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Abstract A representation of the two-loop contribution to
the pion decay constant in SU (3) chiral perturbation theory
is presented. The result is analytic up to the contribution
of the three (different) mass sunset integrals, for which an
expansion in their external momentum has been taken. We
also give an analytic expression for the two-loop contribution
to the pion mass based on a renormalized representation and
in terms of the physical eta mass. We find an expansion of Fπ

and M2
π in the strange-quark mass in the isospin limit, and we

perform the matching of the chiral SU (2) and SU (3) low-
energy constants. A numerical analysis demonstrates the high
accuracy of our representation, and the strong dependence of
the pion decay constant upon the values of the low-energy
constants, especially in the chiral limit. Finally, we present
a simplified representation that is particularly suitable for
fitting with available lattice data.

1 Introduction

The mass and decay constants of the pions, kaons and the
eta have been worked out to two-loop accuracy in three-
flavoured chiral perturbation theory (ChPT) in [1] some time
ago. The expressions for these at this order bring about a class
of diagrams known as the sunsets. For the decay constants,
in addition to the sunset integral, derivatives of the sunsets
with respect to the square of the external momentum (also
known as ‘butterfly’ diagrams), evaluated at a value equal to
the square of the mass of the particle in question, are needed.
The sunset diagrams themselves have been studied in field
theory literature for many years now, and for particular mass
configurations analytic expressions exist in Laurent series
expansions in ε = (4 − d)/2. In general, however, the sun-
sets and their derivatives have to be evaluated numerically

a e-mail: shayanghosh@gmail.com

and publicly available software [2] does this with user driven
inputs.

There is, however, a need for an analytic study of the
observables in ChPT since one would like to have an intu-
itive sense for the results appearing therein. More impor-
tantly, with recent advances allowing lattice simulations to
tune the quark masses to near physical values, a combining
of lattice and ChPT results has become possible. However, at
next to next to leading order (NNLO), three-flavoured ChPT
amplitudes are available only numerically or take a compli-
cated form, and thus have not been used much by the lattice
community. With this in mind [3,4] has advocated a large
Nc motivated approach to replace the two-loop integrals by
effective one-loop integrals, and find it fruitful for the study
of the ratio FK /Fπ as well as Fπ . The analytic studies of
SU (3) amplitudes in the strange-quark mass expansion of
[5–7] are also steps in that direction, but, as the results pre-
sented there are in the chiral limit, mu = md = 0, the need
for more general expressions is left unfulfilled.

Some years ago, Kaiser [8] studied the problem of the pion
mass in the analytic framework, and was able to employ well
known properties of sunset integrals to reduce a large number
of expressions to analytic ones. One exception was the sunset
integral with kaons and an eta propagating in the loops with
the external momentum at s = m2

π , for which an expansion
around m2

π was used. Kaiser [8] also replaced the mη in his
work by the leading-order Gell-Mann–Okubo (GMO) for-
mula. In principle, therefore, one can get an expansion in m2

π

to arbitrary accuracy, proving thereby the accessibility of an
analytical approach to the full two-loop result. For practical
purposes, we have used the expansion up to and including
m4

π terms. These are more than sufficient for the numerical
accuracy wanted.

The reason why it is possible to attain the objectives above
is that for many purposes, the sunset integrals are accessible
analytically for kinematic configurations known as thresh-
old and pseudo-threshold configurations [9], as well as for
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the case when the square of the external momentum vanishes
[10]. Indeed, this is the case for most of the sunset integrals
appearing in the expressions for the mass and decay con-
stants. These properties also allow one to isolate the divergent
parts in closed form, while the finite part remains calculable
in analytic form only for special cases. On the other hand,
there is always an integral representation for the finite part
which can be evaluated numerically. Furthermore, for the
most general case, all sunsets can be reduced to a set of master
integrals. All other vector and tensor integrals, as well their
derivatives with respect to the square of the external momen-
tum, can also be reduced to master integrals. The work of [11]
in developing this work is noteworthy, as is the automation
of these relations with the publicly available Mathematica
package Tarcer [12]. Application of these methods and tools
to sunset diagrams in chiral perturbation theory is elucidated
in [13].

Inspired by the developments above, we now seek to
extend the work of [8] for the case of the pion decay constant
in an expansion around s = 0, which also brings about the
butterfly diagrams. In contrast to the approach of [8], we will
retain the mass of the eta without recourse to the GMO. This
is the main objective of the present work. As a side result,
we also give the expression for the two-loop pion mass with
the full eta mass dependence.

In principle, this may also be extended to the mass and
decay constant of the kaon and the eta, but the expansion
about s = 0 for these particles when particles of unequal
mass are running around in the loops is bound to converge
poorly, and one would have to go to very high orders in the
expansion, thereby losing the appeal of such a result. Thus
we confine ourselves to the pion in this work. We present
expressions for the kaon and eta masses and decay constants
in a future publication [14].

As an application of the expressions given here, we give
their expansion in the strange-quark mass in the isospin limit
and perform the ‘matching’ of the three-flavoured low-energy
constants F0 and B0 with their two-flavoured counterparts F
and B, respectively. We compare our results with those given
in [15] and the chiral limit results of [5]. The results given in
this work, however, go beyond the chiral limit matching done
in the aforementioned papers. Indeed, the full expressions
presented here allow for an expansion up to an arbitrary order
in the quark masses.

The scheme of this paper is as follows. In Sect. 2 we briefly
review sunset diagrams and their evaluation. In Sect. 3 we
give the expressions for the analytical results up toO(m4

π ) for
the pion decay constant at two loops. We repeat the analysis
for the two-loop pion mass contribution in Sect. 4. In Sect. 5,
we give the s-quark expansion for both the pion decay con-
stant and the pion mass, and we perform the matching of
the two- and three-flavour low-energy constants (SU (2) and
SU (3) LECs). We present a numerical analysis of our results

in Sect. 6, and in Sect. 7 we discuss the fitting of lattice data
with the expressions given in this paper, and present them in
a form that allows one to perform these fits relatively easily.
In Sect. 7, we discuss several possible ways of expressing the
results of this paper, and present a simplified representation
that is particularly suitable for performing fittings with avail-
able lattice data. We conclude in Sect. 8 with a discussion of
possible future work in this area.

2 Sunset diagrams and their derivatives

The sunset diagram, shown in Fig. 1, represents the two-loop
Feynman integral,

Hd{α,β,γ }(m1,m2,m3; s) = 1

i2

∫
ddq

(2π)d

ddr

(2π)d

× 1

[q2 − m2
1]α[r2 − m2

2]β [(q + r − p)2 − m2
3]γ

. (1)

Aside from the basic scalar integral, there exist tensor vari-
eties of the sunset integral with loop momenta in the numera-
tor. The two tensor integrals that are of relevance to this work
are Hμ and Hμν , in which the momenta qμ and qμqν , respec-
tively, appear in the numerator. These may be decomposed
into linear combinations of scalar integrals via the Passarino–
Veltman decomposition as

Hd
μ = pμH1,

Hd
μν = pμ pνH21 + gμνH22. (2)

The representation of the pion decay constants in [1] involves
the scalar integrals H1 and H21. Taking the scalar product of
Hd

μ with pμ allows us to express the integral H1 in terms
of the sunset integral with the scalar numerator q.p. Simi-
larly, we may express H21 in terms of sunset integrals with
numerators (q.p)2 and q2:

pp q + r − p,m3

q,m1

r,m2

Fig. 1 The two-loop self-energy “sunset” diagram
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H1 = 〈〈q.p〉〉
p2 ,

H21 = 〈〈(q.p)2〉〉d − 〈〈q2〉〉p2

p4(d − 1)
, (3)

where 〈〈X〉〉 represents a sunset integral with numerator X .
Another class of integrals that appear in the representation

of [1] is the derivative of the sunset integrals and the H1 and
H21 with respect to the external momentum. In some places
in the literature, these are sometimes known as ‘butterfly’
diagrams. These butterfly integrals may be expressed as sun-
set integrals of higher dimension by means of the following
expression, which can be derived from the Feynman parame-
ter representation of the sunset integrals, and a more general
version of which is given in [8]:

(
∂

∂s

)n

Hd{α,β,γ } = (−1)n(4π)2n 
(α + n)
(β + n)
(γ + n)


(α)
(β)
(γ )

× Hd+2n
{α+n,β+n,γ+n}. (4)

Tarasov [11] has shown that by means of integration by parts
relations, all sunset integrals may be expressed as linear com-
binations of four master integrals, namely Hd{1,1,1}, Hd{2,1,1},
Hd{1,2,1} and Hd{1,1,2}, and the one-loop tadpole integral:

Ad(m) = 1

i

∫
ddq

(2π)d

1

q2 − m2 = −
 (1 − d/2)

(4π)d/2 md−2.

(5)

This includes sunset integrals of dimensions greater than d,
permitting us to express the butterfly integrals in terms of the
four master integrals and tadpoles. Scalar sunset integrals
with non-unit numerators, such as those appearing in Eq. (2)
may also be expressed in terms of the four master integrals
and tadpoles. The Tarcer package [12], written in Mathemat-
ica, automates the application of Tarasov’s relations, and we
have made extensive use of it in this work. We have also
made use of the package Ambre [16,17], which allows for
a direct evaluation of many scalar and tensor Feynman inte-
grals using a Mellin–Barnes approach, to numerically check
our breakdown of the sunset and butterfly diagrams into mas-
ter integrals. The theory of analytic (rather than numeric)
evaluation of multi-fold Mellin–Barnes integrals is described
with examples in [18,19].

As is the usual practice in chiral perturbation theory, we
use a modified version of the MS scheme to handle the
divergences arising from the evaluation of the sunset dia-
grams. The subtraction procedure to two-loop order in ChPT
is equivalent to multiplying Eq. (1) by (μ2

χ )4−d , where

μ2
χ ≡ μ2 eγE−1

4π
, (6)

and taking into consideration only theO(ε0) part of the result
in a Laurent expansion about ε = 0. We denote such renor-
malized sunset integrals by use of the subscript χ instead of
d, i.e.

Hχ
{a,b,c} ≡ (μ2

χ )4−d Hd
{a,b,c}. (7)

The inclusion of factor μ raised to a power of the dimension
d introduces terms involving chiral logarithms, i.e.

lrP ≡ 1

2(4π)2 log

[
m2

P

μ2

]
P = π, K , η. (8)

In the results presented in this paper, we group together all
terms containing chiral logarithms, whether or not they arise
from the renormalized sunset integrals. We therefore use the
notation

Hχ
{a,b,c} ≡ H

χ

{a,b,c} + Hχ,log
{a,b,c} (9)

where Hχ,log are the terms of the sunset integral containing
chiral logarithms, and H

χ
is the aggregation of the remainder.

All results given hereafter have been renormalized using this
subtraction scheme, and they are presented using the notation
above.

Analytic expressions for the master integrals themselves
have been studied thoroughly, and several results exist in
the literature [9,10,20–23]. For sunset integrals with only
one mass scale, there is a further reduction in the number of
master integrals, and all sunsets can be expressed in terms of
the tadpole integral, Aχ = μ4−d

χ Ad , and Hχ
{1,1,1}, which is

given in [9,20], amongst others, as

Hχ
{1,1,1} = −(μ2eγE−1)2ε (m2)1−2ε

(4π)4


2(1 + ε)

(1 − ε)(1 − 2ε)

×
(

− 3

2ε2 + 1

4ε
+ 19

8

)
+ O(ε). (10)

Analytic expressions for the two mass scale integrals can be
found by means of the pseudo-threshold results of [9].

Expressions for the three mass sunset integrals are given in
[23] in terms of elliptic dilogarithmic functions. However, as
one of the principal reasons for the lack of use of ChPT results
by the lattice community is the complicated form of many of
the results, we wish to keep the expression derived here as
simple and accessible as possible. To this end, and to stay true
to the spirit of the method of [8], instead of using the results
of [23] we take an expansion in the external momentum s up
to order O(s2):

Hχ
{α,β,γ } = K{α,β,γ } + s K ′{α,β,γ } + s2

2! K
′′{α,β,γ } + O(s3)

(11)
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where K{α,β,γ } ≡ Hχ
{α,β,γ }|s=0. In this special case of s = 0,

as in the case of the single mass scale sunsets, all sunset
integrals may be expressed solely in terms of K{1,1,1} and
tadpole integrals [11].

The pion mass and decay constant at two loops both
involve a sunset integral with the following three mass scale
configuration:

Hχ
{α,β,γ }(mK ,mK ,mη; s = m2

π ).

This may be expanded in s by making use of the result [1,8,
10]

2 (4π)4

M2 Hχ
{1,1,1}{M, M,m; 0}

=
(

2 + m2

M2

)
1

ε2 +
(
m2

M2

(
1 − 2 log

[
m2

μ2

])

+2

(
1 − 2 log

[
M2

μ2

]))
1

ε

− 2

(μ2)2ε

(
m2

M2 log

[
m2

μ2

] (
1 − log

[
m2

μ2

])

+ 2 log

[
M2

μ2

] (
1 − log

[
M2

μ2

]) )

− m2

M2 log2
[
m2

M2

]
+

(
m2

M2 − 4

)
F

[
m2

M2

]

+
(

2 + m2

M2

) (
π2

6
+ 3

)
+ O(ε) (12)

where

F[x] = 1

σ

[
4Li2

(
σ − 1

σ + 1

)
+ log2

(
1 − σ

1 + σ

)
+ π2

3

]
,

σ =
√

1 − 4

x
. (13)

3 The pion decay constant to two loops

The pion decay constant is given in [1] as

Fπ = F0(1 + F
(4)

π + F
(6)

π ) + O(p8) (14)

where the O(p6) contribution can be broken up into a
piece that results from the model-dependent counterterms

(F
(6)

π )CT, and one that results from the chiral loop (F
(6)

π )loop.
For the pion, the explicit form of these terms are given by

F2
π F

(4)

π = 4m2
π (Lr

4 + Lr
5) + 8Lr

4m
2
K − lrKm

2
K − 2lrπm

2
π ,

(15)

F4
π (Fπ )

(6)
CT = 8m4

π (Cr
14 + Cr

15 + 3Cr
16 + Cr

17)

+ 16m2
Km

2
π (Cr

15 − 2Cr
16) + 32Cr

16m
4
K , (16)

where mP with P = π, K , η are the physical meson masses,
and lrP are the chiral logarithms defined in Eq. (8). Note that
the Ci used in this paper are dimensionless.

The loop contributions can be subdivided as follows:

F4
π (Fπ )

(6)
loop = d

π

sunset + dπ
log×log + dπ

log

+ dπ
log×Li

+ dπ
Li

+ dπ
Li×L j

. (17)

The terms containing the LECs Li but no chiral logarithms
are given by

(16π2)dπ
Li

= 8

9

(
Lr

2 + Lr
3

3

)
m2

Km
2
π −

(
2Lr

1 + 37

9
Lr

2 + 28

27
Lr

3

)
m4

π

−
(

52

9
Lr

2 + 43

27
Lr

3

)
m4

K , (18)

and the terms bilinear in the LECs are contained in

dπ
Li×L j

= 32m2
Km

2
π

(
7(Lr

4)
2 + 5Lr

4L
r
5 − 8Lr

4L
r
6 − 4Lr

5L
r
6

)

+ 32m4
K L

r
4(7L

r
4 + 2Lr

5 − 8Lr
6 − 4Lr

8)

+ 8m4
π (Lr

4 + Lr
5)(7L

r
4 + 7Lr

5 − 8Lr
6 − 8Lr

8).

(19)

The remaining three terms of Eq. (17) give the terms contain-
ing the chiral logs. Explicitly, the following gives the terms
linear in chiral logarithms:

(16π2)dπ
log = m4

K

(
2

3
lrη + 23

8
lrK + 9

8
lrπ

)

+ m2
Km

2
π

(
139

72
lrπ − 1

72
lrη − 1

2
lrK

)

+ m4
π

(
1381

288
lrπ − 11

288
lrη

)
(20)

while the terms bilinear in the lrP are contained in

dπ
log×log = m4

K

(
7

72
(lrη)

2 − 55

36
lrηl

r
K + 5

36
(lrK )2 − 3

4
lrK l

r
π + 3

8
(lrπ )2

)

+ m4
π

(
41

8
(lrπ )2 − 1

24
(lrη)

2
)

+ m2
Km

2
π

(
1

9
(lrη)

2 + 4

9
lrηl

r
K + 1

9
(lrK )2 + 25

3
lrK l

r
π − 7

6
(lrπ )2

)

+ 1

2

m6
K

m2
π

(
lrη − lrK

)2
. (21)

The contributions from terms involving products of chiral
logarithms and the LECs are collected in

dπ
log×Li

= 4m4
π l

r
π (14Lr

1 + 8Lr
2 + 7Lr

3 − 13Lr
4 − 10Lr

5)

+ 4

9
(4m2

K − m2
π )2lrη(4L

r
1 + Lr

2 + Lr
3 − 3Lr

4)

+ 4m4
K l

r
K (16Lr

1 + 4Lr
2 + 5Lr

3 − 14Lr
4)

− m2
Km

2
π (4lrK (3Lr

4 + 5Lr
5) + 48lrπ L

r
4). (22)
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Finally, the contributions from the sunset diagrams are given
by

dπ
sunset = 1

(16π2)2

(
35

288
m4

ππ2 + 41

128
m4

π

+ 1

144
m2

πm
2
Kπ2 − 5

32
m2

πm
2
K + 11

72
m4
Kπ2 + 15

32
m4
K

)

+ 5

12
m4

π H
′χ
πππ − 1

2
m2

π H
χ
πππ − 5

16
m4

π H
′χ
πKK

+ 1

16
m2

π H
χ
πKK + 1

36
m4

π H
′χ
πηη

+ 1

2
m2

πm
2
K H

′χ
KπK − 1

2
m2
K H

χ
KπK − 5

12
m4

π H ′χ
KKη

− 1

16
m4

π H
′χ
ηKK + 1

4
m2

πm
2
K H

′χ
ηKK

+ 1

16
m2

π H
χ
ηKK − 1

4
m2
K H

χ
ηKK + 1

2
m4

π H
′χ
1 πKK

+ m4
π H

′χ
1 KKη + 3

2
m4

π H
′χ
21πππ

− 3

16
m4

π H
′
21

χ

πKK + 3

2
m4

π H
′
21

χ

KπK + 9

16
m4

π H
′
21

χ

ηKK

(23)

where we use the notation

H
χ

aPbQcR = H
χ

{a,b,c}{mP ,mQ,mR; s = m2
π } (24)

with H
χ

{a,b,c} as defined in Eq. (9). a, b, c will be suppressed
if equal to 1. The terms resulting from the sunset integrals
involving chiral logarithms have been included in dπ

log or
dπ

log×log as appropriate.
Evaluating the sunset integrals as described in Sect. (2),

dπ
sunset can be re-expressed as

dπ
sunset = 1

(16π2)2

[(
3445

1728
+ 107π2

864

)
m4

K

+
(

125

864
+ 17π2

324

)
m2

Km
2
π −

(
3

2
− π2

12

)
m6

K

m2
π

−
(

35

6912
+ 13π2

2592

)
m4

π

]
+ dπ

πKK + dπ
πηη + dπ

KKη

(25)

where

dπ
πKK = −

(
9

16

m4
K

m2
π

+ 3

4
m2

K + 1

48
m2

π

)
H

χ

πKK

+
(

3

4
m4

K + 1

6
m2

Km
2
π + m4

π

12

)
H

χ

2πKK , (26)

dπ
πηη =

(
− 1

36
m2

π

)
H

χ

πηη +
(

1

36
m4

π

)
H

χ

2πηη, (27)

dπ
KKη =

(
15

16

m4
K

m2
π

− 13

36
m2
K + 13

144
m2

π

)
H

χ
KKη

+
(

1

2
m4
K − 2

m6
K

m2
π

− 1

6
m2
Km2

π

)
H

χ
2KKη

+
(

91

108
m4
K − m6

K

m2
π

− 5

27
m2
Km2

π + 1

108
m4

π

)
H

χ
KK2η.

(28)

Closed form expressions, at O(ε0), for the master integrals
H

χ
appearing in dπKK and dπηη are given in Appendix B.

The master integrals appearing in dKKη are of three mass
scales, for which there exist no simple closed form expres-
sions. For these, therefore, we take an expansion around
s = m2

π = 0. Up to order O (
m4

π

)
, we have

(16π2)2 dKKη = d(−1)
KKη(m

2
π )−1 + d(0)

KKη + d(1)
KKη(m

2
π )

+ d(2)
KKη(m

2
π )2, (29)

where

d(−1)
KKη =

(
51

16
+ π2

96

)
m6

K − 35

48
m4

Km
2
π

+
(

1

12
− π2

96

)
m2

Km
4
π − 1

96
m6

π

−
(

1

8
m6

K + 3

32
m4

Km
2
π − 1

32
m2

Km
4
π

)
log2

[
4

3

]
,

(30)

d(0)
KKη = −

(
4235

3456
+ 25π2

1728

)
m4

K

+
(

485

1728
− π2

864

)
m2

Km
2
π − 193

6912
m4

π

−
(

15

32
m4

K − 1

16
m2

Km
2
π + 1

64
m4

π

)
log[ρ]

+
(

1

16
m4

K − 1

64
m2

Km
2
π

)
log

[
4

3

]

+
(

5

72
m4

K − 5

288
m2

Km
2
π

)
log2

[
4

3

]

+
(

1

3
m4

K + 1

24
m2

Km
2
π

)
F

[
4

3

]
, (31)

d(1)
KKη =

(
1

1152
+ 5π2

288

)
m2

K −
(

31

4608
+ π2

576

)
m2

π

− 512
m4

π

m2
K

+
(

17

144
m2

K − 7

288
m2

π

)
log[ρ]

+
(

227

4608
m2

π − 512
m4

π

m2
K

− 47

1152
m2

K

)
log

[
4

3

]
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+
(

1

96
m2

π − 1

24
m2

K

)
log2

[
4

3

]

−
(

7

48
m2

K + 7

384
m2

π

)
F

[
4

3

]
, (32)

(4m2
K − m2

π )2d(2)
KKη

= − 1

λ2

(
161

162
m8

K − 295

324
m6

Km
2
π + 7

12
m4

Km
4
π

+ 49

55,296

m10
π

m2
K

− 1265

10,368
m2

Km
6
π + 35

41,472
m8

π

)

+ 1

λ3

(
5093

243
m10

K − 1981

162
m8

Km
2
π + 3833

1296
m6

Km
4
π

+ 1

82,944

m14
π

m4
K

− 3431

7776
m4

Km
6
π

+ 29

62,208

m12
π

m2
K

+ 17

2592
m2

Km
8
π + 103

20,736
m10

π

)

× log

[
4

3

]
− (4m2

K − m2
π )2

192
log[ρ]

− 1

λ3

(
505

36
m10

K − 63

16
m8

Km
2
π + 5

12
m6

Km
4
π

− 13

144
m4

Km
6
π + 1

12,288

m12
π

m2
K

+ 3

256
m2

Km
8
π

+ 1

512
m10

π

)
F

[
4

3

]
. (33)

In the above expressions, τ ≡ m2
η/m

2
K , ρ ≡ m2

π/m2
K ,

λ ≡ −(8m2
K +m2

π )/3, and F[x] is defined in Eq. (13). Note
that in this expansion, divergences appear in the mπ → 0
limit. The divergences from the d(−1)

KKη term cancel against
the divergences in Eq. (25) and in Eq. (104), while those
arising from the log[ρ] and log2[ρ] in d(0)

KKη cancel against
divergences in Eqs. (104), (21) and (26). Therefore the overall

F
(6)

π remains non-divergent in the m2
π → 0 limit.

4 The pion mass to two loops

We repeat the steps of the previous section for the pion mass.
A representation for this is given in [1] as

M2
π = m2

π0 + (m2
π )(4) + (m2

π )
(6)
CT + (m2

π )
(6)
loop + O(p8)

(34)

where m2
π0 = 2B0m̂ is the bare pion mass squared, and mP

are the physical meson masses.

F2
π

m2
π

(m2
π )(4) = −8m2

π (Lr
4 + Lr

5 − 2Lr
6 − 2Lr

8)

− 16m2
K (Lr

4 − 2Lr
6) + m2

π

(
lrπ + 1

9
lrη

)

− 4

9
m2

K l
r
η, (35)

− F4
π

16m2
π

(m2
π )

(6)
CT = 2m2

Km
2
π (2Cr

13 + Cr
15 − 2Cr

16

− 6Cr
21 − 2Cr

32) + 4m4
K (Cr

16 − Cr
20 − 3Cr

21)

+ m4
π (2Cr

12 + 2Cr
13 + Cr

14 + Cr
15 + 3Cr

16 + Cr
17

− 3Cr
19 − 5Cr

20 − 3Cr
21 − 2Cr

31 − 2Cr
32). (36)

The (m2
π )

(6)
loop term can be subdivided into the following com-

ponents:

F4
π (m2

π )
(6)
loop = cπ

sunset + cπ
log×log + cπ

log + cπ
log×Li

+ cπ
Li

+ cπ
Li×L j

(37)

where

16π2

m2
π

cπ
Li

= 2

9
m4

π

(
18Lr

1 + 37Lr
2 + 28

3
Lr

3 + 8

3
Lr

5 − 32Lr
7 − 16Lr

8

)

+ 1

9
m4

K

(
104Lr

2 + 86

3
Lr

3 + 16

3
Lr

5 − 64Lr
7 − 32Lr

8

)

− 16

9
m2

Km
2
π

(
Lr

2 + 1

3
Lr

3 + 2

3
Lr

5 − 8Lr
7 − 4Lr

8

)
,

(38)

−
cπ
Li×L j

128m2
π

= (Lr
4 − 2Lr

6)(m
4
K (4Lr

4 + Lr
5 − 8Lr

6 − 2Lr
8)

+ m2
Km

2
π (4Lr

4 + 3Lr
5 − 8Lr

6 − 6Lr
8))

+ m4
π (Lr

4 + Lr
5 − 2Lr

6 − 2Lr
8)

2, (39)

16π2

m2
π

cπ
log =

(
1

16
lrη − 1199

144
lrπ

)
m4

π

−
(

20

27
lrη + 277

36
lrK + 3

4
lrπ

)
m4

K

−
(

7

108
lrη + 1

3
lrK + 47

36
lrπ

)
m2

Km
2
π , (40)

cπ
log×log

m2
π

=
(

739

324
(lrη)

2 − 43

18
lrηl

r
K + 83

18
(lrK )2

+1

2
lrK l

r
π − 1

4
(lrπ )2

)
m4

K

+
(

3

2
(lrπ )2 − 67

162
(lrη)

2 + 1

3
lrηl

r
K + 20

9
lrηl

r
π

+2

9
(lrK )2 − 3lrK l

r
π

)
m2

Km
2
π
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+
(

121

36
(lrπ )2 − 11

324
(lrη)

2 − 1

3
lrηl

r
π

)
m4

π

− 1

3

m6
K

m2
π

(lrη − lrK )2, (41)

cπ
log×Li

m2
π

= 16m2
Km

2
π

(
1

9
lrη(16Lr

1 + 4Lr
2 + 4Lr

3 − 21Lr
4

− 8Lr
5 + 26Lr

6 − 24Lr
7 + 4Lr

8) + lrK (Lr
4

+ Lr
5 − 2Lr

6 − 2Lr
8) + 5lrπ (Lr

4 − 2Lr
6)

)

− 8m4
K

(
4

9
lrη(16Lr

1 + 4Lr
2 + 4Lr

3 − 18Lr
4

− 3Lr
5 + 20Lr

6 − 12Lr
7 + 2Lr

8)

+ lrK (16Lr
1 + 4Lr

2 + 5Lr
3 − 20Lr

4

− 4Lr
5 + 24Lr

6 + 8Lr
8)

)

− 8m4
π

(
1

9
lrη(4L

r
1 + Lr

2 + Lr
3 − 6Lr

4 − 4Lr
5

+ 8Lr
6 + 6Lr

8) + lrπ (14Lr
1 + 8Lr

2 + 7Lr
3 − 18Lr

4

− 12Lr
5 + 32Lr

6 + 22Lr
8)

)
. (42)

The contribution from the sunset integrals is given by

cπ
sunset = 1

(16π2)2

[(
1 − π2

18

)
m6

K −
(

2435

864
+ 97π2

432

)

× m4
Km

2
π +

(
235

144
− 23π2

648

)
m2

Km
4
π

+
(

4757

3456
− 41π2

1296

)
m6

π

]
+ cπ

πKK

+ cπ
πηη + cπ

KKη (43)

where

cπ
πηη =

(
m4

π

18

)
H

χ

πηη, (44)

cπ
πKK =

(
3

8
m4

K + 3

4
m2

πm
2
K − 1

8
m4

π

)
H

χ

πKK

+
(

1

2
m6

π − 1

2
m2

πm
4
K

)
H

χ

2πKK , (45)

cπ
KKη =

(
43

36
m2

Km
2
π − 5

8
m4

K − 17

72
m4

π

)
H

χ

KKη

+
(

4

3
m6

K − 5

3
m4

Km
2
π + 1

3
m2

Km
4
π

)
H

χ

2KKη

+
(

2

3
m6

K − 65

54
m4

Km
2
π + 17

27
m2

Km
4
π − 5

54
m6

π

)
H

χ

KK2η.

(46)

With ρ ≡ m2
π/m2

K and τ ≡ m2
η/m

2
K , expanding cπ

KKη about

s = m2
π = 0 gives

(16π2)2cπ
KKη = c(0)

KKη + c(1)
KKη(m

2
π )

+ c(2)
KKη(m

2
π )2 + O((m2

π )3) (47)

where

c(0)
KKη = −

(
17

8
+ π2

144

)
m6

K + 35

72
m4

Km
2
π

−
(

1

18
− π2

144

)
m2

Km
4
π + 1

144
m6

π

+
(

1

12
m6

K + 1

16
m4

Km
2
π − 1

48
m2

Km
4
π

)
log2

[
4

3

]
,

(48)

c(1)
KKη =

(
7945

1728
+ 95π2

864

)
m4

K −
(

751

864
+ 7π2

432

)

× m2
Km

2
π + 155

3456
m4

π

+
(

1

96
m2

Km
2
π − 1

24
m4

K

)
log

[
4

3

]

+
(

13

144
m2

Km
2
π − 13

36
m4

K

)
log2

[
4

3

]

+
(

5

16
m4

K − 1

24
m2

Km
2
π + 1

96
m4

π

)
log[ρ]

−
(

2

3
m4

K + 1

12
m2

Km
2
π

)
F

[
4

3

]
, (49)

(4m2
K − m2

π )c(2)
KKη =

(
π2

864
− 109

2304

)
m4

π −
(

289

144
+ π2

27

)
m4

K

+
(

205

288
+ π2

216

)
m2

Km
2
π − 1

768

m6
π

m2
K

− 1

λ

(
61

54
m6

K − 23

48
m4

Km
2
π

− 1

2304

m8
π

m2
K

− 5

48
m2

Km
4
π + 277

6912
m6

π

)
log

[
4

3

]

−
(
4m2

K − m2
π

)2

144
log2

[
4

3

]

−
(

20

9
m4

K − 7

9
m2

Km
2
π + 1

18
m4

π

)
log[ρ]

+ 1

λ

(
13

24
m4

Km
2
π + 11

144
m2

Km
4
π

+ 5

1728
m6

π − 137

27
m6

K

)
F

[
4

3

]
. (50)

The expressions of this section agree fully with those given
in [8] when the eta masses here are expressed in terms of the
pion and kaon masses by means of the GMO formula. As
with the expansion of the pion decay constant in m2

π , here
too divergences appear in the m2

π → 0 limit. These are offset
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by the divergences appearing in Eqs. (95), (96), (98) and (45)
in the same limit. In a similar way, the terms that do not vanish
as m2

π → 0 cancel.

5 Expansion in the strange-quark mass in the isospin
limit

As an application of the expressions presented in the preced-
ing sections, we present their expansion in the strange-quark
mass, ms . More specifically, for the pion decay constant,
we keep the physical kaon mass constant and expand in the
small quark ratio Rq ≡ m̂/ms where m̂ ≡ (mu + md)/2.
Our choice of such an expansion, rather than one in which
we keep ms fixed and vary m̂, is to facilitate comparison with
the results given in [5]. For the pion mass we expand in ms

to compare with [15].
The isospin limit expansion of Fπ is

Fπ

F0
= 1 + d1

[
M2

K

(4πF0)2

]
+ d2

[
M2

K

(4πF0)2

]2

+ O(m3
s )

(51)

where

d1 = 8(4π)2Lr
4 − 1

2
log

[
m2

K

μ2

]
+

{
8(4π)2(Lr

4 + Lr
5)

−2 log

[
m2

K

μ2

]
− 2 log[2Rq ]

}
Rq

+
{

2 − 8(4π)2(Lr
4 + Lr

5)

+ 2 log

[
m2

K

μ2

]
+ 2 log[2Rq ]

}
R2
q + O(R3

q), (52)

d2 = d tree
2 + d loop

2 , (53)

and

d tree
2

32(4π)4 = Cr
16 + Lr

4(3L
r
4 + 2Lr

5 − 8Lr
6 − 4Lr

8)

+
{
Cr

15 − 2Cr
16 + 6(Lr

4)
2 + 4Lr

4L
r
5 − 16Lr

4L
r
6

−4Lr
4L

r
8 + 2(Lr

5)
2 − 8Lr

5L
r
6 − 4Lr

5L
r
8

}
Rq

+
{
Cr

14 + 5Cr
16 + Cr

17 − 3(Lr
4)

2 − 2Lr
4L

r
5

+8Lr
4L

r
6 + 4Lr

4L
r
8 − 3(Lr

5)
2 + 4Lr

5L
r
8

}
R2
q

+ O(R3
q), (54)

d loop
2 = −11

12
log2

[
M2

K

μ2

]
+

(
32

9
D(0)

1 + 7

3
− 1

3
log

[
4

3

] )

× log

[
M2

K

μ2

]
− 73

32
+ 1

3
log

[
4

3

]

− 16

9

(
D(0)

2 − 2 log

[
4

3

]
D(0)

3

)
+ 1

3
F

[
4

3

]

+
{

5

4
log2

[
M2

K

μ2

]
+

(
−16

9
D(1)

1 + 35

12
+ 5

3
log

[
4

3

]

+1

3
log

[
2Rq

])
log

[
M2

K

μ2

]
+ 157

48
+ 7

6
log

[
4

3

]

− 8

9

(
D(1)

2 + 2D(1)
3 log

[
4

3

])
− 5

24
F

[
4

3

]

+
(

4

3
log

[
4

3

]
+ 16(4π)2(Lr

4 − Lr
5 + 2Lr

8)

)
log

[
2Rq

] }
Rq

+
{

− 41

6
log2

[
M2

K

μ2

]
+

(
2

9
D(2)

1 + 101

36
− 29

12
log

[
4

3

]

−43

4
log

[
2Rq

])
log

[
M2

K

μ2

]
− 8455

1536

− 61445

18432
log

[
4

3

]
+ 8

9

(
D(2)

2 + D(2)
3 log

[
4

3

])

+ 7873

24576
F

[
4

3

]
− 5 log2 [

2Rq
]

+
(

8D(2)
4 + 29

4
− 2 log

[
4

3

])
log

[
2Rq

] }
R2
q + O(R3

q ),

(55)and

D(0)
1 = (4π)2

(
13Lr

1 + 13

4
Lr

2 + 61

16
Lr

3 − 51

8
Lr

4

)
,

D(0)
2 = (4π)2

(
13

4
Lr

2 + 43

48
Lr

3

)
,

D(0)
3 = (4π)2(4Lr

1 + Lr
2 + Lr

3 − 3Lr
4), (56)

D(1)
1 = (4π)2

(
8Lr

1 + 2Lr
2 + 2Lr

3 − 57

4
Lr

4 + 57

4
Lr

5 − 18Lr
8

)
,

D(1)
2 = (4π)2

(
8Lr

1 + 4

3
Lr

3 − 6Lr
4 + 18Lr

5 − 36Lr
8

)
,

D(1)
3 = (4π)2(8Lr

1 + 2Lr
2 + 2Lr

3 − 3Lr
4 + 3Lr

5), (57)

D(2)
1 = (4π)2(584Lr

1 + 308Lr
2 + 272Lr

3 − 258Lr
4

+ 234Lr
5 − 432Lr

8),

D(2)
2 = (4π)2

(
5Lr

1 − 17Lr
2 − 11

6
Lr

3

−51

2
Lr

4 + 75Lr
5 − 144Lr

8

)
,

D(2)
3 = (4π)2(20Lr

1 + 5Lr
2 + 5Lr

3 − 6Lr
4 + 9Lr

5),

D(2)
4 = (4π)2(14Lr

1 + 8Lr
2 + 7Lr

3 − 6Lr
4 + 5Lr

5 − 12Lr
8).

(58)
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We can then connect the chiral SU (2) constant F in terms
of the chiral SU (3) LECs as follows:

F

F0
= lim

mu,md→0

Fπ

F0
= 1 + d1

[
M2

K

(4πF0)2

]

+ d2

[
M2

K

(4πF0)2

]2

+ O(m3
s ) (59)

where d1 and d2 are understood to be in the limitmu = md =
0. In this limit Eq. (51) agrees perfectly with the one-loop
matching done in [5].

A similar expansion for the pion mass representation given
in this paper is given below. In this case, we express the
expansion in terms of the parameter B0ms rather than M2

K so
as to facilitate comparison with the results of [15]. We have

M2
π

(mu + md)B0
= 1 + c1

[
ms B0

(4πF0)2

]
+ c2

[
ms B0

(4πF0)2

]2

+ O(m3
s ) (60)

where

c1 = −16(4π)2(Lr
4 − 2Lr

6) − 2

9
log

[
4B0ms

3μ2

]

−
{

16(4π)2(2Lr
4 + Lr

5 − 4Lr
6 − 2Lr

8) + 1

9

+ log

[
4

3

]
− 8

9
log

[
4B0ms

3μ2

]
− log

[
2Rq

]}
Rq

−
{

1

36

}
R2
q + O(R3

q), (61)

c2 = ctree
2 + cloop

2 , (62)

and

ctree
2

64(4π)4 = −Cr
16 + Cr

20 + 3Cr
21 + 4Lr

4(L
r
4 − 2Lr

6)

− {
2Cr

13 + Cr
15 − 2Cr

20 − 12Cr
21 − 2Cr

32

−8
(
Lr

4(2L
r
4 + Lr

5 − 4Lr
6 − Lr

8) − Lr
5L

r
6

)}
Q

−
{

2Cr
12 + 4Cr

13 + Cr
14 + 2Cr

15 + 2Cr
16

+ Cr
17 − 3Cr

19 − 6Cr
20 − 12Cr

21 − 2Cr
31

− 4Cr
32 − 4

(
2Lr

4 + Lr
5

) (
2Lr

4 + Lr
5 − 4Lr

6

−2Lr
8

) }
R2
q + O(R3

q), (63)

cloop
2 = 11

12
log2

[
B0ms

μ2

]
−

(
32

9
C(0)

1 + 380

81
− 2

9
log

[
4

3

])

× log

[
B0ms

μ2

]
− 38

81
log

[
4

3

]

+ 2

9
log2

[
4

3

]
+ 16

9

(
C(0)

2 − 2 log

[
4

3

]
C(0)

3

)

+ 73

16
− 2

3
F

[
4

3

]
+

{
97

54
log2

[
B0ms

μ2

]

−
(

16

9
C(1)

1 + 1549

162
+ 5

27
log

[
4

3

])

× log

[
B0ms

μ2

]
− 407

324
log

[
4

3

]

+ 8

27
log2

[
4

3

]
− 8

9

(
C(1)

2 + 2 log

[
4

3

]
C(1)

3

)

+ 1075

648
− 79

144
F

[
4

3

]
−

(
16C(1)

4 + 4

9
log

[
4

3

]

−5

9
log

[
B0ms

μ2

])
log[2Rq ]

}
Rq

+
{

1165

108
log2

[
B0ms

μ2

]
−

(
8

9
C(2)

1 + 6347

324

− 7

54
log

[
4

3

])
log

[
B0ms

μ2

]
− 11663

6912

− 71117

82944
log

[
4

3

]
− 1

54
log2

[
4

3

]

+ 4

9

(
C(2)

2 − 4 log

[
4

3

]
C(2)

3

)
− 1373

36864
F

[
4

3

]

−
(

8

9
C(2)

4 + 27

2
− 1

3
log

[
4

3

]
− 119

6
log

[
B0ms

μ2

])

× log[2Rq ] + 17

2
log2[2Rq ]

}
R2
q + O(R3

q), (64)

and

C(0)
1 = (4π)2

(
26Lr

1 + 13

2
Lr

2 + 61

8
Lr

3 − 29Lr
4

−13

2
Lr

5 + 30Lr
6 − 6Lr

7 + 11Lr
8

)
,

C(0)
2 = (4π)2

(
13

2
Lr

2 + 43

24
Lr

3 + 2Lr
4

+4

3
Lr

5 − 4(Lr
6 + Lr

7 + Lr
8)

)
,

C(0)
3 = (4π)2

(
8Lr

1 + 2(Lr
2 + Lr

3) − 11Lr
4 − 2Lr

5

+ 12Lr
6 − 6Lr

7 + 2Lr
8

)
, (65)
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Table 1 Numerical contributions (in units of 10−6 GeV4) of different
terms to (Fπ )

(6)
loop, the parts not depending on LECs. The inputs to these

were Fπ = Fπ phys = 0.0922 GeV, mπ = mπ0 = 0.1350 GeV, mK =

mavg
K = 0.4955 GeV, and for the physical case mη = 0.5479 GeV. The

renormalization scale μ = 0.77 GeV

dπ
πKK dπ

πηη dπ
KKη dπ

sunset dπ
log×log dπ

log Sum

Physical −93.227 −0.028 100.890 −0.381 1.825 −8.891 −7.447

GMO −0.030 106.947 −0.482 1.976 −8.966 −7.472

C(1)
1 = (4π)2

(
88Lr

1 + 22Lr
2 + 53

2
Lr

3 − 76Lr
4

− 26Lr
5 + 72Lr

6 + 52Lr
8

)
,

C(1)
2 = (4π)2

(
88Lr

1 + 62

3
Lr

3 − 86Lr
4 − 74

3
Lr

5

+ 80Lr
6 − 28Lr

7 + 40Lr
8

)
,

C(1)
3 = (4π)2

(
16Lr

1 + 4(Lr
2 + Lr

3) − 31Lr
4

− 8Lr
5 + 36Lr

6 + 16Lr
8

)
,

C(1)
4 = (4π)2 (

3Lr
4 − 4Lr

6

)
, (66)

C(2)
1 = (4π)2

(
332Lr

1 + 164Lr
2 + 301

2
Lr

3 − 200Lr
4

− 78Lr
5 + 312Lr

6 + 24Lr
7 + 164Lr

8

)
,

C(2)
2 = (4π)2

(
−204Lr

1 + 32Lr
2 − 151

3
Lr

3 + 203Lr
4

+100

3
Lr

5 − 148Lr
6 − 22Lr

7 − 74Lr
8

)
,

C(2)
3 = (4π)2(4Lr

1 + Lr
2 + Lr

3 − 10Lr
4 − 3Lr

5

+ 12Lr
6 + 12Lr

7 + 10Lr
8),

C(2)
4 = (4π)2(252Lr

1 + 144Lr
2 + 126Lr

3 − 108Lr
4

− 54Lr
5 + 216Lr

6 + 108Lr
8). (67)

From Eq. (60) we obtain the matching for B, which agrees
completely with [15] in the chiral limit:

B

B0
= 1 + c1

[
ms B0

(4πF0)2

]
+ c2

[
ms B0

(4πF0)2

]2

+ O(m3
s ).

(68)

6 Numerical analysis

We present in this section a numerical analysis of the expres-
sions given in the preceding sections, and discuss some of
their implications.

Table 2 Numerical contributions (in units of 10−6 GeV4) of different
terms to the (Fπ )

(6)
loop of Appendix A.2, the part depending on the LECs.

The inputs are the same as in Table 1

Fit dπ
log×Li

dπ
Li

dπ
Li×Li

Sum Li Sum

BE14exact 7.475 0.064 0.817 8.356 0.909

BE14paper 7.456 0.072 0.841 8.372 0.925

Free fit 12.052 0.391 2.817 15.260 7.813

CQMfit 12.851 0.461 −0.702 12.611 5.164

6.1 Fπ

We begin by giving a breakdown of the relative numerical
contributions of the different terms constituting the O(p6)

term of Fπ . As the expressions used in Sects. 3 and 4 of [1]
correspond to those expressed in physical meson masses, we
use the physical values of the masses. The caption of Table
2 gives the numerical input values we used. Our expressions
are exact except for the approximation used for dπ

KKη. The
value calculated using the approximate expression Eq. (29)
agrees with using precise numerical expressions for the sun-
set integrals in Eq. (28) to 8 significant digits. The parts that
do not depend on the LECs are given in Table 1. The large
cancellations are due to the terms that diverge for mπ → 0.

The most recent fit of LECs with a number of different
assumptions are given in Ref. [24]. Their main fit is called
BE14 and can be found in Table 3 [24]. We show results both
for the exact fit results (BE14exact) and with the two digit
precision given in the reference (BE14paper). The free fit in
Table 2 in [24] was done with Lr

4 free and a slightly different
choice of p6 LECs, this fit we call free fit and finally we take
the fit with the p6 LECs estimated with a chiral quark model
of Table 2 in [24], labelled CQMfit. The results for the three
Lr
i -dependent contribution, their sum and the sum including

the contributions from Table 1 are given in Table 2.
We examine the contributions calculated using the

BE14exact LECs. The largest contribution arises from the
dlog term, followed by the dlog×Li term. The sign of these two
terms being opposite, however, reduces the overall contribu-
tion of the explicitly μ-scale dependent terms to the decay
constant. In absolute value terms, the bilinear chiral log terms
dlog×log provide the next largest contribution. The bilinear Li

terms are of an order of magnitude smaller. The sunsets have
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Table 3 Numerical contributions (in units of 10−6 GeV4) of different
terms to the GMO simplified (Fπ )

(6)
loop of Sect. 3, the part depending on

the LECs. The inputs are the same as in Table 1

Fit dπ
log×Li

dπ
Li

dπ
Li×Li

Sum Li Sum

BE14exact 7.443 0.064 0.817 8.324 0.852

BE14paper 7.427 0.072 0.841 8.340 0.868

Free fit 11.993 0.391 2.817 15.201 7.729

CQMfit 12.788 0.461 −0.702 12.547 5.075

a relatively small contribution in absolute value terms, but
due to cancellations of the other contributions, the value of
dsunset is little over a third of the total contribution to the sum.

The sum of the contributions calculated using BE14exact
(free-fit) LECs yields

Fπ

F0
= 1 + F

(4)

π + (F
(6)

π )loop + (F
(6)

π )CT

= 1 + 0.2085(0.3143) + 0.0126(0.1081)

+ 0.0755(0.0193)

= 1 + 0.2085(0.3143) + 0.0881(0.1274)

= 1.2966(1.4414). (69)

Using the expressions simplified using the GMO relation, we
obtain

Fπ

F0
= 1 + 0.2085(0.3143) + 0.0873(0.1263). (70)

The value given in [24] is

Fπ

F0
= 1 + 0.208(0.313) + 0.088(0.127), (71)

which agrees excellently with the physical representation and
decently with the GMO simplified representation. Note that
the last term has been calculated with exact p6 LECs as used
in [24].

The numerical values calculated using the free-fit LECs
demonstrate the sensitivity of the two-loop contribution to Fπ

to the values of the LECs. In particular, it is to be noted that
Lr

4 and Lr
6 are difficult to determine precisely, and the free-

fit values for these two low-energy constants have relatively

large uncertainties. The variation of (F
(6)

π )loop with Lr
4 and Lr

6
over their possible range in the free fit is shown in Figs. 2 and

3. The trend is of a progressively smaller value of (F
(6)

π )loop

for increasing Lr
6 and decreasing Lr

4. A more thorough fit
and detailed analysis of the LECs with the Fπ representation
is planned for the future after a similar representation for the
kaon and eta have been obtained.

The dependence of Fπ/F0 on M2
K given in Eq. (59), with

MK = 0.4955 GeV and F0 on the r.h.s. replaced by the

 0
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 0.1

 0.15

 0.2
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(F
π)
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op

(6
)
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r

Fig. 2 Lr
4 dependence of (F

(6)

π )loop. The full line is the value for Lr
6 =

0.49 × 10−3, while the shaded area indicates the range of possible
values corresponding to the ±0.25 uncertainty of Lr

6 in the free fit
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 0.1

 0.15

 0.2

 0.25

 0.0003  0.0004  0.0005  0.0006  0.0007

(⎯F
π)

lo
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(6
)

L 6
r

Fig. 3 Lr
6 dependence of (F

(6)

π )loop. The dashed line is the value for
Lr

4 = 0.76×10−3, while the shaded area indicates the range of possible
values corresponding to the ±0.18 uncertainty of Lr

4 in the free fit

physical Fπ phys, has the following numerical form in the
chiral limit:

F

F0
= 1 + 0.1499(0.2562) + 0.0157(−0.0516) + · · · .

(72)

The first set of numbers correspond to the use of the
BE14exact LECs, while the numbers in parentheses are cal-
culated using the free fit. Figure 4 shows the MK dependence
of F/F0 using these inputs, keeping F0 = Fπ fixed on the.
A significant divergence in the two sets of values is observed
as M2

K increases.
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Fig. 4 M2
K dependence of F/F0 in the chiral limit

The largest contribution to F/F0 atO(m2
s ) comes from the

d tree
2 term, followed by the term proportional to log(B0ms/μ

2).
In absolute terms, the pure number contribution to d2 is
greater than that of the (−11/12) log(B0ms/μ

2) term, but
its sign being negative, the pure number serves to decrease
the numerical size of d2, as do all the remaining terms as well.
Ignoring the terms proportional to the Li in d loop

2 , one gets a
value of −1.4244 for d2, in contrast to 0.4698 when the Li

proportional terms are retained. The Li therefore contribute
significantly to the O(M2

K ) contribution to Fπ .
The effect of the higher-order terms in Rq can be seen by

comparing Eq. (72) with Eq. (76) below, which gives numer-
ical values for Fπ/F0. We use a value of Rq = m̂/ms =
1/24.4 obtained from [25], the numerical value of d1, Eq.
(52), with corrections up to O(R2

q), is

d1 = 0.8198(1.4009) + 0.3454(0.3425) − 0.0108(−0.0107)

= 1.1544(1.7327). (73)

Similarly,

d tree
2 = 2.5022(−0.0863) − 0.3229(−0.2641) + 0.0170(0.0129)

= 2.1963(−0.3375), (74)

d loop
2 = −2.0324(−1.4574) − 0.0180(−0.1834)

− 0.0729(−0.0718)

= −2.1233(−1.7126). (75)

Note that the O(Rq) contribution of d loop
2 evaluated using

the BE14exact LECs is numerically smaller than the O(R2
q).

Note too that the O(Rq) value calculated using the free-fit
value differs from the one calculated using BE14exact by an
order of magnitude. Putting it all together we obtain up to
O(R2

q , s
2) the following expansion:

Fπ

F0
= 1 + 0.2111(0.3169) + 0.0024(−0.0686) + · · · ,

(76)

which gives a more accurate numerical representation of the
effect on Fπ of integrating the strange-quark mass out. The
effect of the correction due to m̂ to the chiral limit is partic-
ular pronounced at O(R2

q), with the value of the chiral limit
number at this order given in Eq. (72) calculated using the
BE14 fit differs from its analogous value in Eq. (76) by one
order of magnitude, due to cancelations between the different
parts.

6.2 m2
π

An analysis of the expression for the pion mass produces the
numerical results given in Tables 4 and 5. The large cancel-
lations in the sunset contributions follow from the fact that
the separate parts do not vanish in the limit mπ → 0 but their
sum does. Except for CQMfit, which was not a good fit in
[24], the largest contribution comes from the pure logarith-
mic terms, the contribution of which, however, is cancelled to
a large degree by the log ×Li term of similar magnitude but
opposite sign. The bulk of the net contribution to (M (6)

π )loop

therefore comes from the sunsets diagrams and the bilinears
in the chiral logs. The cLi and cLi×L j contribute very little.
Using the BE14exact (free-fit) LECs, we get (Table 6):

M2
π

m2
π

= 1.057(0.940) + (m2
π )(4) + (m2

π )
(6)
loop + (m2

π )
(6)
CT

= 1.057(0.940) − 0.0051(0.1044)

+ 0.1254(0.1292) − 0.1769(−0.1732)

= 1.057(0.940) − 0.0051(0.1044) − 0.0515(−0.0440).

(77)

Using the expressions simplified using the GMO relation, we
get

Table 4 Numerical contributions (in units of 10−7 GeV6) of different terms to
(
m2

π

)(6)

loop of Appendix A.1, the parts not depending on LECs. The
inputs are the same as in Table 1

cπ
πKK cπ

πηη cπ
KKη cπ

sunset cπ
log×log cπ

log Sum

Physical 11.721 0.009 −10.780 0.774 0.312 2.272 3.359

GMO 0.010 −11.430 0.808 0.284 2.285 3.376
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Table 5 Numerical contributions (in units of 10−7 GeV6) of different
terms to

(
m2

π

)(6)

loop, the part depending on the LECs. The inputs are the
same as in Table 1

Fit cπ
log×Li

cπ
Li

cπ
Li×Li

Sum Li Sum

BE14exact −1.681 −0.023 −0.002 −1.707 1.652

BE14paper −1.717 −0.026 −0.005 −1.748 1.610

Free fit −1.283 −0.142 −0.231 −1.657 1.701

CQMfit 1.570 −0.168 −3.844 −2.442 0.916

Table 6 Numerical contributions (in units of 10−7 GeV6) of different
terms to the GMO simplified (m2

π )
(6)
loop of Sect. 4, the part depending on

the LECs. The inputs are the same as in Table 1

Fit cπ
log×Li

cπ
Li

cπ
Li×Li

Sum Li Sum

BE14exact −1.730 0.058 −0.002 −1.674 0.170

BE14paper −1.765 0.054 −0.005 −1.716 0.166

Free fit −1.319 −0.080 −0.232 −1.631 0.175

CQMfit 1.565 −0.173 −3.844 −2.452 0.092

M2
π

m2
π

= 1.057(0.940) − 0.0060(0.1035) − 0.0476(−0.0407).

(78)

The lowest-order term is determined by having the right-hand
side sum to 1. This agrees well with the numerical values
given in [24].

Numerically, with
√
ms B0 = 0.484 GeV, F0 = 0.0922 GeV

and BE14exact (free-fit) LECs, we have for the expansion
given in Eq. (68) in the chiral limit

B

B0
= 1 + 0.0197(0.1219) − 0.0586(−0.1027) + · · · .

(79)

Figure 5 shows the ms dependence of B/B0 for two sets of
LECs, BE14exact and free fit. The two sets of LECs produce
the same general behaviour, but they are different numeri-
cally.

7 Fitting lattice data

In the equal mass case the formulae have a simple form in
terms of the physical mass and decay constant. For the two-
flavour case these can be found in the FLAG report [27], and
for the three-flavour case in [28]. Here, the only non-analytic
dependences that occur are logarithms, allowing for a com-
pact expression. Even here there are a number of different
ways to express the result. In terms of the physical mass m2

π ,
the physical decay constant Fπ , the lowest-order mass M2,
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Fig. 5 ms dependence of M2
π/m2

π in the chiral limit

and the chiral limit decay constant F, the first option is

m2
π = M2

{
1 + x

(
1

2
log

M2

μ2 + lrM

)

+ x2
(

17

8
log2 M2

μ2 + cr1M log
M2

μ2 + cr2M

)}

+ O(x3),

Fπ = F

{
1 + x

(
− log

M2

μ2 + lrF

)

+x2
(

−5

4
log2 M2

μ2 + cr1F log
M2

μ2 + cr2F

)}

+ O(x3). (80)

Here the left-hand side is the physical observable, and
the right-hand-side is expressed purely in terms of lowest-
order quantities. The expansion parameter here is x =
M2/(16π2F2).

An alternative is to write the lowest order on the left-hand
side and the physical quantities on the right-hand side:

M2 = m2
π

{
1 + ξ

(
−1

2
log

m2
π

μ2 + l̃rM

)

+ ξ2
(

−5

8
log2 m2

π

μ2 + c̃r1M log
m2

π

μ2 + c̃r2M

)}

+ O(x3),

F = Fπ

{
1 + ξ

(
log

m2
π

μ2 + l̃rF

)

+ ξ2
(

−1

4
log2 m2

π

μ2 + c̃r1F log
m2

π

μ2 + c̃r2F

)}

+ O(ξ3). (81)

Here the expansion is in terms of ξ = m2
π/(16π2F2

π ).
A third alternative is to have the physical quantities on the

left hand side but do the expansion on the right-hand side in

123



497 Page 14 of 20 Eur. Phys. J. C (2017) 77 :497

terms of physical masses.

m2
π = M2 + m2

πξ

(
1

2
log

m2
π

μ2 + l̂rM

)

+ m2
πξ2

(
5

8
log2 m2

π

μ2 + ĉr1M log
m2

π

μ2 + ĉr2M

)

+ O(ξ3),

Fπ = F

{
1 + ξ

(
− log

m2
π

μ2 + l̂rF

)

+ ξ2
(

5

4
log2 m2

π

μ2 + ĉr1F log
m2

π

μ2 + ĉr2F

)}

+ O(ξ3). (82)

There are obviously even more possibilities but these are the
three that we know have been used to fit data. The coefficients
in the three options are clearly related by recursively using
the expansions. The three options differ by higher orders
(NNNLO).

We use a generic notation for all of the coefficients below
with a · over the letter and I = M, F . The coefficients l̇rI , ċ

r
1I

depend on the NLO LECs while the cr2I in addition depend
on the NNLO LECs. The expressions (80–82) are exactly
μ-independent when the μ-dependence of the coefficients
l̇rI , ċ

r
i I , . . . is taken into account. The FLAG report uses a

slightly different form where lrI is traded for the scale of
NLO leading logarithm �3,4 and c1I for the scale of the log2

terms �I and a similar notation for the ξ -expansion.
A side comment is that the leading logarithms are known

to higher orders [29–31].
When different masses come into play there are clearly

more ways of writing some masses as lowest-order and oth-
ers as physical ones, as well as the complication that the
lowest-order masses satisfy the GMO relation allowing for
having different choices for which physical masses to use.
The final complication is that the non-analytic dependence
from the sunset diagram is considerably more involved than
just logarithms, and in fact a large aim of this program is to
find faster numerical ways to handle exactly this.

In the three-flavour fitting of LECs to data [24,32,33] tra-
ditionally forms corresponding to the third option, Eq. (82),
have been used, called “expansion in physical masses and
Fπ .” The equivalent to the x-expansion of Eq. (80) is usually
called expansion in lowest-order quantities. Both cases were
calculated in [1] and can be downloaded from [34]; they are
included in CHIRON [2].

In lattice calculations one has easy access to the physical
masses for the charged pion and kaon while the eta mass is
more difficult. On the other hand one would still like to have
the expansion in terms of physical quantities since part of
the higher corrections are precisely changing lowest-order
masses in the loop diagrams to physical masses. For fitting

lattice data we thus choose an option where one uses the
physical pion decay constant and the physical charged pion
and kaon masses. The eta mass in the loops is then replaced
by the value obtained by using the GMO relation with the
physical pion and koan mass as input. These are the formulae
quoted in the main text.

We can now check how many parameters are needed for
the expressions for the pion mass and decay constant to
NNLO. We use here the notationm2

π andm2
K for the physical

pion and kaon masses while m2
η = (4/3)m2

K − (1/3)m2
π .

The GMO expressions can be written as

m2
π = M2 + m2

π

{
1

2
ξπλπ −

(
2

9
ξK − 1

18
ξK

)
λη + ξK L̂r1M

+ ξπ L̂r2M

}
+ m2

π

(
K̂ r

1Mλ2
π + K̂ r

2MλπλK + K̂ r
3Mλπλη

+ K̂ r
4Mλ2

K + K̂ r
5MλK λη + K̂ r

6Mλ2
η

+ ξ2
K FM

[
m2

π

m2
K

]
+ Ĉ1Mλπ

+ Ĉ2MλK + Ĉ3Mλη + Ĉ4M

)
,

Fπ

F
= 1 +

(
−ξπλπ − 1

2
ξK λK + ξK L̂r1F + ξπ L̂r2F

)

+
(
K̂ r

1Fλ2
π + K̂ r

2FλπλK + K̂ r
3Fλπλη + K̂ r

4Fλ2
K

+ K̂ r
5FλK λη + K̂ r

6Fλ2
η + ξ2

K FF

[
m2

π

m2
K

]

+ Ĉ1Fλπ + Ĉ2FλK + Ĉ3Fλη + Ĉ4F

)
(83)

where we defined the quantities ξπ = m2
π/(16π2F2

π ), ξK =
m2

K /(16π2F2
π ) and λi = log(m2

i /μ
2). The coefficients L̂r

i I

are a function of the NLO LECs Lr
i . Each of the K̂ r

i I , Ĉ
r
i I

has three terms proportional to ξ2
π , ξπξK , ξ2

K , respectively.
The K̂i I and FI are fully determined, the Ĉr

i I , i = 1, 2, 3

depend linearly on the NLO LECs and Ĉ4F depends up
to quadratically on the NLO LECS and linearly on the
NNLO LECs. There is some ambiguity in dividing the terms
not depending on LECs between the various terms since
log(m2

i /m
2
K ) = λi − λK for i = π, η.

The FI can be subdivided as

FI [ρ] = 1

16π2

{
a1I + (a2I + a3I log[ρ] + a4I log2[ρ])ρ

+ (a5I + a6I log[ρ] + a7I log2[ρ])ρ2

+a8I log

[
m2

η

μ2

]}
+ O(ρ3). (84)
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Explicitly, the coefficients for the pion mass are given by

L̂r
1M = −16(4π)2(Lr

4 − 2Lr
6),

L̂r
2M = −128π2(Lr

4 + Lr
5 − 2Lr

6 − 2Lr
8), (85)

K̂ r
1M = 3

8
ξπξK + 121

144
ξ2
π ,

K̂ r
2M = −3

4
ξπξK ,

K̂ r
3M = 5

9
ξπξK − 1

12
ξ2
π ,

K̂ r
4M = 175

144
ξ2
K + 1

18
ξπξK ,

K̂ r
5M = 1

12
ξπξK − 43

72
ξ2
K ,

K̂ r
6M = 739

1296
ξ2
K − 67

648
ξπξK − 11

1296
ξ2
π , (86)

Ĉr
1M = −

(
4(4π)2(14Lr

1 + 8Lr
2 + 7Lr

3 − 18Lr
4

−12Lr
5 + 32Lr

6 + 22Lr
8) + 1199

288

)
ξ2
π

+
(

40(4π)2(Lr
4 − 2Lr

6) − 47

72

)
ξπξK ,

Ĉr
2M = −

(
4(4π)2(16Lr

1 + 4Lr
2 + 5Lr

3 − 20Lr
4

−4Lr
5 + 24Lr

6 + 8Lr
8) + 38

9

)
ξ2
K

+
(

8(4π)2(Lr
4 + Lr

5 − 2Lr
6 − 2Lr

8) − 1

6

)
ξπξK ,

Ĉr
3M = −

(
16

9
(4π)2(16Lr

1 + 4Lr
2 + 4Lr

3 − 18Lr
4

−3Lr
5 + 20Lr

6 − 12Lr
7 + 2Lr

8) + 10

27

)
ξ2
K

+
(

8

9
(4π)2(16Lr

1 + 4Lr
2 + 4Lr

3 − 21Lr
4

−8Lr
5 + 26Lr

6 − 24Lr
7 + 4Lr

8) − 7
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It may be noted that the aiM , i = 1, .., 8 have an elegant
structure. Similarly, for the pion decay constant, we have

L̂r
1F = 8(4π)2Lr

4,

L̂r
2F = 4(4π)2(Lr

4 + Lr
5), (89)
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Ĉr
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. (92)

For the equal mass case we had one free parameter at NLO for
the mass and decay constant and two each at NNLO. For the
three-flavour case in the isospin limit there is a significantly
larger number, two each at NLO but, three each at NNLO
not involving logarithms and 9 each for the terms involving
logarithms. The latter are clearly not independent since they
at most depend on the eight NLO LECs Lr

1, . . . , L
r
7.

We defer a full study to future work when kaon and eta
quantities will be included.

8 Conclusions

In this work, we have used the explicit representations of the
two-loop contribution to the pion decay constant and mass in

three-flavour chiral perturbation theory [1] to derive (semi-
)analytic expressions for them. That it is semi-analytic and
not fully analytic stems from the fact that we treated the
three mass configuration sunset integrals appearing in them
as an expansion in the square of the external momentum and
have retained only the first few terms. This semi-analytic
representation is nonetheless very accurate and numerically
reproduces the full result to a high degree [1,2].

We have used these expressions to expand Fπ and Mπ

in the strange-quark mass to O(m2
s ) and to perform the

matching of two-flavour low-energy constants B and F
with their three-flavour counterparts in the chiral limit. The
results obtained fully agree with those previously derived in
[5,15,26].

Aside from an investigation of the numerical implications
of the strange-quark expansion of both Fπ and B0, we have
also done a preliminary study of the dependence of Fπ on
the low-energy constants Lr

4 and Lr
6. These show trends that

are possibly in contradiction with the large Nc analysis of
these LECs, and a more detailed study needs to be done.
The breakdown of the relative numerical contributions to the
pion decay constant at two loops shows that the contribu-
tion from the terms involving the Lr

i and Cr
i , although not

large, is not insignificant. Their contribution is amplified par-
tially due to the cancellation of other terms that have a larger
absolute value. Furthermore, in the chiral limitms expansion,
the terms proportional to the low-energy constants contribute
greatly to the O(m2

s ) term. All these point to the need for a
thorough study into the dependence of such quantities on the
LECs for a better understanding of the chiral perturbation
series.

We also present a discussion of the various ways in which
NNLO results for the pion mass and decay constant may be
represented, and their relative merits. We then rewrite the
expressions given in this paper in a manner which allows for
east fitting with data from lattice simulations.

In forthcoming work, we will present similar semi-
analytic expressions for the three-flavour two-loop contribu-
tions to the kaon and eta mass and decay constants, and use
those results and the ones presented in this work to do a pre-
liminary fit of lattice data to obtain new values for some low-
energy constants. That exercise, along with the results and
analyses presented in this work, is indicative of the useful-
ness of such analytic representations of ChPT amplitudes and
other quantities, and it will hopefully encourage and facilitate
the lattice community in making use of full NNLO results
from ChPT.
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Appendix A: Expressions without the use of GMO

A.1 Pion mass

We have

F2
π

m2
π

(m2
π )(4) = −8m2

π (Lr
4 + Lr

5 − 2Lr
6 − 2Lr

8)

− 16m2
K (Lr

4 − 2Lr
6) − 1

3
m2

ηl
r
η + m2

π l
r
π ,

(93)

16π2

m2
π

cπ
Li

= m4
π

(
4Lr

1 + 74

9
Lr

2 + 56

27
Lr

3

)

+ 1

9
m4

K

(
104Lr

2 + 86

3
Lr

3

)

− 16

9
m2

Km
2
π

(
Lr

2 + 1

3
Lr

3

)
, (94)

(16π2)cπ
log =

(
− 3

16
m4

ηm
2
π + 1

4
m2

ηm
2
Km

2
π + 1

3
m2

ηm
4
π

−3

4
m4

Km
2
π − 11

6
m2

Km
4
π − 299

36
m6

π

)
lrπ

+
(

−29

4
m4

Km
2
π − 1

3
m2

Km
4
π

)
lrK

+
(

3

16
m4

ηm
2
π − 5

4
m2

ηm
2
Km

2
π − 1

72
m2

ηm
4
π

)
lrη,

(95)

cπ
log×log =

(
121

36
m6

π + 3

2
m4

πm
2
K − 1

4
m2

πm
4
K

)
(lrπ )2

+
(

1

2
m2

πm
4
K − 3m4

πm
2
K

)
lrπ l

r
K

+
(

5

3
m4

πm
2
η

)
lrπ l

r
η +

(
5

2
m4

Km
2
η

−3

2
m2

Km
4
η − 3

2
m2

πm
2
Km

2
η

)
lrK l

r
η

+
(

1

6
m4

πm
2
K + 19

4
m2

πm
4
K + 1

12
m2

πm
2
Km

2
η

−5

4
m4

Km
2
η + 3

4
m2

Km
4
η

)
(lrK )2

+
(

1

18
m4

πm
2
η + 25

12
m2

πm
2
Km

2
η − 5

4
m4

Km
2
η

−29

36
m2

πm
4
η + 3

4
m2

Km
4
η

)
(lrη)

2, (96)

cπ
log×Li

m2
π

= 8

9
m2

ηm
2
π l

r
η(12Lr

1 + 3Lr
2 + 3Lr

3 − 18Lr
4

− 8Lr
5 + 24Lr

6 − 48Lr
7 − 6Lr

8)

− 16

9
m2

ηm
2
K l

r
η(24Lr

1 + 6Lr
2 + 6Lr

3 − 27Lr
4

− 4Lr
5 + 30Lr

6 − 24Lr
7) − 8m4

K l
r
K (16Lr

1

+ 4Lr
2 + 5Lr

3 − 20Lr
4 − 4Lr

5 + 24Lr
6 + 8Lr

8)

− 8m4
π l

r
π (14Lr

1 + 8Lr
2 + 7Lr

3 − 18Lr
4 − 12Lr

5

+ 32Lr
6 + 22Lr

8) + 16m2
Km

2
π (lrK (Lr

4 + Lr
5

− 2Lr
6 − 2Lr

8) + 5lrπ (Lr
4 − 2Lr

6)). (97)

The contribution from the sunset integrals is given by
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where cπ
πηη is given by Eq. (44), cπ

πKK is given by Eq. (45),
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With ρ ≡ m2
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A.2 Pion decay constant

We have
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The term involving the sunset integrals dπ
sunset is given by
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This can be expressed as an expansion in s = m2
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(

11

192
− π2

96

)
m2

K

+ F[τ ]
(
m2

η

32
− m2

K

8

)

+
(

7

96
m2

η + 1

48
m2

K

)
log[ρ] − 1

32
m2

η log2[τ ]

− 7

96

(
m2

η

)
log[τ ], (112)

d(2)
KKη = 1

λ2

(
23

576
m4

η − 1

4

m6
K

m2
η

− 235

576
m2

ηm
2
K + 139

288
m4

K

)

+ 1

λ3

(
−1

2

m10
K

m4
η

+ 17

48

m8
K

m2
η

− 7

48
m2

ηm
4
K − 1

3
m6

K

)
F[τ ]

+ 1

λ3

(
1

192
m6

η − 1

32
m4

ηm
2
K − 1

2

m8
K

m2
η

+83

96
m2

ηm
4
K + 13

48
m6

K

)
log[τ ]

− 1

192
log[ρ]. (113)

In the above expressions, τ ≡ m2
η/m

2
K , ρ ≡ m2

π/m2
K ,

λ ≡ m2
η − 4m2

K , and F[x] is defined in Eq. (13).

Appendix B: Two mass sunset master integrals

The finite parts of the master integrals appearing in the
expressions for dπKK and dπηη are presented here. The chiral
logarithms arising from these integrals do not appear in the
expressions below, having been removed and included in the
clog, clog×log, dlog or dlog×log term as appropriate. We have

H
χ

πKK = m2
K

(16π2)2

(
2 + π2

6
+ m2

π

m2
K

(
π2

12
− 1

8

)

− m2
π

2m2
K

log2

[
m2

π

m2
K

]
+ log

[
m2

π

m2
K

]

+
(
m2

K

m2
π

+ m2
π

m2
K

− 2

) (
Li2

[
m2

π

m2
K

]

+ log

[
1 − m2

π

m2
K

]
log

[
m2

π

m2
K

]) )
, (114)

H
χ

2πKK = 1(
16π2

)2

(
π2

12
− 1

2
− 1

2
log2

[
m2

π

m2
K

]

+
(

1 − m2
K

m2
π

)(
Li2

[
m2

π

m2
K

]

+ log

[
m2

π

m2
K

]
log

[
1 − m2

π

m2
K

]) )
. (115)

The expressions for H
χ

πηη and H
χ

2πηη can be obtained from
the above by making the replacement mK → mη.
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