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Abstract The role of double space is essential in the new
interpretation of T-duality and consequently in an attempt
to construct M-theory. The case of the open string is miss-
ing in such an approach because until now there has been
no appropriate formulation of open string T-duality. In the
previous paper (Sazdovi¢, From geometry to non-geometry
via T-duality, arXiv:1606.01938, 2017), we showed how to
introduce vector gauge fields AY and A l.D at the end-points of
an open string in order to enable open string invariance under
local gauge transformations of the Kalb—Ramond field and its
T-dual “restricted general coordinate transformations”. We
demonstrated that gauge fields AY and AP are T-dual to each
other. In the present article we prove that all above results can
be interpreted as coordinate permutations in double space.

1 Introduction

It is well known that M-theory unifies all five consistent
superstring theories by a web of T and S dualities. In order to
formulate M-theory we should construct one theory which
contains the initial theory (any of the five consistent ones)
and all corresponding dual ones.

The 2D dimensional double space with the coordinates
ZM — (x*, ¥u) (Which are the coordinates of initial space x*
and its T-dual y,, ) offers many benefits in the interpretation of
T-duality. In fact, in such a space, the T-duality transforma-
tions can be realized simply by exchanging places of some
coordinates x“, along which we performed T-duality and the
corresponding dual coordinates y, [2,3]. It contains the ini-
tial and all corresponding T-dual theories. Realization of such
aprogram for T-duality in the bosonic case has been done: for
a flat background in Ref. [2] and for a weakly curved back-
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ground, with linear dependence on coordinates, in Ref. [3].
We hope that S-duality, which can be understood as a trans-
formation of a dilaton background field, can be successfully
incorporated in such a procedure.

T-duality for superstrings is a non-trivial extension of the
bosonic case. In Ref. [4] we extended such an approach to
type II theories. In fact, doubling all bosonic coordinates
we have unified types IIA and IIB theories. The formulation
of M-theory should include T-dualization along fermionic
variables, also. T-dualization along all fermionic coordinates
in fermionic double space (where we doubled all fermionic
variables) has been considered in Ref. [5].

The remaining step is to extend interpretation of T-duality
in double space (which we earlier proposed for the case of
the closed string) to the case of the open string, also. This
will be done in the present article.

The difference between open and closed string appears at
the open string end-points. Until recently, background fields
along Neumann and Dirichlet directions AY and AP (N and
D denote components with Neumann and Dirichlet boundary
conditions) are treated in a different way [6,7]. The Neumann
vector field has been introduced in the Lagrangian through
the coupling with x“. On the other hand, the Dirichlet vector
field has been introduced as a consistency condition without
contributions to the Lagrangian. In order to realize a double
space formulation in the open string case we should treat
Neumann and Dirichlet vector fields in the same way. This
has recently been done in Ref. [1].

In Ref. [8] it has been shown how to introduce vector
gauge fields Aflv in order that open string retain the symme-
tries of the closed string. Note that according to Ref. [1],
beside the well-known local gauge invariance of the Kalb—
Ramond field we used its T-dual “restricted general coordi-
nate transformations”, which include transformations of the
background fields but do not include transformations of the
coordinates. So, the above interpretation of the T-duality in
double space will confirm the expressions for T-dual closed
string background fields G, and B, (asin Refs. [2,3]) and
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gives the same expressions for T-dual vector fields *A¢, and
*A'y as those obtained in Ref. [1] with Buscher’s procedure.

2 T-duality of the open string

In this section we will introduce some well-known features
of the bosonic string and briefly repeat the main results of
Ref. [1]. We will adapt T-duality to be in compliance with
boundary conditions on the open string end-points.

We will consider vector gauge fields: A,’}' with Neumann
boundary conditions which compensate for the not imple-
mented gauge symmetry of the Kalb—Ramond field at the
open string end-points and AiD with Dirichlet boundary con-
ditions, which compensate for the not implemented restricted
general coordinate transformations at the open string end-
points. We will show that field AiD is T-dual to the Aflv one,
and that the general coordinate transformations are T-dual to
gauge symmetry.

2.1 Closed and open bosonic string

Let us start with the action for the closed bosonic string [8—
10]
1

S =
Lx] 2ol

/z N

1 b
X [Egaﬂle[x] + ﬁBMu[x]]aaxﬂaﬂxu,

= —1). 2.1

It propagates in D-dimensional space-time with a back-
ground defined by the space metric G, and the Kalb-
Ramond field B,,. We denote the string coordinates by
x* (&), w = 0,1,..., D — 1 and the intrinsic world-sheet
metric by g4g. The integration goes over the two-dimensional
world-sheet ¥ with coordinates £% (£0 = 1, &' = o) and o’
is the Regge slope parameter. Since the constant ﬁ appears
in many expressions, from now on we will denote itk = ﬁ

In the conformal gauge go5 = e>/ nyp this action can be
rewritten in terms of light-cone coordinates éi = %(t +o0),
0+ = 0; £ 05 as

S = K/ d?€ 84 x" T 0-x", (2.2)
by
with the following combination of the background fields:

1

Iy, =B = EGW. 2.3)

In the string theory, variation of the action (2.2) with respect
to x* produces not only the equation of motion

49_xM + (I — B )o,x"d_x” =0, 2.4)

@ Springer

but also the boundary conditions

Y0 @)8x" fg—r — v (x)8x" [g—0 = 0, (2.5)

where I' ,’fp is Christoffel symbol and we introduce the useful
variable

58S
Sx'*

YO x) = = k[2Bupi’ — Gpuux"1. (2.6)

From now on, we will denote the boundary of the open string
0%, so that we can rewrite Eq. (2.5) as follows:

YD (x)8x" [y = 0. 2.7)

As a consequence of periodicity, the boundary conditions are
trivially satisfied in the closed string case. In the open string
case there are two different ways to satisfy the boundary con-
ditions. For some coordinates x* (¢ = 0, 1, ..., p) we will
choose the Neumann boundary conditions, when variations
of the string end-points §x“ /35 are arbitrary and for the other
ones, x' (i=p+1,..., D—1),wewill choose the Dirichlet
boundary conditions, when the edges of the string are fixed,
%' /55 = 0. In order to satisfy the Neumann boundary con-
ditions according to (2.5) we should take ya(o) x)/sx = 0.

It s well known that closed string theory is invari-
ant under the following infinitesimal transformations: local
gauge transformations of the Kalb—Ramond field,

daGuy =0, SABuw = Ay — Oy Ay, (2.8)

and general coordinate transformations,

8§GMV =-2 (D;Lgv + Dvéﬂ)a
8e By = —2&° By + 28, (BypEP) — 20, (BpE”). (2.9)

These transformations are connected by T-duality [1,11]. Let
us stress that according to Ref. [1] we are not going to add
transformations of the coordinates to (2.9). So, we will call
these “restricted general coordinate transformations”.

Both of the above symmetries fail at the open string end-
points. In order to restore these symmetries the gauge fields
have to be introduced. To restore local gauge symmetry we
introduce the vector fields AY with Neumann boundary con-
ditions (see Ref. [8]), while to restore restricted general coor-
dinate transformations we introduce the vector fields A lD with
the Dirichlet boundary conditions (see Ref. [1]). Note that as
a consequence of the boundary conditions only parts of these
gauge fields survive.

So, the action for the open bosonic string with the above
boundary conditions is [1]

Sopen[x] :K/ d2§8+x“n+uv87x”+2/c/ dr
z ED)

x (A‘! [x]i — %AP (]G~ y,-“”(x))
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:K/ d2£9, x4y x"
)

+ 2kn*P / dt Ay, [x]18px", (2.10)
X

where following Ref. [1] we introduced the effective vari-
ables Ay, (V) = {A+q(V), A4 (V)} defined as

Ara(V) = AN(V),  Ag(V) = 204,67 VRAP(v),

@2.11)

and for simplicity we assumed that the metric tensor has the
form

o Gw O
G’“_(O Gij)'

We introduced a pair of effective vector fields Ay, =
{Aoy, A1y} instead of the initial one A, = {AY, AP}. So,
we doubled the number of vector fields, but there are two
constraints on the effective vector fields,

A14(V) =0,
Agi(V) = —(BG™,
A1j(V) — Ai(G™'BV).

(2.12)

(2.13)

In the literature A év [x]is known as a massless vector field on
the Dp-brane, while the A l.D [x] are known as massless scalar
oscillations orthogonal to the Dp-brane.

Let us briefly discuss the appearance of two types of vec-
tor fields and see the advantage of each of them. The p + 1-
dimensional Neumann gauge field Aflv is the standard one
and it couples with x¢, as usual. The D — p — 1-dimensional
Dirichlet gauge field AZ.D is a nonstandard one and it cou-

(0)

ples with the term G~/ y; > which contains both i and

x"'. The fields coupled with x’* behave unusually and it is
useful to treat them separately. So, we denote the fields cou-
pled with % by Ao, and that coupled with x"* by A;,. But
in such an approach, instead of one D-dimensional vector
A, = {AY | AP} we have two effective D-dimensional vec-
tors Ay = {Aou, At} This is the source of the constraints
(2.13).

2.2 Choice of background

The space-time equations of motion are a consequence of the
absence of the conformal anomaly. For the closed string case
in the lowest order in the slope parameter «’, it produces [12]

1
ﬂgv = RIUJ - ZBN“:OUBUPU =+ ZDMBUQD = 0’
B _
ﬂ/u) = DpBiv - 28pd>B/:w = O’
1
B® =4(09)° — 4D, 0" ® + — By B

+4mk(D —26)/3 — R = 0. (2.14)

Here B, = 0, By + 0y By, + 9, By is the field strength of
the Kalb-Ramond field By, and R, and D), are the Ricci
tensor and covariant derivative with respect to the space-time
metric.

For the same reason, for the open string case there are addi-
tional space-time equations of motion [13]. In our notation
they take the following form:

1 .
IBa = _EBahabCD + gglhcaclgba + gglbc
1 .
<§BadBdbeB‘c + KngBWa,,fV> =0,

1.
9, @+ G <§B,,‘B,m — K,m;,) =0, (2.15)

ﬂ_l
)

where
Bup = Bap + daAN — ALY, GE = Gup — 4BacGTIBy),
(2.16)

and K", is the extrinsic curvature.
We will consider the simplest solutions of the closed string
part,

D =26,
(2.17)

G, = const, By, = const, & = const,

which satisfy Eq. (2.14). For the open string part (2.15), we
will assume that the vector fields are linear in the coordinates

[1]
| B
APG) = 40— L

_ lF(a)xh,
4
(2.18)

Alllv(x) = Ag 2 ab

so that the corresponding field strengths are constant. The
infinitesimal coefficients F*’ and Fl.(js) are defined as

Fyy) =AY — A, FY =247 +0,AP).
(2.19)

Note that the F a(? is antisymmetric in a, b indices while the
Fl.(;) is symmetric in 7, j indices. Since we are working with
a plane Dp-brane the extrinsic curvature is zero and because
®, B, and G fh are constant, both 8, and B, vanish.

So, our choices of the background fields (2.17) and (2.18)
satisfy all space-time equations of motion.

2.3 Sigma-model T-duality of the open string

The T-dualization procedure of the theory described by the
action (2.10) with the background fields (2.17) and (2.18)
has been performed in Ref. [1]. The T-dualization of the
vector background fields AY and A? is non-trivial because
these fields are coordinate dependent and it is not possible
to apply the standard Buscher procedure [16,17]. Instead,

@ Springer
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the T-dualization procedure of Ref. [15], which works in the
absence of a global symmetry, has been applied.

So, applying the T-dualization procedure along all coor-
dinates, the T-dual action has been obtained:

2
*S[yl = ’L/ a2 a+yueﬁ”a,yv+2;</ dt
2 Js D

2
= %/ d%¢ 3+yu95”8—yu+2/<n“’3/ dr * A (V)dgyp.
P 0
(2.20)

where

2 1
oLy = —;(GEIHiG_l)W —m ¥ ;(GEI)“” 221

and

2
Gy = G =4(BG™' Bluy, 01 = —=(G;' BGH"

(2.22)

are the symmetric and antisymmetric parts of 64", In the
literature, G Ev is known as the open string metric and 6"
as a non-commutative parameter.

The T-dual action (2.20) should have the same form as the
initial one (2.10) but in terms of T-dual fields. So, we can
express the T-dual background fields in terms of the initial
ones,

T = oM, A9 (V) = G AN (V),

*AL(V) = G’”jA?(V). (2.23)
The first relation can be rewritten as
GM = (G B = S0, (2.24)

Note that the T-dual vector background fields do not depend
on y, but on

VE = —c 60"y, + G 5, (2.25)
which is a function of both y,, and its double
Yu = /(dry/’A +doyu). (2.26)

With the help of (2.23) we can find the effective T-dual vector
fields in analogy with Eq. (2.11),

L(V) =21 %G, AL (V) = k 08P A (V),

(V) =*AL(V) =G AP (V). (2.27)
We introduced two effective T-dual vector fields * A4 =
{*Al,* Al'} instead of the initial one *A* = {*A% ,*Al},

but we have two constraints:

@ Springer

FAG(V) =
(V) =o.

—20'B*G™ " AL (V)=2(G 7' B)p AL (V),
(2.28)

The explanation for the two types of vector fields is the
same as that at the end of Sect. 2.1 for the original vec-
tor fields. We will see that effective fields naturally appear
in T-duality transformation laws for the open string (2.34).
In terms of their combinations Ay, = Ag, £ Ay, the T-
duality relations for the vector fields obtain the simple form
*AL =0l Ay, (see (3.12)).

We can define the field strengths of the vector fields rewrit-
ing the interaction term as follows:

Sy = 2Kn°‘ﬂ/ dr Agylx] dgxH :Kf d2E04 M Fpupd_x,
G by
(2.29)
and similarly for the T-dual case. The field strength is simply

defined in terms of effective fields and in the most general
T-dual case that leads to [1]

* TRV __% N—V
F Fat

—eP ol * AR (V) + 0} *A“(V)],

*f{;)” Plog *Ap(V) — 9y *Ag (V)]
(2.30)
where 8} = dga = {agﬂ ay

to the variables yj = {yﬂ = Yu, yﬂ ==y}
Note that beside the standard antisymmetric part *F(, it

} are derivatives with respect

contains the unusual symmetric part *F, (’;;} also. The source
of the last one is the vector field *A’f (which originally has
been introduced as a field coupled with x"#) and derivatives
with respect to y,,.

So, the advantage of introducing effective fields is higher
than the price we paid, the constraints (2.13) and (2.28). Tech-
nically, we can consider them as gauge fixing of some addi-
tional gauge symmetry for effective vector fields.

For the initial and T-dual open strings, the boundary con-
ditions at the string end-points take the form

v V8xt fax =0, *¥(o8yu/ox = 0. 231)

Here y(o) (defined in (2.6) for a closed string) now receives
a new infinitesimal term,

(°>( )= = k[2Bupi’ — Gupx”” — 2A1,A(0)]

Sx/H

= k[2B,%" — Guux”" + 24P A(0)], (2.32)

while for the T-dual theory we have
*, M1 —
Y0 ) = Sy =
"

k[2*B* 'y, —*G*'y, — 2 * A} A(0)]

= k[k0" 3, — (G Y, + 2G5 P AN A(o)],

where A(o) =8(0 — ) — 8(0).
The terms with the vector field A” in (2.32) and A} (2.33)
are irrelevant in the expressions for the actions (2.10) and

(2.33)
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(2.20), because they appear as an infinitesimal of the second
order terms.

2.4 T-duality transformations of the open string

The T-dual transformation laws for the open string, connect-
ing the initial and corresponding T-dual variables, take the
form [1,18]

dext = 101y, £ 40 ALy (V)A(0), (2.34)

O+yu = =204 0+x” £4A4,(x)A(0),
where the symbol = denotes the T-duality relation.

In fact the second transformation (2.34) can be obtained
after T-dualization of the action (2.20). Equations (2.34) are
the inverse. Both transformations differ from the closed string
ones by the infinitesimal term which contains the vector back-
ground fields Ay,

In terms of the covariant derivatives,

Dixl = dext +2(G )" Ay A(0),

Diy, = ey, +20°G7H 0 AL A(0), (2.35)
we can rewrite the transformations (2.34) in the simple form

Dixt = —k0!"Dyy,, Diy, = =2z, Dix". (2.36)

From the first equation (2.34) we can find the T-dual trans-
formation laws for x* and x'*,
B e[y — 441 A0)] + Gy — 440, A(0)]
= —kO" 9, + Gy, + 4% A A(o) (2.37)
X 2= ey, = 4ApA©)] + G Ty — 4ALA©)]
= —k0"y) + Gy, +4* A Ao), (2.38)

and from the second one the inverse transformations become

Vu = =2Byux" + Guox" + 44, A(0),
Y;/L = Guux” —2Byx"" + 4 A0, A(0).

(2.39)
(2.40)

Using the expression for the canonical momentum of the
original and of the T-dual theory

88 .
Ty = o = K[Gppx” = 2Byyx’V 4+ 2A0, A(0)],
OxH
*
= s = KIGE Y — K0y + 2 ATA@)],
Y

(2.41)

we can rewrite the transformations (2.38) and (2.40) in the
canonical form

o x* =k 4 26 A Ao,
7 4 26 Aop A(0) = Ky, (2.42)

This relation connect momenta and winding numbers.

We can rewrite the transformations (2.37) and (2.39) in
the form

—ic it = Pyl — 2t A A (o),

Y = 2k A1 A(0) = —k Yy, (2.43)
where 7/,50) is defined in (2.32) and *y(’é) in (2.33).

It was shown in Ref. [11] that 7, is a generator of general
coordinate transformations, while x"* is generator of gauge
symmetry. In Ref. [1] the T-duality relation between x* and
*y(%) (as well as between y,, and y,ﬁo)) has been established.
Equations (2.42) and (2.43) are an extension of T-duality
to the open string case. The additional .A,,-dependent terms
stem from variations of the arguments of vector background
fields.

Note that the momentum 7, and variable y,io) (x), as well
as dux* = {x*, x'*}, are components of the same world-
sheet vector:

88

o
T
B 80X

= {mu. vV (). (2.44)

From now on we will call y,ﬁo) (x) the o-momentum. We can
rewrite Egs. (2.42) and (2.43) in the form

= —/cs"‘ﬂaﬂyﬂ + 2Kn“ﬂAﬂMA(a),
T = ee®P gt 4 2;<r;“ﬂ*AgA(a).

T

(2.45)

Therefore, T-duality interchanges Neumann with Dirichlet
gauge fields. It also interchanges x* and x'* with *y(’é) and

¥ as well as y, and y, with yb(bo) and 7.

3 T-dual background fields of open string in double
space

Following Refs. [2-5, 14] we are going to introduce a double
space in order to offer a simple interpretation of T-dualization
as a coordinate permutation in double space. Let us start with
the T-dual transformation laws (2.34). We can express them
in a useful form, where on the left hand side we put the
terms with the world-sheet antisymmetric tensor g4 (note
that o = +1)

01y, = G 0ex” —2(BGT1), 01y,
+8(MLG ™), Axn (V) A(0),
+ox" Z2(GT B, 04x" + (GTH* day,

—4GTIW AL, (x) A(o). 3.1

We can rewrite these T-duality relations in the simple form

aiZM = :I:QMN[HNK 3iZK

—2(H + o3Ho) vk AKX (Zurg) A0)),  (3.2)

@ Springer
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where we introduced the double coordinates Z¥ and the
corresponding arguments of the background fields Z,,

xH -
ZM:(y )7 Zarg=
n

Note the different notation for arguments of the background
fields, introduced in Ref. [3]. The double space coordinate
ZM has 2D rows; D components of initial coordinates x* in
the upper D rows and D components of T-dual coordinates
¥y in the lower D rows. In the arguments of the background
fields Zarg in each row there is the complete D dimensional
vector. Rewritten in the form of one column the arguments
of the background fields are a 2D? dimensional vector.

Because the arguments of all background fields in
Ai’l (Zarg) and *A£ (*Zarg) (see (3.10)) are the same in the
upper D rows as well as in the lower D rows we can write
them in two component notation as in (3.3). We indicated
this with the index D.

We also introduced the so-called O (D, D) invariant met-
ric @MV | the generalized metric H sy and constant matrix
03,

01
MN _
*=(10)

A\

v (3.3)

D

GE —2 By, (G™HPY
_ Ay mp
Hun = (Z(G_l)/“’ By, (G-1ym ), (3.4)
Ip 0
(o)m” = ( 0 —ID)’ (3.5)
and the double gauge fields
, *A“(V)) </<9‘“’Ai (V))

AM (Zare) = + = + . 3.6

+ (Zarg) (Am(x) A (1) G0

Note that as in Refs. [2-5, 14] all coordinates are doubled. It
is easy to check that
HIQH = Q, (3.7)

which shows that manifest O (D, D) symmetry is automati-
cally incorporated into theory.

3.1 T-duality in double space along all coordinates

Let us derive the expression for the T-dual generalized met-
ric and T-dual double gauge fields following the approach of
Ref. [3]. Then, besides the double space coordinates Z M we
should also transform the extended coordinates of the argu-
ments of the background fields Zarg (3.3). We will require
that the T-duality transformations (3.2) are invariant under
transformations of the double space coordinates ZM and V4 arg
* ZM — *TM N ZN ,

*Zare = T Zurg. (3.8)

@ Springer

We want to offer an interpretation for the case where T-
dualization has been performed along all coordinates. So,
we are going to exchange all initial with all T-dual coordi-
nates, which is described by the matrices *7 and *T of the
form

) 01
T=92®1D=(1D 5)),

*T=92®1D2=< 0 1D2>.

L 0 (3.9)

The T-dual coordinates *Z* and *Zarg should satisfy the
same relation as the initial one, Eq. (3.2), but in terms of the
T-dual background fields:

3 ZM = 2 QYN[ Hy g 0.7 Z5 — 2(°H + 03" Ho3) i
*AK(* Zug) A(0)]. (3.10)

This produces the expression for the dual generalized metric
and dual double gauge fields in terms of the initial ones:

"HE=*TH™T, *Ai(*zarg) = *TA:I:(Zarg)' (G.1D)
Itis well known [2,3] that the first relation gives the standard
T-dual transformations of the metric and Kalb—Ramond fields

(2.24). Rewriting the second relation in components, with the
help of (2.24) and (3.6) we have

AL = ol Ay, (3.12)

Using Eqgs. (2.11) and the first relation of (2.23) we obtain

TAL = k0 Asy, =271 A
* Al ~ —1k —1ij
L Ek0LAr; =20 MG MAD = GT1TAD.
(3.13)

On the other hand, the T-dual effective fields should have the
form (2.27)

*AiZZ*H‘:lFb*G;CI *ACDv * l:l:: *AzN (314)

From (3.13) and (3.14) with the help of (2.24) we have

*AG =Gl Ay, rAl =G AR, (3.15)
which is just the Buscher T-duality relation for vector fields
(2.23).

So, inclusion of gauge fields does not change the interpre-
tation of T-duality in double space. It is again a replacement
of the initial and T-dual coordinates, which shows that these
transformations are nonphysical.
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3.2 Double space field strength

If in addition to (3.3) we introduce new double fields,

~ Y - -
zMz(’f ) aM=(%‘A‘), w:(%‘f), (3.16)
Yu v 7

we can reexpress the field strengths of both initial and T-dual
case (see Egs. (5.11) and (7.31) of Ref. [1]) in the form

FUN — QMK g AY (Zarg) — 0k AN (Zarg))

* RV ()
= .1
72 o
where we defined
din = Oy £ O (3.18)

4 Example: three-torus with D{-brane in double space

In this section the example of three-torus with a D1-brane,
considered in Ref. [1] will be presented in double space. We
will show how to perform T-dualization along all coordinates
in double space.

4.1 Initial theory in double space

We will start with a definition of the background fields of the
initial theory in double space. Let us denote the coordinates
of the D = 3 dimensional torus by xY, xt x2 and introduce
non-trivial components of the background fields by

10 0 0 BO
Gw=|0-101|, Buw=[-BO0O A.1)
00 —1I 0 00

It is easy to find the corresponding effective metric and the
non-commutativity parameter

Gg 0 O 060
Gi,= 0 -Gg o |. o=[-000]. 42
0 0 -1 000
where as we defined in [1]
5 2B
Grp=1—-—4B-, 0= . “4.3)
kGE

We will also need an expression for the combination of the
background fields

] q:KGlE 6 0
ej;”zef”:F;Gg““: —0 L 01 (4.4)
0o o0 +!
K

According to (3.4) it produces

GL,  —2BG™hH,"
Hun = |
2(G7'B),

(G_I)MV
G 0 0 02B O
0 -G 02B 0 O
0 0 -10 0 O
“]1 0 2B 01 0 O (4.5)
2B 0 0 0 —-10
0O 0 0 0 0 -1
Similarly, we have
GL,  2BG™hH,Y
o3Ho3 =
—2(G'B)*,  (GTHW
Gg 0 O 0 -2B O
0 —-Gg 0 -2B 0 O
0 0 -1 0 0 0
- 0 -2B 0 1 0 0 (4.6)
-2B 0 0 O -1 0
0 0 0 O 0 -1
The double space coordinates are
x0 VH
x! VH
" 2 . M iz
ZM=<X)= * s Zarg= Vu ZVM»
ylL Yo X D=3 X
V1 xt
»2 xt
.7

while the double gauge field according to (3.6) takes the form

TALY)
TALV)
TALOV)
Ao (x)
A1 (x)
Az (x)

4.8)

v (PALD (k0 AL0)Y
Az (Zarg) = (Aiu(x) ) = ( Ay () ) =

Note that the dimension of Zarg is2x D2 =2x32=18.
We will start with the Dq-brane defined with the Dirichlet

boundary conditions x2(z, 0)/o=0 = xz(r, 0)/o=n =const.

It means that we will work with Neumann background fields

@ Springer
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A% and A}, and the Dirichlet background field A%, and
according to our convention we willhave p = 1,a, b € {0, 1}
and i, j € {2}.

In terms of initial Neumann and Dirichlet fields we obtain

T A) (V) +x0AY (V)
—KkOAY (V) £ g=AY (V)
—AR(v)

Ay ()

AY ()

FAP (x)

AYM (Zarg) = , (4.9)

where we used the second expression of Eq. (4.2).
4.2 T-dual theory in double space

On the other hand, for the T-dual case we have
* AV
* AN (Zarg) = (fljg((;/))> = (21-[?212%[(‘/))
FrALV) +2B*AL(V)
—2B*AL(V) £ *AL(V)
= =AW) , (4.10)
*Azo(x)
*Ax1(x)
* Az (x)
or with the help of (2.27), in terms of T-dual Neumann and
Dirichlet fields,

Ge*AY (V)
—GEg*Ap(V)
+*A%(V)
F*AY (x) —2B*AL (x)
—2B*AY(x) F *AL(x)
*AY ()

*AM (Zg) = 4.11)

Using the second equation (3.11), with the help of (4.9) and
(4.11) we obtain

GE*A)(x)
—Gp* A} (x)
+*A% (x)
FrAY (V) —2B*AL (V)
—2B *A%IE‘\;)(‘T)*A})(V)
N
AY (x)
AY ()

FAD (x)
:FG—lEA(’;’(V) +kOAY (V)
—kOAY (V) £ g-AY (V)

—AD(V)

*Af (* Zarg) =

= *TA:I:(Zarg) = » (4.12)

@ Springer

where for this example we have

013
T = o).
( 130 )
Note that the transition from Zarg to *Zarg changes x* < VH,
while the operator *7 exchanges the first three with the last

three rows from Eq. (4.9). Equation (4.12) produces just the
T-duality relations

(4.13)

1
*AO :—AN,

1

* 41 _ N * 22 D
Ap=—g- Al Ay =-42,

(4.14)

in accordance with (2.23), (4.1) and (4.2).

The same relation can be obtained with the help of the
compact notation which produces * A4 = « 01" Ay, (see
Eq. (3.12)). According to (2.11) and (2.27) we have, respec-

tively,

Ao =AY, Au =AY, A =FA2, (4.15)
and
* 10 * 20 * 4l
*AL:_ZB*AOD:F*AIDv *AZ :*A%\/ (416)
Then Eq. (3.12) takes the form
* A0 * Al 1 N
F ADT)ZB A? Te; /<91 0 A?v
—2B*ALp F *Ap | = | —«0 :I:G—E 0 AlD

*A%, 0 0 =+1) \FAf
T A) +0AY

— N 1 N

= —KQAO :l:G—EAl .

_Aé)

4.17)

which again produces Eq. (4.14).
4.3 Double space field strength

The structure of our example produces yz(o) = kx'? and the
action (2.10) takes the form

Sopen[x] = K/ d2$8+x“1'l+wa_x"
)
+2k / dr(AY [x15° + AVl + AP [xIx?). (4.18)
0x

Note the unusual coupling of the Dirichlet part Ag with x’2.
According with (2.18) the non-trivial vector background
fields are

1 1
AY @) = Ay = SFOx A () =AY+ SFOX,

1
AP(x) =AY - ZF(S)xZ, (4.19)
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where F(@ = Fo(;l) = BOA{V — 81A6V and F® = FZ(E) =
—4 azAé) . Consequently, the field strength of the initial the-
ory is

0 F@ o
@ o !y @)
Fuw = EfS) 4 SR = | =F@ 0 0 (4.20)
0 0 LF®

Note the unusual expression and the unusual appearance of
the symmetric field strength F(*).

5 Conclusions

In the present article we extend the interpretation of T-duality
in double space to the case of an open string. This includes
consideration of T-duality for the vector gauge fields.

In string theory the gauge fields appear at the boundary of
the open string. Their role is to enable complete local gauge
symmetries. In fact, there are two important symmetries of
the closed string theory: the local gauge symmetry of the
Kalb—Ramond field and general coordinate transformations.
In Ref. [1] we showed that “restricted general coordinate
transformations” (transformations of the background fields
without transformations of the coordinates) are T-dual to the
local gauge symmetry of the Kalb—-Ramond field. Both sym-
metries fail at the open string end-points. The function of
the gauge fields is to restore these symmetries at the string
end-points.

For each symmetry of string theory there is an appro-
priate gauge field. As a consequence of the boundary con-
ditions only parts of these gauge fields survive. From the
gauge field corresponding to the local gauge symmetry of
the Kalb—Ramond field the components along the coordi-
nates with Neumann boundary conditions A% survive. From
the gauge field corresponding to restricted general coordinate
transformations the components along the coordinates with
Dirichlet boundary conditions AiD survive. So, the complete
vector field is A, = {AY, AP}.

It is well-known that x’# is T-dual to 7. In Ref. [1] was
shown that it produces chain of T-dualities between restricted
general coordinate transformation and local gauge transfor-
mations; and vector fields with Neumann Ai\’ and Dirichlet
boundary conditions AP.

In the present article we showed that all the above results
have a simple interpretation in double space. The double
space contains 2D coordinates, D initial x** and correspond-
ing D T-dual y,. The T-dualization of the present article
(along all coordinates) corresponds to the replacement of all
initial coordinates x** with all T-dual coordinates y,, and all
initial arguments of the background fields x** with all T-dual
ones V#. Such an operation reproduces all results described
above. So, in the open string case a complete set of T-duality

transformations form the same subgroup of the 2D permu-
tation group as in the closed string case.

Let us stress that there is an essential difference between
our approach and that of double field theories (DFT) [19,
20]. In DFT there are two coordinates: the initial x* and its
double, denoted x,,. The variable X, corresponds to our y,
but we have an additional dual coordinate y, defined in Eq.
(2.26). For a discussion of the boundary conditions in DFT
see Ref. [21].

Consequently, in the double space we are able to represent
the backgrounds of all T-dual open string theories in a unified
manner as well as in the cases of bosonic [2,3] and type II
superstring theories [4].

This step is an important ingredient in better understand-
ing M-theory. We already explained the role of the double
space in the interpretation of T-duality and consequently in
the attempt to construct M-theory [4,5]. The present article
is an extension of these considerations to the case of an open
string.
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