.1)]. Indeed, the matrix (Γ_{sl}) is positive-definite if $K > K_*$, where K_* is some positive number. Hence there exists a matrix Λ , such that $\Lambda^T \Lambda = \Gamma$. We put (Λ_{as}) = (λ_s^a) and get the set of vectors obeying (3.2).

Now let us consider the oriented 2-dimensional manifold $M_* = (0, +\infty) \times S^1$. The flux integrals

$$\Phi^{s} = \int_{M_{*}} F^{s} = \int_{0}^{+\infty} \mathrm{d}\rho \int_{0}^{2\pi} \mathrm{d}\phi \ \rho \mathcal{B}^{s}(\rho^{2})$$
$$= 2\pi \int_{0}^{+\infty} \mathrm{d}\rho \ \rho \mathcal{B}^{s}(\rho^{2}), \qquad (3.6)$$

where

$$\mathcal{B}^{s}(\rho^{2}) = q_{s} \prod_{l=1}^{n} (H_{l}(\rho^{2}))^{-A_{sl}}, \qquad (3.7)$$

are convergent for all *s*, if the conjecture for the Lie algebra \mathcal{G} (on polynomial structure of moduli functions H_s) is obeyed for the Lie algebra \mathcal{G} under consideration.

Indeed, due to the polynomial assumption (1.1) we have

$$H_s(\rho^2) \sim C_s \rho^{2n_s}, \quad C_s = P_s^{(n_s)},$$
 (3.8)

as $\rho \to +\infty$; s = 1, ..., n. From (3.7), (3.8) and the equality $\sum_{l=1}^{n} A_{sl}n_l = 2$, following from (1.2), we get

$$\mathcal{B}^{s}(\rho^{2}) \sim q_{s}C^{s}\rho^{-4}, \quad C^{s} = \prod_{l=1}^{n} C_{l}^{-A_{sl}},$$
(3.9)

and hence the integral (3.6) is convergent for any s = 1, ..., n.

By using the master equations (2.6) we obtain

$$\int_{0}^{+\infty} d\rho \rho \mathcal{B}^{s}(\rho^{2}) = q_{s} P_{s}^{-1} \frac{1}{2} \int_{0}^{+\infty} dz \frac{d}{dz} \left(\frac{z}{H_{s}} \frac{d}{dz} H_{s} \right)$$
$$= \frac{1}{2} q_{s} P_{s}^{-1} \lim_{z \to +\infty} \left(\frac{z}{H_{s}} \frac{d}{dz} H_{s} \right)$$
$$= \frac{1}{2} n_{s} q_{s} P_{s}^{-1}, \qquad (3.10)$$

which implies [see (2.8)]

$$\Phi^s = 4\pi n_s q_s^{-1} h_s, \tag{3.11}$$

 $s=1,\ldots,n.$

Thus, any flux Φ^s depends upon one integration constant $q_s \neq 0$, while the integrand form F^s depends upon all constants: q_1, \ldots, q_n .

We note that for D = 4 and $g^2 = -dt \otimes dt + dx \otimes dx$, q_s is coinciding with the value of the *x*-component of the *s*th magnetic field on the axis of symmetry.

In the case of the Gibbons–Maeda dilatonic generalization of the Melvin solution, corresponding to D = 4, n = l = 1and $\mathcal{G} = A_1$ [5], the flux from (3.11) (s = 1) is in agreement with that considered in Ref. [26]. For Melvin's case and some higher dimensional extensions (with $\mathcal{G} = A_1$) see also Ref. [14].

Due to (3.4) the ratios

$$\frac{q_i \Phi^i}{q_j \Phi^j} = \frac{n_i h_i}{n_j h_j} = \frac{n_i r_j}{n_j r_i}$$
(3.12)

are fixed numbers depending upon the Cartan matrix (A_{ij}) of a simple finite-dimensional Lie algebra \mathcal{G} .

Remark 2 The relation for flux integrals (3.11) is also valid when the matrix $(A_{ss'})$ is a Cartan matrix of a finitedimensional semi-simple Lie algebra $\mathcal{G} = \mathcal{G}_1 \oplus \cdots \oplus \mathcal{G}_k$, where $\mathcal{G}_1, \ldots, \mathcal{G}_k$ are simple Lie (sub)algebras. In this case the Cartan matrix (A_{ij}) has a block-diagonal form, i.e. $(A_{ij}) = \text{diag}\left(\left(A_{i_1j_1}^{(1)}\right), \ldots, \left(A_{i_kj_k}^{(k)}\right)\right)$, where $\left(A_{i_aj_a}^{(a)}\right)$ is the Cartan matrix of the Lie algebra \mathcal{G}_a , $a = 1, \ldots, k$. The set of polynomials in this case splits in a direct union of sets of polynomials corresponding to the Lie algebras $\mathcal{G}_1, \ldots, \mathcal{G}_k$. Equations (3.4) and (3.12) are valid, when the indices i, jcorrespond to one *a*th block, $a = 1, \ldots, k$. The quantities $q_i \Phi^i$ and $q_j \Phi^j$ corresponding to different blocks are independent. Equation (3.5) should be replaced by

$$K_{i_a} = \frac{1}{2} K^{(a)} r_{i_a}, \quad K^{(a)} > 0,$$
 (3.13)

for any index i_a corresponding to the *a*th block; a = 1, ..., k. The existence of dilatonic coupling vectors λ_s obeying (3.2) [(and (3.1)] just follows from the arguments of Remark 1, if we put all $K^{(a)} = K > 0$.

The manifold $M_* = (0, +\infty) \times S^1$ is isomorphic to the manifold $\mathbb{R}^2_* = \mathbb{R}^2 \setminus \{0\}$. The solution (2.3)–(2.5) may be understood (or rewritten by pull-backs) as defined on the manifold $\mathbb{R}^2_* \times M_2$, where the coordinates ρ , ϕ are understood as coordinates on \mathbb{R}^2_* . They are not globally defined. One should consider two charts with coordinates ρ , $\phi = \phi_1$ and ρ , $\phi = \phi_2$, where $\rho > 0$, $0 < \phi_1 < 2\pi$ and $-\pi < \phi_2 < \pi$. Here $\exp(i\phi_1) = \exp(i\phi_2)$. In both cases we have $x = \rho \cos \phi$ and $y = \rho \sin \phi$, where x, y are standard coordinates of \mathbb{R}^2 . Using the identity $\rho d\rho \wedge d\phi = dx \wedge dy$ we get

$$F^{s} = q_{s} \prod_{s'=1}^{n} (H_{s'}(x^{2} + y^{2}))^{-A_{ss'}} dx \wedge dy, \qquad (3.14)$$

s = 1, ..., n. The 2-forms (3.14) are well defined on \mathbb{R}^2 . Indeed, due to the conjecture from Ref. [3] any polynomial $H_s(z)$ is a smooth function on $\mathbb{R} = (-\infty, +\infty)$ which obeys $H_s(z) > 0$ for $z \in (-\varepsilon_s, +\infty)$, where $\varepsilon_s > 0$. This is valid due to the conjecture from Ref. [3] $H_s(z) > 0$ for z > 0 and $H_s(+0) = 1$. Thus, $\left(\prod_{s'=1}^n \left(H_{s'}(x^2 + y^2)\right)^{-A_{ss'}}\right)$ is a smooth function since it is a composition of two well-defined smooth functions $\left(\prod_{s'=1}^n \left(H_{s'}(z)\right)^{-A_{ss'}}\right)$ and $z = x^2 + y^2$.

Now we show that there exist 1-forms A^s obeying $F^s = dA^s$ which are globally defined on \mathbb{R}^2 . We start with the open submanifold \mathbb{R}^2_* . The 1-forms

$$A^{s} = \left(\int_{0}^{\rho} \mathrm{d}\bar{\rho}\bar{\rho}\mathcal{B}^{s}(\bar{\rho}^{2})\right)\mathrm{d}\phi = \frac{1}{2}\left(\int_{0}^{\rho^{2}} \mathrm{d}\bar{z}\mathcal{B}^{s}(\bar{z})\right)\mathrm{d}\phi$$
(3.15)

are well defined on \mathbb{R}^2_* (here $d\phi = (x^2 + y^2)^{-1}(-ydx + xdy)$) and obey $F^s = dA^s$, s = 1, ..., n. Using the master equation (2.6) we obtain

$$A^{s} = \frac{q_{s}}{2P_{s}} \left(\int_{0}^{\rho^{2}} \mathrm{d}\bar{z} \frac{\mathrm{d}}{\mathrm{d}\bar{z}} \left(\frac{\bar{z}}{H_{s}(\bar{z})} \frac{\mathrm{d}}{\mathrm{d}\bar{z}} H_{s}(\bar{z}) \right) \right) \mathrm{d}\phi$$
$$= \frac{2h_{s}}{q_{s}} \frac{H_{s}'(\rho^{2})}{H_{s}(\rho^{2})} \rho^{2} \mathrm{d}\phi, \qquad (3.16)$$

s = 1, ..., n. Here $H'_s = \frac{d}{dz}H_s$. Due to the relation $\rho^2 d\phi = -ydx + xdy$, we obtain

$$A^{s} = \frac{2h_{s}}{q_{s}} \frac{H'_{s}(x^{2} + y^{2})}{H_{s}(x^{2} + y^{2})} (-ydx + xdy), \qquad (3.17)$$

s = 1, ..., n. The 1-forms (3.17) are well-defined smooth 1-forms on \mathbb{R}^2 .

We note that in the case of the Gibbons–Maeda solution [5] corresponding to D = 4, n = l = 1 and $\mathcal{G} = A_1$ the gauge potential from (3.16) coincides (up to notations) with that considered in Ref. [7].

Now we verify our result (3.11) for flux integrals by using the relations for the 1-forms A^s . Let us consider a 2*d* oriented manifold (disk) $D_R = \{(x, y) : x^2 + y^2 \le R^2\}$ with the boundary $\partial D_R = C_R = \{(x, y) : x^2 + y^2 = R^2\}$. C_R is a circle of radius *R*. It is an 1*d* oriented manifold with the orientation (inherited from that of D_R) obeying the relation $\int_{C_R} d\phi = 2\pi$. Using the Stokes–Cartan theorem we get

$$\int_{D_R} F^s = \int_{D_R} dA^s = \int_{C_R} A^s = \frac{4\pi h_s}{q_s} \frac{H'_s(R^2)}{H_s(R^2)} R^2, \quad (3.18)$$

s = 1, ..., n. By using the asymptotic relation (3.8) we find

$$\lim_{R \to +\infty} \int_{D_R} F^s = \frac{4\pi h_s n_s}{q_s},\tag{3.19}$$

 $s = 1, \ldots, n$, in agreement with (3.11).

Remark 3 We note (for completeness) that the metric and scalar fields for our solution with w = +1 and l = n can be extended to the manifold $\mathbb{R}^2 \times M_2$. Indeed, in the coordinates *x*, *y* the metric (2.3) and scalar fields (2.4) read as follows:

$$g = \left(\prod_{s=1}^{n} H_s^{2h_s/(D-2)}\right) \left\{ dx \otimes dx + dy \otimes dy + f(-ydx + xdy)^2 + g^2 \right\},$$
(3.20)

$$\varphi^a = \sum_{s=1}^n h_s \lambda_s^a \ln H_s, \qquad (3.21)$$

a = 1, ..., l. Here $H_s = H_s(x^2 + y^2)$, s = 1, ..., n, and $f = f(x^2 + y^2)$, where

$$f(z) = \left(\left(\prod_{s=1}^{n} (H_s(z))^{-2h_s} \right) - 1 \right) z^{-1},$$
(3.22)

for $z \neq 0$ and $f(0) = \lim_{z\to 0} f(z)$ (the limit does exist). The function f(z) is smooth in the interval $(-\varepsilon, +\infty)$ for some $\varepsilon > 0$. Indeed, it is smooth in the interval $(0, +\infty)$ and holomorphic in the domain $\{z|0 < |z| < \varepsilon\}$ for a small enough $\varepsilon > 0$. Since the limit $\lim_{z\to 0} f(z)$ does exist the function f(z) is holomorphic in the disc $\{z||z| < \varepsilon\}$ and hence it is smooth in the interval $(-\varepsilon, +\infty)$. This implies that the metric is smooth on the manifold $\mathbb{R}^2 \times M_2$. (See the text after Eq. (3.14).) The scalar fields are also smooth on $\mathbb{R}^2 \times M_2$.

4 Examples

Here we present fluxbrane polynomials corresponding to the Lie algebras A_1 , A_2 , A_3 , C_2 , G_2 , $A_1 + A_1$ and related fluxes. Here as in [32] we use other parameters p_s instead of P_s :

$$p_s = P_s/n_s, \tag{4.1}$$

 $s=1,\ldots,n.$

 A_1 -case. The simplest example occurs in the case of the Lie algebra $A_1 = sl(2)$. Here $n_1 = 1$. We get [3]

$$H_1 = 1 + p_1 z \tag{4.2}$$

and

$$\Phi^1 = 4\pi q_1^{-1} h_1, \tag{4.3}$$

which is also valid for Melvin's solution with D = 4 and $h_1 = 2$.

 A_2 -case. For the Lie algebra $A_2 = sl(3)$ with the Cartan matrix

$$(A_{ss'}) = \begin{pmatrix} 2 & -1\\ -1 & 2 \end{pmatrix}$$
(4.4)

we have [3, 25, 32] $n_1 = n_2 = 2$ and

$$H_1 = 1 + 2p_1 z + p_1 p_2 z^2, (4.5)$$

$$H_2 = 1 + 2p_2 z + p_1 p_2 z^2. ag{4.6}$$

We get in this case

$$(\Phi^1, \Phi^2) = 8\pi h(q_1^{-1}, q_2^{-1}), \tag{4.7}$$

where $h_1 = h_2 = h$.

 A_3 -case. The polynomials for the A_3 -case read as follows [32,33]:

$$H_{1} = 1 + 3p_{1}z + 3p_{1}p_{2}z^{2} + p_{1}p_{2}p_{3}z^{3},$$

$$H_{2} = 1 + 4p_{2}z + 3(p_{1}p_{2} + p_{2}p_{3}z^{2})z^{2}$$
(4.8)

$$H_3 = 1 + 3p_3z + 3p_2p_3z^2 + p_1p_2p_3z^3.$$
(4.10)

Here we have $(n_1, n_2, n_3) = (3, 4, 3)$ and

$$(\Phi^1, \Phi^2, \Phi^3) = 4\pi h(3q_1^{-1}, 4q_2^{-1}, 3q_3^{-1})$$
(4.11)

with $h_1 = h_2 = h_3 = h$.

 C_2 -case. For the Lie algebra $C_2 = so(5)$ with the Cartan matrix

$$(A_{ss'}) = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$$
(4.12)

we get $n_1 = 3$ and $n_2 = 4$. For C_2 -polynomials we obtain [25,32]

$$H_1 = 1 + 3p_1z + 3p_1p_2z^2 + p_1^2p_2z^3, (4.13)$$

$$H_2 = 1 + 4p_2z + 6p_1p_2z^2 + 4p_1^2p_2z^3 + p_1^2p_2^2z^4.$$
(4.14)

In this case we find

$$(\Phi^1, \Phi^2) = 4\pi (3h_1q_1^{-1}, 4h_2q_2^{-1})$$
(4.15)

where $h_1 = 2h_2$.

 G_2 -case. For the Lie algebra G_2 with the Cartan matrix

$$(A_{ss'}) = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$$
(4.16)

we get $n_1 = 6$ and $n_2 = 10$. In this case the fluxbrane polynomials read [25,32]

$$H_{1} = 1 + 6p_{1}z + 15p_{1}p_{2}z^{2} + 20p_{1}^{2}p_{2}z^{3} + 15p_{1}^{3}p_{2}z^{4} + 6p_{1}^{3}p_{2}^{2}z^{5} + p_{1}^{4}p_{2}^{2}z^{6},$$
(4.17)
$$H_{2} = 1 + 10p_{2}z + 45p_{1}p_{2}z^{2} + 120p_{2}^{2}p_{2}z^{3}$$

$$+ p_1^2 p_2 (135 p_1 + 75 p_2) z^4 + 252 p_1^3 p_2^2 z^5 + p_1^3 p_2^2 (75 p_1 + 135 p_2) z^6 + 120 p_1^4 p_2^3 z^7 + 45 p_1^5 p_2^3 z^8 + 10 p_1^6 p_2^3 z^9 + p_1^6 p_2^4 z^{10}.$$

$$(4.18)$$

We are led to the relations

$$(\Phi^1, \Phi^2) = 4\pi (6h_1 q_1^{-1}, 10h_2 q_2^{-1})$$
(4.19)

where $h_1 = 3h_2$.

 $(A_1 + A_1)$ -case. For the semi-simple Lie algebra $A_1 + A_1$ we obtain $n_1 = n_2 = 1$,

$$H_1 = 1 + p_1 z, \quad H_2 = 1 + p_2 z,$$
 (4.20)

and

$$(\Phi^1, \Phi^2) = 4\pi (q_1^{-1}h_1, q_2^{-1}h_2), \qquad (4.21)$$

where h_1 and h_2 are independent, as well as the quantities $q_1 \Phi^1$ and $q_2 \Phi^2$.

5 Conclusions

Here we have considered a multidimensional generalization of Melvin's solution corresponding to a simple finitedimensional Lie algebra \mathcal{G} . We have assumed that the solution is governed by a set of *n* fluxbrane polynomials $H_s(z)$, s = 1, ..., n. These polynomials define special solutions to open Toda chain equations corresponding to the Lie algebra \mathcal{G} .

The polynomials $H_s(z)$ depend also upon parameters q_s , which are coinciding for D = 4 (up to a sign) with the values of colored magnetic fields on the axis of symmetry.

We have calculated 2*d* flux integrals $\Phi^s = \int F^s$, s = 1, ..., n. Any flux Φ^s depends only upon one parameter q_s , while the integrand F^s depends upon all parameters $q_1, ..., q_n$. The relation for flux integrals (3.11) is also valid when the matrix $(A_{ss'})$ is a Cartan matrix of a finite-dimensional semi-simple Lie algebra \mathcal{G} .

Here we have considered examples of polynomials and fluxes for the Lie algebras A_1 , A_2 , A_3 , C_2 , G_2 and $A_1 + A_1$. The approach of this paper will be used for a calculation of certain flux integrals for forms F^s of arbitrary ranks corresponding to certain fluxbrane solutions (of electric type by *p*-brane notation or magnetic type by fluxbrane classification¹) governed by fluxbrane polynomials [38].

An open problem is to find the fluxes for the solutions which are related to infinite-dimensional Lorentzian Kac–Moody algebras, e.g. hyperbolic ones [39,40]. In this case one should deal with phantom scalar fields in the model (2.1) and non-polynomial solutions to Eqs. (2.6). Another possibility is to study the convergence of flux integrals for non-polynomial solutions for moduli functions corresponding to non-Cartan matrices ($A_{ss'}$) (e.g. for the model with two 2-forms from Ref. [41]).

Acknowledgements This work was supported in part by the Russian Foundation for Basic Research Grant No. 16-02-00602 and by the Ministry of Education of the Russian Federation (the Agreement Number 02.a03.21.0008 of 24 June 2016).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP³.

References

- M.A. Melvin, Pure magnetic and electric geons. Phys. Lett. 8, 65 (1964)
- A.A. Golubtsova, V.D. Ivashchuk, On multidimensional analogs of Melvin's solution for classical series of Lie algebras. Grav. Cosmol. 15(2), 144–147 (2009). arXiv:1009.3667
- V.D. Ivashchuk, Composite fluxbranes with general intersections. Class. Quantum Grav. 19, 3033–3048 (2002). arXiv:hep-th/0202022
- G.W. Gibbons, D.L. Wiltshire, Spacetime as a membrane in higher dimensions. Nucl. Phys. B 287, 717–742 (1987). arXiv:hep-th/0109093
- G. Gibbons, K. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields. Nucl. Phys. B 298, 741– 775 (1988)
- F. Dowker, J.P. Gauntlett, D.A. Kastor, J. Traschen, Pair creation of dilaton black holes. Phys. Rev. D 49, 2909–2917 (1994). arXiv:hep-th/9309075
- F. Dowker, J.P. Gauntlett, S.B. Giddings, G.T. Horowitz, On pair creation of extremal black holes and Kaluza-Klein monopoles. Phys. Rev. D 50, 2662 (1994). arXiv:hep-th/9312172
- F. Dowker, J.P. Gauntlett, G.W. Gibbons, G.T. Horowitz, The decay of magnetic fields in Kaluza-Klein theory. Phys. Rev. D 52, 6929 (1995). arXiv:hep-th/9507143
- H.F. Dowker, J.P. Gauntlett, G.W. Gibbons, G.T. Horowitz, Nucleation of *P*-branes and fundamental strings. Phys. Rev. D 53, 7115 (1996). arXiv:hep-th/9512154
- D.V. Gal'tsov, O.A. Rytchkov, Generating branes via sigma models. Phys. Rev. D 58, 122001 (1998). arXiv:hep-th/9801180

¹ We remind the reader that an electric (magnetic) *p*-brane corresponds to a magnetic (electric) F(D - 3 - p) fluxbrane; see [3] and the references therein.

- C.-M. Chen, D.V. Gal'tsov, S.A. Sharakin, Intersecting *M*-fluxbranes. Grav. Cosmol. 5(17), 45-48 (1999); arXiv:hep-th/9908132
- M.S. Costa, M. Gutperle, The Kaluza-Klein Melvin solution in M-theory. JHEP 0103, 027 (2001). arXiv:hep-th/0012072
- P.M. Saffin, Gravitating fluxbranes. Phys. Rev. D 64, 024014 (2001). arXiv:gr-qc/0104014
- M. Gutperle, A. Strominger, Fluxbranes in string theory. JHEP 0106, 035 (2001). arXiv:hep-th/0104136
- M.S. Costa, C.A. Herdeiro, L. Cornalba, Flux-branes and the dielectric effect in string theory. Nucl. Phys. B 619(1), 155–190 (2001). arXiv:hep-th/0105023
- R. Emparan, Tubular branes in fluxbranes. Nucl. Phys. B 610, 169 (2001). arXiv:hep-th/0105062
- P.M. Saffin, Fluxbranes from p-branes. Phys. Rev. D 64, 104008 (2001). arXiv:hep-th/0105220
- J.M. Figueroa-O'Farrill, G. Papadopoulos, Homogeneous fluxes, branes and a maximally supersymmetric solution of *M*-theory. JHEP 0106, 036 (2001). arXiv:hep-th/0105308
- D. Brecher, P.M. Saffin, A note on the supergravity description of dielectric branes. Nucl. Phys. B 613, 218 (2001). arXiv:hep-th/0106206
- J.G. Russo, A.A. Tseytlin, Supersymmetric fluxbrane intersections and closed string tachyons. JHEP 11, 065 (2001). arXiv:hep-th/0110107
- C.M. Chen, D.V. Gal'tsov, P.M. Saffin, Supergravity fluxbranes in various dimensions. Phys. Rev. D 65, 084004 (2002). arXiv:hep-th/0110164
- 22. J. Figueroa-O'Farrill and J. Simon, Generalized supersymmetric fluxbranes, JHEP **12**, 011 (2001). arXiv:hep-th/0110170
- R. Empharan, M. Gutperler, From p-branes to fluxbranes and back. JHEP 0112, 023 (2001). arXiv:hep-th/0111177
- V.D. Ivashchuk, V.N. Melnikov, Multidimensional gravitational models: Fluxbrane and S-brane solutions with polynomials. AIP Conf. Proc. 910, 411–422 (2007)
- I.S. Goncharenko, V. D. Ivashchuk, V.N. Melnikov, Fluxbrane and S-brane solutions with polynomials related to rank-2 Lie algebras, Grav. Cosmol. 13(52), 262–266 (2007); arXiv:math-ph/0612079
- B. Kleihaus, J. Kunz, E. Radu, Nonabelian solutions in a Melvin magnetic universe. Phys. Lett. B 660, 386–391 (2008)
- 27. A.A. Golubtsova, V.D. Ivashchuk, Fluxbrane and S-brane solutions related to Lie algebras. Phys. Part. Nucl. **43**(5), 720–722 (2012)

- V.D. Ivashchuk, V.N. Melnikov, Multidimensional gravity, flux and black brane solutions governed by polynomials. Grav. Cosmol. 20(3), 182–189 (2014)
- J. Fuchs, C. Schweigert, Symmetries, Lie algebras and representations. A graduate course for physicists (Cambridge University Press, Cambridge, 1997)
- 30. B. Kostant, Adv. in Math. 34, 195 (1979)
- 31. M.A. Olshanetsky, A.M. Perelomov, Invent. Math. 54, 261 (1979)
- V.D. Ivashchuk, Black brane solutions governed by fluxbrane polynomials. J. Geom. Phys. 86, 101–111 (2014)
- A.A. Golubtsova, V.D. Ivashchuk, On calculation of fluxbrane polynomials corresponding to classical series of Lie algebras; arXiv:0804.0757 [nlin.SI]
- 34. S.V. Bolokhov, V.D. Ivashchuk, On generalized Melvin solution for the Lie algebra E_6 , arXiv:1706.06621
- V.D. Ivashchuk, V.N. Melnikov, Multidimensional classical and quantum cosmology with intersecting *p*-Branes. J. Math. Phys. 39, 2866–2889 (1998). arXiv:hep-th/9708157
- V.D. Ivashchuk, V.N. Melnikov, Exact solutions in multidimensional gravity with antisymmetric forms. Class. Quantum Gravity 18, R82–R157 (2001). arXiv:hep-th/0110274
- V.D. Ivashchuk, V.N. Melnikov, On brane solutions related to non-singular Kac-Moody algebras, SIGMA 5, 070, (2009): arXiv:0810.0196
- V.D. Ivashchuk, Flux integrals for fluxbrane solutions governed by polynomials (in preparation)
- V.G. Kac, *Infinite-dimensional Lie Algebras* (Cambridge University Press, Cambridge, 1990)
- M. Henneaux, D. Persson, P. Spindel, Spacelike singularities and hidden symmetries of gravity. Living Rev. Relativ. 11, 1–228 (2008)
- M.E. Abishev, K.A. Boshkayev, V. D. Ivashchuk, Dilatonic dyonlike black hole solutions in the model with two Abelian gauge fields. Eur. Phys. J. C 77, 180 (2017)