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Abstract Utilizing an ansatz developed by Maurya et al.
we present a class of exact solutions of the Einstein–Maxwell
field equations describing a spherically symmetric compact
object. A detailed physical analysis of these solutions in terms
of stability, compactness and regularity indicates that these
solutions may be used to model strange star candidates. In
particular, we model the strange star candidate Her X-1 and
show that our solution conforms to observational data to an
excellent degree of accuracy. An interesting and novel phe-
nomenon which arises in this model is the fact that the relative
difference between the electromagnetic force and the force
due to the pressure anisotropy changing sign within the stel-
lar interior. This may be an additional mechanism required
for stability against cracking of the stellar object.

1 Introduction

General relativity (GR) has proved to be extremely fruitful in
describing the physical universe and the structures contained
therein. Over and above contributing to our understanding
of astrophysical bodies and the evolution of the universe,
GR is quintessential in understanding the nature of gravity
and its behaviour in the presence of extremely dense sources
as well as in higher dimensions [1,2]. With the discovery
and observations of ultra-compact objects such as pulsars,
neutron stars and black holes, the search for exact solutions
of the Einstein field equations has moved away from mere
mathematical excursions into the realm of modelling physi-
cal objects based on observational data [3]. It has just been
over a century since the first solution of the Einstein field
equations describing a self-gravitating, bounded object was
first obtained by Schwarzschild [4]. The Schwarzschild inte-
rior solution describes a uniform density sphere and is a first
approximation in describing the gravitational field of a static,
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spherically symmetric object. This solution is highly ide-
alised and propagation speeds within the object exceed the
speed of light thus rendering the model noncausal. Since the
pioneering effort of Schwarzschild in obtaining exact solu-
tions of the Einstein field equations describing the gravita-
tional field of a bounded mass, there has been a massive
drive to obtain realistic solutions describing self-gravitating
objects. An in-depth study of the available exact solutions
in the literature indicate that many of them fall short of
describing physically realizable stellar structures [5]. Many
of these solutions are only valid in some region of the object,
other solutions display unphysical behaviour in the density
and pressure profiles while many stellar models are unstable
against radial perturbations. The wide body of exact solutions
which currently exist were obtained through various assump-
tions on the spacetime geometry, matter content or both [6].
Spherical symmetry is the natural assumption to make when
modelling static stars. There is, however, more freedom in
choosing the matter content of the stellar fluid. In the past
researchers have worked with perfect fluids, charged inte-
riors, pressure anisotropy, bulk viscosity and scalar fields.
More recently, motivated by developments in cosmology,
modelling of stellar structures has included dark energy, dark
matter and phantom energy [7,8].

Departure from spherical symmetry has been utilised in
modelling stars. The Vaidya–Tikekar (VT) superdense stel-
lar model incorporates a spheroidal geometry for the interior
of the star [9]. The VT model has been shown to approxi-
mate the behaviour of neutron stars to a very good approxi-
mation [10]. Tikekar et al. have successfully modelled stars
with paraboidal symmetry. The spheroidal parameter which
appears in the gravitational potential measures the deviation
from spherical symmetry. Work on rotating stars utilise an
axis-symmetric metric to describe the stellar interior [11,12].
Recently there has been a surge in obtaining exact solutions
of the Einstein field equations via embedding [13–21]. In
1947 Karmarkar obtained a restriction which is a necessary
condition for embedding a spherically symmetric spacetime
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in four dimensions into a flat five-dimensional spacetime. In
general, an n-dimensional Riemannian spacetime is said to be
of class p if it can be embedded into a flat space of dimension
n + p [22]. The Karmarkar condition relates to class 1 space-
times. Pandey and Sharma later showed that the Karmarakar
condition is only a necessary condition for a spacetime to
be of class 1 [23]. A further requirement has to be imposed
for sufficiency of the Karmarkar condition. The derivation
of the Karmarkar condition is purely geometric in nature; it
gives a relationship between the two gravitational potentials.
This is useful because in order to obtain a complete descrip-
tion of the gravitational behaviour of the model one needs to
specify one of the metric functions and the other is obtained
via the Karmarakar condition. It is also interesting to note
that the Karmarkar condition together with the assumption of
pressure isotropy picks out the interior Schwarzschild solu-
tion as the only bounded matter configuration with vanishing
pressure anisotropy. It follows that if the interior metric of
a bounded sphere is of class 1, then the matter content is
necessarily anisotropic or charged, with the Schwarzschild
interior solution being the only exception.

In this paper we present a model of a spherically sym-
metric, charged object obtained by embedding a spherically
symmetric static metric in Schwarzschild coordinates into a
five-dimensional flat space. The pressure within the fluid dis-
tribution is anisotropic. The resulting condition arising from
the embedding reduces the problem of finding an exact solu-
tion to the Einstein–Maxwell equations to specifying one of
the gravitational potentials and the behaviour of the electric
field intensity.

2 The Einstein–Maxwell field equations for charged
anisotropic matter distribution

The line element describing the interior of a static, spheri-
cally symmetric matter distribution is given in Schwarzschild
coordinates [24,25] xi = (r, θ, φ, t) as follows:

ds2 = −eλ(r)dr2 − r2(dθ2 + sin2 θdφ2) + eν(r)dt2, (1)

where we seek the radial dependence of the potentials λ and
ν.

In this work we study charged compact objects within
the framework of classical general relativity. The Einstein–
Maxwell field equations relating the spacetime geometry to
the matter content are

Ri
j − 1

2
Rgi

j = κ(T i
j + Ei

j ), (2)

where κ = 8π is the Einstein coupling constant. We use
geometrized units in which G = 1 = c with G and c are
the Newtonian gravitational constant and speed of photons
in vacuum, respectively.

We assume that the radial and tangential stresses within
the interior matter distribution are unequal thus implying that
the matter within the star is locally anisotropic. The energy-
momentum tensor of the fluid the distribution and electro-
magnetic field are defined, respectively, as [26]

T i
j = [(ρ + pt )v

iv j − ptδ
i

j + (pr − pt )θ
iθ j ], (3)

Ei
j = 1

4

(
−Fim Fjm + 1

4
δi

j Fmn Fmn

)
, (4)

where vi is the four-velocity, vi = eν(r)/2δi
4, θ i is a unit

space-like vector in the radial direction, θ i = eλ(r)/2δi
1, ρ

is the energy density, pr is the radial pressure and pt is the
tangential pressure. The components for T i

j and Ei
j are

defined, respectively, as

T 1
1 = −pr , T 2

2 = T 3
3 = −pt , T 4

4 = ρ, (5)

E1
1 = −E2

2 = −E3
3 = E4

4 = 1

8π
eν+λF14 F41. (6)

Since we are employing spherical symmetry, the four-
current component is only a function of radial distance, r .
The only non-vanishing components of the electromagnetic
field tensor are F41 and F14, related by F41 = −F14, which
describe the radial component of the electric field. If q(r)

represents the total charge contained within the sphere of
radius r , then it can be defined by the relativistic Gauss law
as

q(r) = 4π

∫ r

0
σr2eλ/2dr = r2

√
−F14 F14. (7)

From Eq. (7), we obtain

F41 = −e−(ν+λ)/2 q(r)

r2 . (8)

For the spherically symmetric metric (1), the Einstein–
Maxwell field equations may be expressed as the following
system of ordinary differential equations [26]:

ν′

r
e−λ − (1 − e−λ)

r2 = 8πpr − q2

r4 = −8π(T 1
1 + E1

1, )

(9)

[
ν′′

2
− λ′ν′

4
+ ν′2

4
+ ν′ − λ′

2r

]
e−λ = 8πpt + q2

r4

= −8π(T 2
2 + E2

2)

= −8π(T 3
3 + E3

3),

(10)

λ′

r
e−λ + (1 − e−λ)

r2 = 8πρ + q2

r4 = 8π(T 4
4 + E4

4), (11)

where the prime denotes differentiation with respect to r . If
we define the anisotropy parameter as Δ = pt − pr , then
from Eqs. (9) and (10) we obtain [27]
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Δ =
[

ν′′

2
− λ′ν′

4
+ ν′2

4
−

(
ν′ + λ′

2r

)]
e−λ

+
(

1 − e−λ

r2

)
− 2

q2

r4 . (12)

We note that when Δ = 0 the pressure is isotropic
at each interior point of the matter distribution. The term
2(pt − pr )/r appears in the conservation equations T i

j;i = 0
and represents a force due to the anisotropic nature of the
fluid. When pt > pr the force associated with anisotropy
is directed outwards and when pt < pr (Δ < 0), the force
is directed inwards. For Δ > 0 it has been shown that it
is possible to construct more compact objects compared to
their neutral counterparts (Δ = 0) [28]. Various approaches
have been adopted in finding solutions of the above system of
equations. The system (9)–(11) consists of the six unknowns
ρ, pr , pt , ν, λ and E2 = q2/r4, the electric field intensity.
In attempting to find exact solutions of the system describ-
ing anisotropic charged compact objects one could specify
an equation of state of the form p = p(ρ), choose the grav-
itational potentials ν and λ based on physical grounds or
prescribe the behaviour of the anisotropy parameter, Δ.

By using Eqs. (9)–(11), the expression of the pressure
gradient in terms of the anisotropy, the metric functions and
charge read

d pr

dr
= −ν′(λ′ + ν′)

2reλ
+ q

4πr4

dq

dr
+ 2Δ

r
, (13)

where Eq. (13) represents the charged generalization of the
well-known Tolman–Oppenheimer–Volkoff (TOV) equation
of hydrostatic for anisotropic stellar structure [24,25].

If the mass function for electrically charged fluid sphere
is denoted by m(r) we may then write

2m(r)

r
= 1 − e−λ(r) + q2

r2 . (14)

Various studies of anisotropic charged compact objects
have specified the behaviour of the mass function to obtain
the gravitational potential λ(r). This is then fed back into
the Einstein–Maxwell field equations to obtain the complete
gravitational and thermodynamical behaviour of the model.

3 Class 1 condition for spherical symmetric metric

Let us consider a five-dimensional flat line element

ds2 = −(dz1)2−(dz2)2−(dz3)2 − (dz4)2+(dz5)2, (15)

where we suppose the coordinates z1, z2, z3, z4 and z5 assume
the following forms:

z1 = r sin θ cos φ, z2 = r sin θ sin φ, z3 = r cos θ,

z4 = √
K e

ν
2 cosh

t√
K

, z5 = √
K e

ν
2 sinh

t√
K

.

In the above transformations K is a positive constant. We
can then write the differential forms of the above components
as

dz1 = dr sin θ cos φ+r cos θ cos φdθ−r sin θ sin φdφ,

(16)

dz2 = dr sin θ sin φ+r cos θ sin φdθ+r sin θ cos φdφ,

(17)

dz3 = dr cos θ − r sin θdθ, (18)

dz4 = √
K e

ν
2
ν′

2
cosh

t√
K

dr + e
ν
2 sinh

t√
K

dt, (19)

dz5 = √
K e

ν
2
ν′

2
sinh

t√
K

dr + e
ν
2 cosh

t√
K

dt, (20)

where a prime denotes differentiation with respect to the
radial coordinate r .

Substituting the above expressions dz1, dz2, dz3, dz4

and dz5 into the metric (15), we obtain

ds2 = −
(

1 + K eν

4
ν′2

)
dr2

−r2(dθ2 + sin2 θdφ2) + eν(r)dt2. (21)

A direct comparison of metric (21) and metric (1) yields

eλ =
(

1 + K eν

4
ν′2

)
. (22)

Equation (22) stands for the embedding class condition.
The pressure anisotropy factor (pt − pr = Δ) is readily

obtained from Eqs. (9) and (10) together with Eq. (22) as

Δ = ν′e−λ

32π

(
ν′eν

2B2r
− 1

) (
2

r
− λ′e−λ

1 − e−λ

)
− 2q2

r4 . (23)

It is clear from (23) that when Δ = 0, we have pt = pr

at each interior point of the fluid distribution. At this point
we should highlight the fact that the embedding class condi-
tion (22) together with the pressure isotropy (Δ = 0) yields
only two exact solutions for uncharged fluids, (1) the inte-
rior Schwarzschild solution and (2) the Kohler–Chao solution
[29]. The Kohler–Chao solution cannot be used to model a
bounded configuration such as a star since there is no surface
at which the radial pressure vanishes. Such a surface would
define the boundary of the star. The Schwarzschild interior
solution describes the interior gravitational field of a uni-
form density sphere and suffers various pathologies such as
the prediction of superluminal propagation velocities within
the fluid as well as being unstable against radial perturba-
tions. In a recent paper Maurya and Govender [30] modelled
charged compact objects with isotropic pressure via embed-
ding. The pressure isotropy condition becomes a definition
for the electric field intensity or the charge distribution. Just
as in our approach here the embedding relates the two metric

123



420 Page 4 of 14 Eur. Phys. J. C (2017) 77 :420

functions ν(r) and λ(r). Recently the modelling of compact
objects such as neutron stars, pulsars and strange stars has
attracted huge attention amongst researchers. This is mainly
due to the fact that a large number of data sets are available
in the literature against which the strengths and merits of the
various theoretical models can be tested. The role of the pres-
sure anisotropy within the stellar core has been highlighted
in many of these models.

4 Generalized charged anisotropic solution for compact
star

We can recast Eqs. (9)–(11) in terms of the mass function as
follows:

8πpr = [ν′(r2 + q2 − 2rm) − 2m]
r3 + 2q2

r4 , (24)

8πpt = [(qq ′ − rm′)(2 + rν′) − m(2r2ν′′ + r2ν′2 + rν′ − 2)]
2r3

−2q2ν′ − (r2 + q2)(2rν′′ + rν′2 + 2ν′)
4r3 − 2q2

r4 , (25)

8πρ = 2m′

r2 − 2qq ′

r3 . (26)

In this paper we would like to construct a generalized
model by adopting a single generic function ν(r). The invari-
ance of the Ricci tensor requires that the energy density ρ(r),
radial pressure pr (r) and tangential pressure pt (r) should
be finite at the origin. The regularity of the Weyl invariants
requires that mass m(r) and electric charge q(r) should attain
minimum values at the centre r = 0 of the configuration
(m(0) = q(0) = 0) and attain maximum values at the sur-
face of the star, i.e. m(0) = 0, m′(r) > 0 and q(0) = 0,
q ′(r) > 0.

In modelling of charged anisotropic compact stars Maurya
et al. [31] have shown that the metric function ν(0) = is
finite constant, q(0) = 0, ν′(0) = 0 and ν′′(0) > 0. Since
the energy density and radial pressure are positive finite and
continuous it follows that r > 2m(r) [32,33]. Form pr ≥ 0
with r > 2m(r) we have ν′(r) �= 0. This shows that the
generic function ν(r) is regular minimum at the centre and
a monotone increasing function of r . Bearing in mind these
observations we suppose the generic function ν(r) has the
following form:

ν(r) = n ln(1 + Ar2) + ln B (27)

where we have two cases:

Case (i) n < 0 and A < 0,
Case (ii) n > 0 and A > 0.

Here B is positive constant. We observe that ν(0) = ln B,

ν′ = 2n Ar
(1+Ar2)

and ν′′ = 2n A(1−Ar2)

(1+Ar2)2 . It follows that ν(0) > 0,

ν′(0) = 0, ν′′(0) = 2n A > 0 and ν(r) �= 0 with r �= 0 for
both cases (i) and (ii). This implies that this generic source
function ν(r) is a monotone increasing function of r with
regular minimum at r = 0 (Fig. 1). Substituting the value of
ν into Eq. (22) we obtain

λ = ln[1 + C Ar2(1 + Ar2)(n−2)], (28)

where C = n2 ABK .
This form of the metric function is well motivated and has

been utilised by numerous authors to model compact stars
arising from the Karmarkar condition. The parameter n plays
a pivotal role in the structure and stability of the compact
object. Table 5 provides an overview of the class 1 solutions
using the ansatz (27) for the metric function ν(r). We observe
that there is a strong connection as regards the range of n
which admits physically viable models and the nature of the
matter content of the star. Anisotropy and electric charge or
the absence thereof dictate the admissibility of the range of
n. It is evident from Eq. (27) that in the case of vanishing n
the spacetime is rendered flat. In this study we will consider
solutions for both n > 0 and n < 0. This approach will allow
us to investigate the impact of the ’switch’, n on the various
thermodynamical properties of the model. The solution is not
well behaved in the range −3 < n < 2.7. For −7.5 < n ≤
−3 and 2.7 ≤ n < 4, we will get a star with low mass. For
n ≤ −7.5 and n ≥ 4, we will get stellar models describing
compact objects such as Her X-1.

In order to determine the mass function for an electrically
charged compact star we suppose the electric charge function
q(r) is of the form

q(r) = E0 A2r6(1 + Ar2)n (29)

where E0 is positive constant. We note that the electric field
(E = q/r2) vanishes at the centre of the configuration. We
note that in the case of isotropic pressure the condition of the
pressure isotropy can be treated as a definition for the charge
as a function of the radial coordinate. This approach does not
guarantee that q(r) will have physically desirable properties
such as the function defined in (29). Utilising Eqs. (14) and
(29) we readily obtain the mass function m(r):

m(r) = Ar3(1 + Ar2)n−2[C + E0 Ar2(1 + Ar2)2 + C E0 A2r4(1 + Ar2)n ]
2

.

(30)

We observe from Eqs. (29) and (30) that q(0) = 0 and
m(0) = 0. However, both q ′(r) and m′(r) are positive for
r > 0 in both cases (i) and (ii). This indicates that q(r)

and m(r) are increasing monotonically away from centre and
attain regular minima at r = 0.
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Fig. 1 Behaviour of gravitational potential eν (left panel) and eλ (right panel) verses fractional radius r/R for Her X-1. The numerical values of
the constants are given in Tables 1 and 2

Table 1 Numerical values of physical parameters AR2, A, C , B, E0 for the compact star Her X-1 of mass M = 0.85(M�), radius R = 8.10 (km)
[38] for negative values of n

n AR2 A C B K E0

−10 −0.021727 −0.3311 × 10−3 −15.7670 0.6676 7.1328 × 102 0.0200 × 102

−100 −0.002200 −0.3350 × 10−4 −1.6121 × 102 0.66768 7.1328 × 102 0.0347 × 104

−1000 −0.000215 −0.3275 × 10−5 −1.6407 × 103 0.67267 7.2074 × 102 0.0906 × 106

−10,000 −0.0000215 −0.3275 × 10−6 −1.6411 × 104 0.67272 7.4475 × 102 0.0906 × 108

−100,000 −0.00000215 −0.3275 × 10−7 −1.6411 × 105 0.67271 7.4489 × 102 0.0906 × 1010

Table 2 Numerical values of physical parameters AR2, A, C , B, E0 for the compact star Her X-1 of mass M = 0.85(M�), radius R = 8.10 (km)
[38] for positive values of n

n AR2 A C B K E0

4 0.05836 0.889 × 10−3 6.79354 0.6632 7.2012 × 102 0.48

10 0.022375 0.341 × 10−3 16.5571 0.6674 7.2752 × 102 0.0500 × 102

100 0.002164 0.3298 × 10−4 1.6399 × 102 0.6717 7.4030 × 102 0.0805 × 104

1000 0.000214 0.3261 × 10−5 1.6466 × 103 0.67368 7.4953 × 102 0.1026 × 106

10,000 0.000021395 0.3260 × 10−6 1.6464 × 104 0.6737 7.4962 × 102 0.1027 × 108

100,000 0.0000021394 0.3260 × 10−7 1.6463 × 105 0.6737 7.4960 × 102 0.1027 × 1010

By plugging the values of Eqs. (30) and (29) into Eqs.
(24)–(26) we get [by assuming f = (1 + Ar2), ψ = Ar2]

pr = A[2n + E0ψ f n+2 + C f n(−1 + E0ψ
2 f n)]

8π [ f 2 + Cψ f n] , (31)

pt = (2 + nψ)n A f 2 − A f n[E0(ψ f 4 + C2ψ3 f 2n) + C f (1 − ψ + 2E0ψ
2 f n+1)]

8π [ f 2 + Cψ f n]2 , (32)

ρ = A f n

8π

[
−E0ψ + C

[ f 2 + Cψ f n] +2C f [1 + (n − 1)ψ]
[ f 2 + Cψ f n]2

]
. (33)

The relation of Eq. (12) provides the anisotropic factor Δ,
which is given by
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Δ = ψ[−n2 f 2 + 2n f (1 + ψ + C f n) + f n(2E0 f 4 + C2 f nΔ1 + 2C f Δ2)]
8π [ f 2 + Cψ f n]2 (34)

where Δ1 = [−1 + 2E0ψ
2 f n] and Δ2 = [−1 +

2E0ψ
2 f n+1].

The gradients of the pr , pt and ρ assume the following
forms:

d pr

dr
= 2r A2 ×

[
( f 2 + Cψ f n)[Dpr1 + n f n−1(E0ψ f 2 − C + C E0ψ

2 f n)] + Dpr2

8π [ f 2 + Cψ f n]2

]
,

(35)

d pt

dr
= −2r A2 ×

[
Dpt1 Dpt2 + [ f + Cψ f n−1][Dpt3 + Dpt4] + f n+1 Dpt5

8π [ f 2 + Cψ f n]3

]
,

(36)

dρ

dr
= 2r A2 f

[
−E0( f + nψ) f −1 × + Dρ1

[ f 2 + Cψ f n]3 + Dρ2 + Dρ3

[ f 2 + Cψ f n]2

]
, (37)

where

Dpr1 = 2n + E0 f n−1[1 + 3ψ3 + ψ(5 + 2C f n)

+7ψ2 + C(2 + n)ψ2 f n],
Dpr2 = −[2 + C f n + ψ(2 + Cn f n−1)]

×[2n f + E0ψ f 2+n + C f n(−1 + E0ψ
2 f n)]

Dpt1 = 2[2 + C f n + ψ(2 + Cn f n−1)],
Dpt2 = (2 + nψ)n f 2 − f n[E0ψ f 4 + C2 E0ψ

3 f 2n

+C f (1 − ψ + 2E0ψ
2 f n+1],

Dpt3 = −n2 f 2(1 + 3ψ) − n[4 − C f n − E0ψ
5 f n

−4E0ψ
4 f n(1 + C f n) + ψ(8 − E0 f n)],

Dpt4 = E0ψ
3 f n(6 + 8C f n + 3C2 f 2n) − ψ2

×[4 − 4E0 f n + C f n(1 − 4E0 f n)],
Dpt5 = −2Cψ + E0[1 + 5ψ4 + 4ψ(2 + C f n)

×(1 + 2ψ) + 3ψ2(6 + 4C f n + C2 f 2n)],
Dρ1 = −4C f [1 + (n − 1)ψ]

×[2 + C f n + ψ(2 + Cn f −1+n)],
Dρ2 = 2C(n − 1) f + 2C[1 + (n − 1)ψ]

−C[2 + C f n + ψ(2 + Cn f n−1)],
Dρ3 = nC f −1[ f 2 + Cψ f n] + 2C f [1 + (n − 1)ψ].

The physical viability of our model will be pursued in the
next section.

5 Physical properties of the solution

Since the pressure and density must be positive and finite at
the centre, (pr )r=0 > 0, (pt )r=0 > 0 and (ρ)r=0 > 0. Also

the pressure and density must attain maxima at the centre and

decrease continuously throughout the star,
(

d2 pr
dr2

)
r=0

< 0,(
d2 pt
dr2

)
r=0

< 0 and
(

d2ρ

dr2

)
r=0

< 0. We have calculated

(pr )r=0 = (pt )r=0 = A(2n − C)

8π
> 0, (38)

(ρ)r=0 = 3AC

8π
> 0, (39)

(
d2 pr

dr2

)
r=0

= 2A2[C2 + E0 − C(3n − 2) − 2n]
8π

< 0,

(40)
(

d2 pt

dr2

)
r=0

= 2A2[2C2 − E0 − C(5n − 4) + n(n − 4)]
8π

< 0,

(41)

(
d2ρ

dr2

)
r=0

= 2A2[−5C2 − E0 + 5C(n − 2)]
8π

< 0. (42)

Case (i). If n < 0 and A < 0 Eqs. (38) and (39) lead to C >

2n and C < 0. However, Eqs. (40–42) give 0 ≤ E0 < n2.
Case (ii). If n > 0 and A > 0 Eqs. (38) and (39) lead to C <

2n and C > 0. However, Eqs. (40–42) give 0 ≤ E0 < n2.

6 Junction conditions

In order to generate a model of a physically realizable
bounded object we need to ensure that the interior space-
time M− must match smoothly to the exterior spacetime
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Table 3 Physical parameters for Her X-1 for negative values of n

Value of n Central density (g/cm3) Surface density (g/cm3) Central pressure (dyne/cm2) Surface redshift

−10 8.41017 × 1014 6.93513 × 1014 6.77501 × 1034 0.202452

−100 8.70023 × 1014 6.76264 × 1014 6.28172 ×1034 0.201663

−1000 8.65631 × 1014 6.65753 × 1014 5.68838 × 1034 0.198982

−10,000 8.65819 × 1014 6.65540 × 1014 5.68276 × 1034 0.198964

−100,000 8.65837 × 1014 6.65519 × 1014 5.68220 × 1034 0.198943

Table 4 Physical parameters for Her X-1 for positive values of n

Value of n Central density (g/cm3) Surface density (g/cm3) Central pressure (dyne/cm2) Surface redshift

4 9.72956 × 1014 6.36703 × 1014 5.18467 × 1034 0.201706

10 9.09566 × 1014 6.57299 × 1014 5.67525 × 1034 0.200921

100 8.71270 × 1014 6.65970 × 1014 5.74156 × 1034 0.199415

1000 8.65050 × 1014 6.63819 × 1014 5.57044 × 1034 0.198444

10,000 8.64653 × 1014 6.63888 × 1014 5.57271 × 1034 0.198438

100,000 8.64642 × 1014 6.63921 × 1014 5.57305 × 1034 0.198433

Table 5 List of embedding class one solutions with well-behaved nature of d pi /dρ for the ansatz eν(r) = B(1 + Ar2)n

n and A Electric charge function (E) Pressure anisotropy (Δ) Well behaved nature of d pi /dρ References

n = 2, A ≥ 0 E �= 0 Δ �= 0 (EOS) No [39]

n = 4, A ≥ 0 E = 0 Δ �= 0 Yes [40]

n, A ∈ 	+ ∪ 0 E = 0 Δ �= 0 Yes (n ≥ 3) [41]

n, A ∈ 	+ ∪ 0 E �= 0 Δ = 0 Yes (n ≥ 3.3) [42]

n, A ∈ 	− ∪ 0 E = 0 Δ �= 0 Yes (n ≤ −3) [43]

n, A ∈ 	− ∪ 0 E �= 0 Δ = 0 Yes (n ≤ −2.7) [30]

n, A ∈ 	 E = E0 A2r4(1 + Ar2)n Δ �= 0 Yes Present case

n ∈ (−∞,−3] ∪ [2.7,∞)
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Fig. 2 Behaviour of electric charge q (left panel) and m(r) versus fractional radius r/R for Her X-1. The numerical values of the constants are
given in Tables 1 and 2
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Fig. 3 Behaviour of radial pressure pr (left panel) and pt (right panel) versus fractional radius r/R for Her X-1. The numerical values of the
constants are given in Tables 1 and 2

M+. Since the exterior spacetime is empty, M+ is taken to
be the Reissner–Nordstrom solution.

The boundary of the star is the surface for which the radial
pressure vanishes, pr = 0 at r = R (Misner and Sharp [44]).
For our model we obtain

C = (1 + AR2)1−n[2n + E0 AR2(1 + AR2)]
(1 − E0 A2 R4(1 + AR2)n)

. (43)

The constant B can be determined by using the condition
eν(R) = e−λ(R), which yields

B = 1

(1 − AR2)n[1 + C AR2(1 − AR2)n−2] . (44)

However, the constant A can be determined using the sur-
face density ρs of the star.

6.1 Energy conditions

The charged anisotropic fluid sphere should satisfy the fol-
lowing three energy conditions: (1) the null energy con-
dition (NEC), (2) the weak energy condition (WEC) and
(3) the strong energy condition (SEC). For satisfying the
above energy conditions, the following inequalities must hold
simultaneously inside the charged fluid sphere:

NEC : ρ + E2

8π
≥ 0, (45)

WEC : ρ + pr ≥ 0, ρ + pt + + E2

4π
≥ 0, (46)

SEC : ρ + pr + 2pt + E2

4π
≥ 0. (47)
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Fig. 4 Behaviour of matter density ρ versus fractional radius r/R for
Her X-1.The numerical values of the constants are given in Tables 1
and 2

6.1.1 Equilibrium condition

The Tolman–Oppenheimer–Volkoff (TOV) equation [24,25]
in the presence of charge is given from Eq. (13) as

d pr

dr
= −ν′(λ′ + ν′)

2reλ
+ q

4πr4

dq

dr
+ 2Δ

r
. (48)

The above equation can be expressed in terms of four differ-
ent components: the gravitational force Fg = − ν′(λ′+ν′)

2reλ ,
the hydrostatic force Fh = −d pr/dr , the electric force
Fe = q

4πr4
dq
dr and the anisotropic force Fa = 2Δ

r which
are defined as
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Fig. 5 Behaviour of the anisotropic factor Δ versus fractional radius
r/R for Her X-1. The numerical values of the constants are given in
Tables 1 and 2

Fg = −2n A2r [C(1 − Ar2) f n + n[ f 2 + 2C Ar2 f n])
[ f 2 + 2C Ar2 f n]2 ,

(49)

Fh = −d pr

dr
, (50)

Fe = 2r E0 A2 f n−1[3 + (n + 3)Ar2]
8π

(51)

Fa = 2Δ

r
. (52)

Inspection of the various panels in Fig. 7 shows that the
force due to anisotropy dominates the electromagnetic force
for small |n|. As |n| increases the difference in the magnitudes
of Fa and Fe decreases until they are equal for a particular
value of |n|. A further increase in |n| shows that Fe dominates
Fa with the relative difference being more marked for large
positive values of n.
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Fig. 6 Behaviour of various energy conditions versus fractional radius r/R for Her X-1. The numerical values of the constants are given in Tables
1 and 2
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Fig. 7 Behaviour of different forces versus fractional radius r/R for Her X-1. The numerical values of the constants are given in Tables 1 and 2

6.1.2 Velocity of sound and stability analysis

The causality condition should be obeyed, i.e. the velocity of
sound should be less than that of light in the model. In addi-

tion to the above the velocity of sound should be decreas-

ing towards the surface i.e. d
dr

d pr
dρ

< 0 or d2 pr
dρ2 > 0 and

d
dr

d pt
dρ

< 0 or d2 pt
dρ2 > 0 for 0 ≤ r ≤ rb. The velocity
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Fig. 8 Behaviour of radial velocity vr (left panel) and tangential velocity vt (right panel) verses fractional radius r/R for Her X-1. The numerical
values of the constants are given in Tables 1 and 2
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Fig. 9 Behaviour of radial velocity v2
r (left panel) and tangential velocity v2

t (right panel) versus fractional radius r/R for Her X-1. The numerical
values of the constants are given in Tables 1 and 2

of sound is increasing with the increase of density and it
should be decreasing outwards. From Fig. 8 we observe that
the speed of sound decreases monotonically from the cen-
tre of the star (high density region) towards the surface of
the star (low density region). The sound speed is less than
unity, thus indicating that causality is preserved within the
stellar core (Fig. 9). In their study of the stability of relativis-
tic spheres, Herrera et al. adopted a perturbative scheme in
which the energy density and the anisotropy are perturbed
and the effects of these perturbations on the fluid elements
were studied. They were able to show that different parts of
the star respond differently to various degrees of anisotropy,
which may lead to cracking or overturning within the core.
Abreu et al. took a different approach to studying cracking
in static spheres. In their approach the difference in the tan-

gential and radial sound speeds served as an indicator of
potentially unstable regions. They further showed that stable
regions within the stellar fluid are characterised by the sta-
bility factor, |v2

t − v2
r |, which has to be less than unity for a

potentially stable configuration. Figure 10 clearly indicates
that our model is stable for a large range of |n|.

6.1.3 Maximum allowable mass and redshift

The well-known Buchdahl [34] limit for relativistic static
spheres, 2M/R ≤ 8/9, has been generalised for static
charged spheres. Work by Andréasson [35] and Böhmer and
Harko [36] showed that the mass to radius ratio in the pres-
ence of charge was restricted to
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The numerical values of the constants are given in Tables 1 and 2

Q2(18R2 + Q2)

2R2(12R2 + Q2)
≤ M

R

≤
[

4R2 + 3Q2

9R2 + 2

9R

√
R2 + 3Q2

]
.

(53)

The compactness u(r) can be defined in terms of the effective
mass, meff :

u(R) = meff(R)

R
= 1

2
[1 − e−λ(R)] (54)

where

meff = 4π

∫ R

0

(
ρ + E2

8π

)
r2dr = R

2
[1 − e−λ(R)], (55)

and the metric potential e−λ is given in (28). In their study
of anisotropic static spheres, Bowers and Liang [37] showed
that the surface redshift can be arbitrarily large. In the case
of isotropic stars the surface redshift has an upper bound of
Zs = 4.77. The relative magnitude of the radial and tan-
gential stresses within the core plays an important role in
determining the magnitude of Zs . As pointed out by Maurya
et al. [30] when pt > pr the associated surface redshift is
greater than its isotropic counterpart. The gravitational sur-
face redshift (Zs) can be calculated from

Zs = (1 − 2u)
−1
2 − 1 =

√
1 + C Ar2(1 + Ar2)(n−2) − 1.

(56)

We note that the surface redshift depends on the com-
pactness u which should, in principle, be constrained by the
Buchdahl limit. Tables 3 and 4 show that the surface redshift
decreases with the increase in |n| (Fig. 11). For very large |n|
the surface redshift is approximately constant.
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Fig. 11 Behaviour of redshift (z) verses fractional radius r/R for Her
X-1. The numerical values of the constants are given in Tables 1 and 2

7 Discussion of results

We have presented an exact static model of the Einstein–
Maxwell equations which describes a spherically symmetric
charged body arising from the requirement that the internal
geometry is of embedding class I. The energy-momentum
tensor describes an anisotropic fluid with an electromag-
netic field. Figure 1 displays the trend in the gravitational
potentials as a function of the dimensionless ratio, r/R.
The gravitational potentials are continuous and increase
smoothly from the centre of the star towards the surface.
An increase/decrease in n has no appreciable effect in the
magnitude or nature of the gravitational potentials. In Fig. 2
we present the trend in the charge (left panel) and the mass
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(right panel). Both the charge and the mass vanish at the cen-
tre of the configuration and increases monotonically towards
the surface of the star. An increase in |n| is accompanied
by an increase in both the charge and the mass. The diver-
gence is greater towards the surface layers of the star. Figure
3 illustrates the behaviour of the radial pressure (left panel)
and the tangential pressure (right panel). It is clear that the
radial and tangential pressures are monotonically decreasing
functions of the radial coordinate. The radial pressure van-
ishes at some finite radius which defines the boundary of the
star. We note that the tangential pressure is nonvanishing at
the stellar surface. We also note that the radial and tangential
pressures increase with an increase in |n|. This increase is
noticeable closer to the inner layers of the star and is indis-
tinguishable as the surface layers are approached. A very
large increase in |n| of the order of 103 has very little effect
on the relative magnitudes of both the radial and the trans-
verse stresses throughout the interior of the star. The trend of
the density is profiled in Fig. 4. We observe that the density
is a monotonically decreasing function attaining a maximum
value at the centre of the star. We observe an interesting trend
in the density as |n| increases. An increase in |n| is accom-
panied by a decrease in the density at each interior point of
the gravitating body. For very large values of |n| the density
profile is approximately the same for each interior point. The
decrease in the density is most noticeable closer to the centre
of the star. The anisotropy parameter is displayed in Fig. 5.
As pointed out earlier, the anisotropy parameter vanishes at
the centre of the star and increases monotonically outwards
towards the surface. An increase |n| is accompanied by an
increase in Δ with the relative differences being more marked
towards the surface layers of the star. All the energy condi-
tions are satisfied at each interior point of the configuration
as displayed in Fig. 6. The various forces operating within
the stellar interior are plotted in Fig. 7. It has been pointed
out that a change in |n| effects changes in the force due to
anisotropy and the electromagnetic force. For small values
of |n| we pointed out that the anisotropic force dominates the
electromagnetic force. This trend switches over for large |n|.
Our model obeys the causality condition throughout the stel-
lar interior (Fig. 8). The stability of our model was studied
by looking at the relative sound speeds squared (Fig. 9). The
stability analysis due to Abreu et al. shows that there are no
unstable regions within the stellar core, indicating that the
likelihood of cracking occurring within our model is remote
(Fig. 10). Figure 7 reveals a new phenomenon associated
with these models. We note for the first time that the relative
difference between the electromagnetic force and the force
due to anisotropy can change sign and this is directly related
to an increase in |n|. Figure 11 shows the trend of the redshift
inside the star. The details of the embedding class one solu-
tions with well-behaved nature of d pi/dρ for the ansatz (27)
eν(r) = B(1 + Ar2)n is given by Table 5.
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