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Abstract A non-perturbative quantum field theory of Gen-
eral Relativity is presented which leads to a new realization
of the theory of covariant quantum gravity (CQG-theory).
The treatment is founded on the recently identified Hamil-
tonian structure associated with the classical space-time,
i.e., the corresponding manifestly covariant Hamilton equa-
tions and the related Hamilton–Jacobi theory. The quantum
Hamiltonian operator and the CQG-wave equation for the
corresponding CQG-state and wave function are realized in
4-scalar form. The new quantum wave equation is shown
to be equivalent to a set of quantum hydrodynamic equa-
tions which warrant the consistency with the classical GR
Hamilton–Jacobi equation in the semiclassical limit. A per-
turbative approximation scheme is developed, which permits
the adoption of the harmonic oscillator approximation for
the treatment of the Hamiltonian potential. As an application
of the theory, the stationary vacuum CQG-wave equation
is studied, yielding a stationary equation for the CQG-state
in terms of the 4-scalar invariant-energy eigenvalue associ-
ated with the corresponding approximate quantum Hamil-
tonian operator. The conditions for the existence of a dis-
crete invariant-energy spectrum are pointed out. This yields
a possible estimate for the graviton mass together with a new
interpretation about the quantum origin of the cosmological
constant.

1 Introduction

This paper is part of a research project on the foundations
of classical and quantum gravity. Following the theoretical
premises presented in Ref. [1] (herein referred to as Part 1),
in this paper the axiomatic setting of the theory of manifestly
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covariant quantum gravity is established for the standard for-
mulation of general relativity (briefly SF-GR), namely the
Einstein field equations and the corresponding treatment of
the gravitational field [2–5]. The new quantum theory, based
on the introduction of massive gravitons and constructed in
such a way to be consistent with SF-GR in the semiclassi-
cal limit, will be referred to here as the theory of covariant
quantum gravity (CQG) or briefly CQG-theory.

Distinctive features of CQG-theory presented here are
that, just like the CCG-theory (i.e., the theory of covariant
classical gravity) developed in Part 1, realizing a canoni-
cal quantization approach for SF-GR, it satisfies the prin-
ciples of general covariance and manifest covariance. This
means that—in comparison with customary literature canon-
ical quantization approaches to SF-GR [6,7]—the theory
proposed here preserves its form under arbitrary local point
transformations. As a consequence, in particular, it does not
rely on the adoption of space-time coordinates involving 3+1
or 2 + 2 foliation schemes [6,8–12] (see also the related dis-
cussion in Part 1).

In addition, consistent with the same principles, first it
is based on the adoption of 4-tensor continuum Lagrangian
coordinates and canonical momentum operators and a man-
ifestly covariant quantum wave equation referred to here as
CQG-wave equation. Second, the same quantum wave equa-
tion satisfies the quantum unitarity principle and admits a
closed set of equivalent quantum hydrodynamic equations.
Third, its formulation is of general validity, i.e., it applies
to arbitrary possible realizations of the underlying classical
space-time.

The goal of the present paper is also to display its non-
perturbative character which, nevertheless, allows for the
development of perturbative approximation schemes for the
analytical evaluation of quantum solutions of physical inter-
est. The latter should include, in principle, also the inves-
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tigation of particular quantum solutions which can be con-
sidered suitably “close”, i.e., localized, with respect to the
background classical space-time field tensor.

The theoretical framework is provided by Part 1 where
a realization inspired by the De Donder–Weyl manifestly
covariant approach [13–15] was reached for the covariant
Hamiltonian structure of SF-GR {xR, HR} based on CCG-
theory. Its crucial feature is that of relying upon the adoption
of a new kind of variational approach called the synchronous
variational principle earlier developed in Refs. [16,17].
According to the notations adopted in Part 1, this involves
the introduction of a variational set {xR, HR}, referred to as
the classical GR-Hamiltonian structure, formed, respectively,
by a suitable reduced-dimensional classical canonical state
xR and a corresponding manifestly covariant Hamiltonian
density HR . More precisely, the variational canonical state
xR is identified with the set xR = {g, π}, with g ≡ {gμν}
and π ≡ {πμν}, respectively, representing the continuum
Lagrangian coordinate and conjugate canonical momentum,
both realized by means of second-order 4-tensors. Instead,
consistent with Ref. [17] and in formal analogy with the cus-
tomary symbolic representation holding in relativistic parti-
cle dynamics, the Hamiltonian density HR is taken to be of
the form

HR ≡ TR + V, (1)

with TR and V denoting suitable 4-scalar effective “kinetic”
and “potential” densities. As shown in Part 1, these fields,
together with the state xR , are then prescribed in such a way to
provide an appropriate Hamiltonian variational formulation
of the Einstein field equations, i.e., to yield a corresponding
equivalent set of continuum Hamilton equations.

A characteristic physical requirement of the resulting
Hamiltonian theory is that it should satisfy the general
covariance principle (GCP) with respect to local point trans-
formations [18] as well as its more restrictive manifest
covariant form, namely the principle of manifest covariance
(PMC). Accordingly it should always be possible to repre-
sent in 4-tensor form all the relevant field variables and oper-
ators, including the variational functional, the correspond-
ing Lagrangian and Hamiltonian densities and operators, the
canonical variables as well their variations and the Euler–
Lagrange equations.

The prescription of the covariant Hamiltonian structure
{xR, HR} consistent with these properties and the construc-
tion of the corresponding manifestly covariant Hamilton–
Jacobi theory for SF-GR developed in Part 1 are manda-
tory physical prerequisites for the establishment of the CQG-
theory.

Meeting these physical requirements appears a priori as
a difficult task despite the huge number of contributions
to be found in the past literature and dealing with quan-

tum gravity. In fact, one has to notice that a common dif-
ficulty met by many of previous non-perturbative Hamilto-
nian approaches to GR is that they are based on the adoption
of variational Lagrangian densities, Lagrangian coordinates
and/or momenta which have a non-manifestly covariant char-
acter, i.e., they are not 4-scalars or 4-tensors. Incidentally, a
strategy of this type is intrinsic in the construction of the
original Einstein’s variational formulation for his namesake
field equations which is based on the Einstein–Hilbert asyn-
chronous variational principle (see related discussion in Ref.
[16]). A choice of analogous type, for example, is typical of
Dirac’s Hamiltonian approach to GR, which is based on the
so-called Dirac constrained dynamics [19–23]. Its key prin-
ciple, in fact, is that of singling out the “time” component of
the 4-position in terms of which the generalized velocity is
identified with gμν,0. This lead one to identify the canonical
momentum in terms of the manifestly non-tensorial quan-
tity π

μν
Dirac = ∂LEH

∂gμν,0
, where LEH is the Einstein–Hilbert vari-

ational Lagrangian density. Such a choice corresponds to
selecting a particular subset of GR-frames.

In the cases indicated above the possibility is prevented of
establishing at the classical level a Hamiltonian theory of SF-
GR in which the Euler–Lagrange equations (in particular the
Hamilton equations) are manifestly covariant. On the other
hand, the conjecture that a manifestly covariant Hamiltonian
formulation must be possible for continuum systems is also
suggested by the analogous theory holding for discrete clas-
sical particle systems. Indeed, its validity is fundamentally
implied by the state-of the-art theory of classical N -body
systems subject to non-local electromagnetic (EM) interac-
tions. The issue is exemplified by the Hamiltonian structure
of the EM radiation-reaction problem in the case of classi-
cal extended particles as well as N -body EM interactions
among particles of this type [24–28]. Nevertheless, it must
be mentioned that in the case of continuum fields, the appro-
priate formalism is actually well established, being provided
by the Weyl–De Donder Lagrangian and Hamiltonian treat-
ments [13–15]. The need to adopt an analogous approach also
in the context of classical GR, and in particular for the Ein-
stein equation itself or its possible modifications, has been
recognized before [29–33]. The fulfillment of the physical
prerequisites indicated above in the context of a classical
treatment of SF-GR and the definition of the related concep-
tual framework for GR has been provided recently by Part 1
and Refs. [16,17].

The viewpoint adopted in this paper for the development
of the new approach to the covariant quantum gravity has
analogies with the first-quantization approach developed in
Ref. [34]. This pertains to the relativistic quantum theory of
an extended charged particle subject to EM self-interaction,
the so-called EM radiation reaction, and immersed in a
flat Minkowski space-time. In fact, as shown in the same
reference, the appropriate relativistic quantum wave equa-
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tion advancing the quantum state of the same particle was
achieved by the preliminary construction of the manifestly
covariant classical Hamilton and Hamilton–Jacobi equation
for the classical dynamical system [35]. Furthermore a clas-
sical treatment of external and self-interactions acting on the
quantum system was utilized, both being expressed in terms
of deterministic force fields, so as to leave the development
of quantum theory only for the particle state dynamics.

As shown here an analogous procedure can be adopted
in the case of covariant quantum gravity in order to achieve
the proper form of the relativistic quantum wave equation
corresponding to SF-GR. More precisely, consistent with
the setting required by the adoption of synchronous varia-
tional principle, a so-called background space-time picture
is adopted, so that the underlying classical space-time geom-
etry (Q4, ĝ(r)) is considered as prescribed, in the sense that
when it is parametrized in terms of arbitrary curvilinear coor-
dinates r ≡ {rμ} its metric tensor ĝμν(r) is regarded as a
prescribed classical field, eventually to be identified with the
metric tensor of the physical space-time. Such a choice is of
crucial importance since it permits one to recover “habitual
physical notions such as causality, time, scattering states, and
black holes” [7].

For this purpose, the construction of the covariant quan-
tum wave equation for the gravitational field reached in this
paper is based on the classical GR-Hamilton–Jacobi equa-
tion reported in Part 1, in which the prescribed field ĝμν(r)
is assumed to realize a particular smooth solution of the Ein-
stein field equations and to determine in this way the geo-
metric structure associated with the background space-time
(Q4, ĝ(r)). Hence, ĝμν(r) establishes the tensor transfor-
mation laws by raising and lowering indices of all tensor
quantities, together with the prescribed values of the invari-
ant space-time volume element as well as of the standard
connections (Christoffel symbols), covariant derivatives and
Ricci tensor. It must be stressed that, despite the adoption of
the prescribed field ĝμν(r) in the construction of the quantum
theory of gravity reported here, the whole treatment remains
a priori exact, i.e., non-asymptotic in character, and at the
same time background independent, since the theory does
not rely on a particular realization of ĝμν(r), which can be
any solution of the Einstein field equations.

In the framework of quantum theory the prescription of the
background geometric structure has also formal conceptual
analogies with the so-called induced gravity (or emergent
gravity), namely the conjecture that the geometrical proper-
ties of space-time reveal themselves as a suitable mean field
description of microscopic stochastic or quantum degrees
of freedom underlying the classical solution. In the present
approach this is achieved by introducing in the Lagrangian
and Hamiltonian operators themselves the notion of pre-
scribed metric tensor ĝμν(r) which is held constant under
the action of all the quantum operators and has therefore to

be distinguished from the quantum field gμν . As a result, the
classical variational field gμν is now interpreted as a quantum
observable. The ensemble spanned by all possible values of
gμν determines the configuration space Ug with respect to
which the quantum-gravity state has to be prescribed, so that
Ug can be identified with the real vector space Ug ≡ R

16 (or
Ug ≡ R

10 if the quantum field gμν is assumed symmetric).
Taking into account these considerations the work-plan

of the paper is as follows. In Sect. 2, the principles of
the axiomatic formulation of manifestly covariant quan-
tum gravity corresponding to the reduced-dimensional GR-
Hamiltonian structure earlier reported in Ref. [1] are dis-
cussed, with the aim of addressing in particular the following
Axioms of CQG:
CQG – Axiom 1: prescription of the quantum-gravity state
(CQG-state) ψ , to be assumed a 4-scalar complex function
of the form ψ = ψ(g, ĝ, s), with g, ĝ ∈ Ug ⊆ R

16 and
s ∈ I ≡ R, with ψ spanning a Hilbert space �ψ , i.e., a
finite-dimensional linear vector space endowed with a scalar
product to be properly prescribed. Here s denotes the proper
time along an arbitrary background geodetics, i.e., prescribed
requiring that the line element ds satisfies the differential
identity ds2 = ĝμν(r(s))drμdrν , with drμ being the tangent
displacement performed along the same geodetics.
CQG - Axiom 2: prescription of the expectation values of the
quantum observables and of the related quantum probability
density function (CQG-PDF).
CQG - Axiom 3: formulation of the quantum correspondence
principle for the GR-Hamiltonian structure. This includes the
prescription of the form of the quantum Hamiltonian operator
generating the proper-time evolution of the CQG-state.

In Sect. 3 the problem is posed of the prescription of
a quantum wave equation (CQG-wave equation), namely
the formulation of the quantum wave equation advancing
in proper time the same CQG-state (CQG - Axiom 4). As
for the classical theory developed in Part 1, the covariant
quantization of the gravitational field reached here is real-
ized in a 4-dimensional space-time. Then it is shown that,
upon introducing a Madelung representation for the quantum
wave function and invoking validity of the quantum unitarity
principle, the CQG-wave equation is equivalent to a cou-
ple of quantum hydrodynamic equations identified, respec-
tively, with the continuity and quantum Hamilton–Jacobi
equations (CQG-Axiom 5). In particular, given the validity
of the semiclassical limit, the CQG-wave equation is proved
to recover the classical Hamilton–Jacobi equation reported in
Part 1, thus warranting the conceptual consistency between
the two descriptions. In Sect. 4 the development of a per-
turbative approach to CQG-theory starting from the exact
quantum representation is presented, a feature that allows
for the implementation of the harmonic oscillator approxima-
tion for the analytical treatment of the quantum Hamiltonian
potential.
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A number of selected applications of CQG-theory are
considered. In particular, in Sect. 5 the investigation of
the stationary CQG-wave equation holding in the case of
vacuum and subject to the assumption of having a non-
vanishing cosmological constant is treated. Then, in Sect.
6 the proof of the existence of a discrete spectrum for the
energy eigenvalues associated with the same vacuum CQG-
wave equation is obtained. In Sect. 7, based on the identi-
fication of the minimum energy eigenvalue of the discrete
spectrum for the vacuum CQG-wave equation, the quan-
tum prescription of the rest mass mo as well as of the
corresponding characteristic scale length L(mo) entering
the CQG-theory are discussed. This provides an estimate
for the ground-state graviton mass of the vacuum solution,
which is proved to be strictly positive under the same phys-
ical prescriptions, which warrant the existence of a discrete
energy spectrum. At the same time it yields a new inter-
pretation of the quantum origin of the cosmological con-
stant, which is shown to be related to the Compton wave-
length of the ground-state oscillation mode of the quantum
of the gravitational field. In Sect. 8, the main differences
and comparisons with the two main existing categories of
literature with approaches to quantum gravity, which are
usually referred to as canonical and covariant quantization
approaches, respectively, are pointed out. Finally, in Sect. 9
the main conclusions and a summary of the investigation are
presented.

2 Axiomatic foundations of CQG—axioms 1–3

In this section we start addressing the axiomatic formula-
tion of CQG which is consistent with the physical prereq-
uisites indicated above. In particular here the axioms are
provided which permit to prescribe the key physical prop-
erties of the quantum GR-Hamiltonian system associated
with the GR-Hamiltonian structure {xR, HR}, or equivalently
its dimensional-normalized representation {x R, HR}, both
specified in Part 1. These include:

– The functional setting of the quantum-gravity state
(CQG-state) ψ .

– The definition of quantum expectation values and observ-
ables.

– The correspondence principle between the classical and
quantum GR-Hamiltonian systems, to be established in
terms of a mapping between the classical canonical state
and the related classical GR-Hamiltonian density with
the corresponding quantum observables.

2.1 The Hilbert space of the CQG-state ψ

The first axiom concerns the prescription of the CQG-state
and its corresponding functional space to be identified with
a Hilbert space.

CQG-Axiom 1—The Hilbert space of the CQG-state ψ

The CQG-state is identified with a single 4-scalar and
complex function ψ(s) (CQG-wave function) of the form

ψ(s) ≡ ψ(g, ĝ(r), r(s), s). (2)

This can be associated with a corresponding spin-2 quantum
particle having a strictly positive invariant rest mass mo. In
fact, in the context of a first-quantization approach developed
here, ψ(s) can always be identified with the tensor product of
the form ψ(s) = ĝμνψ

μν . Regarding the functional setting
of ψ(s) here it is assumed that:

(A1) ψ(s) is taken to depend smoothly on the tensor field
g ≡ {gμν} spanning the configurations spaceUg and in addi-
tion to admit a Lagrangian path (LP) parametrization in terms
of the geodetics r(s) ≡ {rμ(s)} associated locally with the
prescribed classical tensor field ĝ(r) ≡ {ĝμν(r)}. It means
that it may be smoothly dependent on the prescribed field in
terms of the parametrization ĝ(r(s)) ≡ {ĝμν(r(s))}, on the
s-parametrized geodetics r(s) ≡ {rμ(s)} and on the classical
proper time s associated with the same geodetics.

(B1) The functions ψ defined by Eq. (2) span a Hilbert
space �ψ, i.e., a finite-dimensional linear vector space
endowed with the scalar product

〈ψa |ψb〉 ≡
∫

Ug

d(g)ψ∗
a (g, ĝ(r), r(s), s)ψb(g, ĝ(r), r(s), s),

(3)

with d(g) ≡ ∏

μ,ν=1,4 dgμν denoting the canonical measure
on Ug and ψa,b(s) ≡ ψa,b(g, ĝ(r), r(s), s) being arbitrary
elements of the Hilbert space �ψ , where as usual ψ∗

a denotes
the complex conjugate of ψa .

(C1) The real function ρ(s) ≡ ρ(g, ĝ(r), r(s), s) pre-
scribed as

ρ(s) ≡ |ψ(s)|2 (4)

identifies on the configuration space Ug the quantum proba-
bility density function (CQG-PDF) associated with the CQG-
state. Here by assumption ρ(s) is the probability density of
g ≡ {gμν} in the volume element d(g) belonging to the con-
figuration space Ug. Thus, if Lg is an arbitrary subset of Ug ,
its probability is defined as
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P(Lg) =
∫

Ug

d(g)ρ(s)�(Lg), (5)

with �(Lg) denoting the characteristic function of Lg,

namely such that �(Lg) = 1, 0 if, respectively, g ≡ {gμν} ∈
Ug does or does not belong to Lg. In addition, by assumption
the normalization

P(Ug) ≡ 〈ψ |ψ〉 ≡
∫

Ug

d(g)ρ(s) = 1 (6)

is assumed to hold identically for arbitrary (ĝ(r), r(s), s).
(D1) The real function S(q)(s) ≡ S(q)(g, ĝ(r), r(s), s)

defined as

S(q)(s) ≡ arcsin h

{

ψ(s) − ψ∗(s)
2ρ(s)

}

(7)

identifies on the configuration space Ug the quantum phase-
function associated with the same CQG-state ψ(s).

In Eqs. (2), (3) and (4) the notations are as follows. First,
g ≡ {gμν} is the continuum Lagrangian coordinate span-
ning the configuration space Ug ⊆ R

16. Second, ĝ(r) ≡
{ĝμν(r)} is the classical deterministic 4-tensor which for
an arbitrary coordinate parametrization r ≡ {rμ} identifies
the prescribed metric tensor of the background space-time
(Q4, ĝ(r)), which lowers (and raises) the tensor indices of all
tensor fields. Third, r(s) ≡ {rμ} is the 4-position belonging
to the local geodesics associated with the prescribed metric
tensor ĝ(r) such that, for an arbitrary r ∈ (Q4, ĝ(r)) locally
occurs that r ≡ r(s). Fourth, s is the proper time on the same
local geodesics {r(s)}, which spans the time axis I ≡ R.

2.2 Expectation values and observables

The second axiom deals with the prescription of the expecta-
tion values of tensor functions and CQG-observables, namely
configuration-space 4-tensor functions or 4-tensor operators
whose expectation values are expressed in terms of real ten-
sor functions.

CQG-Axiom 2—Prescription of CQG-expectation values
and CQG-observables

Given an arbitrary tensor function or local tensor operator
X (s) ≡ X (g, ĝ(r), r(s), s), which acts on an arbitrary wave
function ψ(s) ≡ ψ(g, ĝ(r), r(s), s) of the Hilbert space �ψ ,
the weighted integral

〈ψ |Xψ〉 ≡
∫

Ug

d(g)ψ∗(s)X (s)ψ(s), (8)

which is assumed to exist, is called the CQG-expectation
value of X . Then by construction 〈ψ |Xψ〉 is a 4-tensor field,
generally of the form

〈ψ |Xψ〉 = GX (ĝ(r), r(s), s). (9)

In the particular case in which 〈ψ |Xψ〉 is real, namely

〈ψ |Xψ〉 = 〈X∗ψ |ψ〉 ≡
∫

Ug

d(g)ψ(s)X∗(s)ψ∗(s), (10)

with X∗(s) denoting the complex conjugate of X (s), then X
identifies a CQG-observable.

The trivial example of observable is provided by the iden-
tification X ≡ 1. The normalization condition (6) then nec-
essarily yields in such a case GX = 1. Other examples of
CQG-observables include:

(A) The 4-tensor function X ≡ gμν . Then, for all r ≡ r(s) ∈
(Q4, ĝ(r)) the integral

〈ψ |gμνψ〉 =
∫

Ug

d(g)gμνρ(g, ĝ(r), r(s), s)

= g̃μν(ĝ(r), r(s), s) (11)

identifies the CQG-expectation value of gμν at r ≡ r(s).
Here g̃μν(s) ≡ g̃μν(ĝ(r), r(s), s) is by construction
a real tensor field to be considered generally differ-
ent from the prescribed metric tensor ĝ(r)(≡ ĝ(s)) ≡
{ĝμν(r(s))}, while r ≡ r(s) ≡ {rμ(s)} is again the 4-
position of the background space-time (Q4, ĝ(r)). Thus,
letting δgμν(r) = ĝμν(r) − g̃μν(r) it follows that the
CQG-expectation value of the tensor function X ≡
gμν + δgμν(r) is just

〈ψ |(gμν + δgμν(r))ψ〉 =
∫

Ug

d(g)(gμν + δgμν(r))

× ρ(g, ĝ(r), r(s), s) = ĝμν(r), (12)

i.e., it coincides identically with the deterministic clas-
sical metric tensor which at the 4-position r ≡ r(s) is
associated with (Q4, ĝ(r)). In the light of the classical
theory developed in Part 1, the quantum expectation val-
ues provided by Eqs. (11) and (12), i.e., respectively,
g̃μν(ĝ(r), r(s), s) and ĝμν(r) should be suitably related.
This point will be discussed elsewhere.

(B) The CQG-expectation value of the momentum CQG-
operator π(q)μν ≡ −i� ∂

∂gμν
is prescribed in such a way

that the integral
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〈ψ |π(q)μνψ〉 =
∫

Ug

d(g)ψ∗(g, ĝ(r), r(s), s)

×
(

−i�
∂

∂gμν

)

ψ∗(g, ĝ(r), r(s), s)

≡ π̃ (q)μν(ĝ(r), r(s), s) (13)

always exists, with π̃ (q)μν being a real tensor field.
Thus the CQG-operator π(q)μν is necessarily a CQG-
observable. Then, introducing the CQG-operator T ≡
π(q)μνπ

(q)
μν , its CQG-expectation value is just

〈ψ |Tψ〉 =
∫

Ug

d(g)ψ∗(g, ĝ(r), r(s), s)Tψ∗

×(g, ĝ(r), r(s), s)

≡ ˜T (ĝ(r), r(s), s), (14)

which is assumed to exist, with ˜T manifestly identify-
ing a real scalar field. Therefore the CQG-operator T is
necessarily a CQG-observable too.

2.3 Prescription of the CQG-correspondence principle

The classical dimensionally normalized Hamiltonian struc-
ture {x R, HR} determined in Part 1 is defined in terms of
the canonical state x R ≡ {gμν, πμν} and the Hamiltonian

HR . More precisely, gμν ≡ gμν and πμν = αL
k πμν is the

normalized conjugate momentum, where κ = c3

16πG , L is a
4-scalar scale length and α is a suitable dimensional 4-scalar,
both to be defined below. Instead, HR is defined as the real
4-scalar field

HR(x R, ĝ, r, s) = T R(g, ĝ, r, s) + V (g, ĝ, r, s), (15)

with T R(g, ĝ, r, s) ≡ 1
f (h)

πμνπμν

2αL and V (g, ĝ, r, s) ≡
σV o(g, ĝ, r, s) + σV F (g, ĝ, r, s) being the normalized
effective kinetic and potential densities. HereV o ≡ hαL[gμν

̂Rμν−2
] andVF ≡ hαL
2k LF represent, respectively, the vac-

uum and external field contributions (see the definitions in
Part 1), with ̂Rμν being the background Ricci tensor and 


being the cosmological constant. Finally, f (h) and σ = ±1
are suitable multiplicative gauges, i.e., real 4-scalar fields
which remain in principle still arbitrary at the classical level,
where h = (

2 − 1
4g

αβ(r)gαβ(r)
)

and f (h) satisfies by con-
struction the constraint f (ĝ(r)) = 1.

Given these premises, we can now introduce the core
canonical quantization rules in the context of CQG-theory.
These are based on a suitable correspondence principle
between the classical and the relevant quantum functions and
operators. This is given as follows.

CQG-Axiom 3—CQG-correspondence principle for the
GR-Hamiltonian structure.

Given the classical GR-Hamiltonian structure {x R, HR},
the CQG-correspondence principle is realized by the map

⎧

⎪

⎨

⎪

⎩

gμν ≡ gμν → g(q)
μν ≡ gμν,

πμν → π
(q)
μν ≡ −i� ∂

∂gμν ,

HR → H
(q)

R = 1
f (h)

T
(q)

R (π) + V ,

(16)

where H
(q)

R is the CQG-Hamiltonian operator, x (q) ≡
{g(q)

μν , π
(q)
μν } is the quantum canonical state and π

(q)
μν is the

quantum momentum operator prescribed so that the commu-

tator [g(q)
μν , π(q)αβ ] = i�δα

μδ
β
ν exactly. In addition, T

(q)

R (π)

is the kinetic density quantum operator

T
(q)

R (π) = π(q)μνπ
(q)
μν

2αL
≡ T

2αL
, (17)

where T ≡ π(q)μνπ
(q)
μν is the 4-scalar operator introduced

above (see Eq. (14 )).
Hence, Eq. (16) mutually map in each other, respectively,

the classical canonical state x R and the GR-Hamiltonian den-
sity HR onto the corresponding quantum variables/operators

x (q) and H
(q)

R . Given the prescriptions (16), key consequence
(of CQG-Axiom 3) is therefore the validity of the canonical
commutation rule at the basis of the canonical quantization
formalism of CQG theory, namely

[π(q)
μν , g(q)

αβ ] = −i�δμαδνβ. (18)

It is worth pointing out that the same correspondence prin-
ciple (16) also prescribes the gauge properties of the quan-

tum Hamiltonian operator H
(q)

R and canonical momentum

π
(q)
μν provided by gauge transformations of the correspond-

ing classical fields HR and πμν given in Part 1. In particular,

this means that H
(q)

R and the canonical momentum π
(q)
μν are

endowed, respectively, with the gauge transformations

{

π
(q)
μν → π

′(q)
μν = f (h)π

(q)
μν ,

T
(q)

R (π) → 1
f (h)

T
(q)

R (π),
(19)

where f (h) denotes in principle an arbitrary, non-vanishing
and smoothly differentiable 4-scalar function, whose precise
value is determined below by requiring validity of quantum
hydrodynamic equations in conservative form.

3 Axiomatic foundations of CQG—axioms 4 and 5

In this section additional constitutive aspects of CQG are
formulated which concern the prescription of:
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– The generic form of the CQG-wave equation advancing
in proper time ψ itself (CQG-Axiom 4).

– The realization of the corresponding quantum hydrody-
namic equations in conservative form (CQG-Axiom 5).

3.1 The quantum-gravity wave equation

We first introduce the quantum wave equation which in the
framework of CQG realizes an evolution equation for the
quantum state ψ(s). This is provided by the following axiom.

CQG-Axiom 4—Prescription of the CQG-wave equation
for ψ

The evolution equation advancing in time the CQG-state
ψ(s) is assumed to be provided by the CQG-quantum wave
equation (CQG-QWE)

i�
∂

∂s
ψ(s) + [ψ(s), H

(q)

R ] = 0, (20)

where [A, B] ≡ AB−BA denotes the quantum commutator,
i.e.,

[ψ(s), H
(q)

R ] ≡ −H
(q)

R ψ(s). (21)

The CQG-wave equation (20) uniquely prescribes the
evolution of the quantum state ψ(s) along the geodetics
of the prescribed metric tensor ĝμν(r), which is associ-
ated with the background curved space-time (Q4, ĝμν(r)).
Equation (20) is a first order partial differential equation,
to be supplemented by suitable initial conditions, namely
prescribing for all r(so) = ro ∈ (Q4, ĝ(r)) the condition
ψ(so) = ψo(g, ĝ(ro), ro), as well as boundary conditions at
infinity on the improper boundary of configuration spaceUg ,
i.e., letting limg→∞ ψ(g, ĝ(r), r(s), s) = 0.

Nevertheless, ψ(s) and in particular ψ(so) are manifestly
non-unique. This is due to the gauge property indicated
above (see Eq. (19)) which characterizes the Hamiltonian

and canonical momentum operators H
(q)

R and π
(q)
μν . How-

ever, in this regard, a potential consistency issue arises for
Axiom 4. More precisely, this refers to the compatibility of
Eq. (20) with the normalization condition (6) earlier set at
the basis of Axiom 1. In fact it is not obvious whether Eq. (6)
may actually hold identically for all s ∈ I ≡ R for arbitrary

choices of the Hamiltonian operator H
(q)

R and in particular
arbitrary choices of the undetermined function f (h) (see the
rhs of the third equation in Eq. (16)). In fact, Eq. (6) demands
in such a case also the validity of the additional requirement

∂

∂s

∫

Ug

d(g)ρ(s) ≡
∫

Ug

d(g)
∂

∂s
ρ(s) ≡ 0 (22)

to hold identically for all s ∈ I . The issue will be addressed
in Sect. 3.2.

3.2 The quantum hydrodynamic equations

Let us now investigate whether and under which condi-
tions the CQG-wave equation introduced in Axiom 4 (see
Eq. (20)) may be equivalent to a prescribed set of quan-
tum hydrodynamic equations (QHE) written in conservative
form, i.e., in such a way to conserve quantum probability.
In fact, in analogy with the Schroedinger equation and the
generalized Klein–Gordon equation reported in Ref. [34] for
the radiation-reaction problem, the QHE should be realized,
respectively, by: (a) a continuity equation for the quantum
PDF ρ(s); (b) a quantum Hamilton–Jacobi equation for the
quantum phase-function S(q)(s) = S(q)(g, ĝ(r), r(s), s).We
remark that the derivation of QHE is required since it pro-
vides a theoretical framework for the physical prescription of
the gauge indeterminacy on f (h) characterizing the CQG-
wave equation and the logical consistency of theCQG-theory
with the classical Hamilton–Jacobi equation determined in
Part 1.

We notice preliminarily that the CQG-state defined by the
complex function ψ(s) (see Eq. (2)) can always be cast in the
form of an exponential representation of the type realized by
the Madelung representation as

ψ(s) = √

ρ(s) exp

{

i

�
S(q)(s)

}

, (23)

ρ(s) and S(q)(s) being the real 4-scalar field functions pre-
scribed, respectively, by Eqs. (4) and (7). The following addi-
tional axiom is then introduced.

CQG-Axiom 5—Quantum hydrodynamics equations
Given the validity of the Madelung representation (23) in

terms of the Hamiltonian operator H
(q)

R , provided the con-
straint condition

f (h) = 1 (24)

is fulfilled in order to satisfy the quantum unitarity principle,
the CQG-wave (20) is equivalent to the following set of real
PDEs:

∂ρ(s)

∂s
+ ∂

∂gμν

(ρ(s)Vμν(s)) = 0, (25)

∂S(q)(s)

∂s
+ H

(q)

c = 0, (26)

referred to here as CQG-quantum continuity equation and
CQG-quantum Hamilton–Jacobi equation advancing in
proper time, respectively, ρ(s) and S(q)(s). Here the nota-
tion is as follows. The quantum hydrodynamics fields ρ(s) ≡
ρ(g, ĝ, s) and S(q)(s) ≡ S(q)(g, ĝ, s) are assumed to depend
smoothly on the tensor field g ≡ {gμν} spanning the
configurations space Ug and in addition to admit a LP-
parametrization in terms of the geodetics r(s) ≡ {rμ(s)}
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associated locally with the prescribed field ĝ(r) ≡ {ĝμν(r)}.
The 4-tensorVμν(s) is prescribed asVμν(s) = 1

αL
∂S(q)

∂gμν . Then

H
(q)

c identifies up to an arbitrary multiplicative gauge trans-
formation (see Eq. (19)) the effective quantum Hamiltonian
density

H
(q)

c = 1

2αL

1

f (h)

∂S(q)

∂gμν

∂S(q)

∂gμν

+ VQM + V , (27)

with V ≡ V (g, ĝ(r), r, s) being the effective potential den-
sity and VQM a potential density called a Bohm-like effective
quantum potential, which is prescribed as

VQM(g, ĝ(r), r, s)= �
2

8αL

∂ ln ρ

∂gμν

∂ ln ρ

∂gμν

− �
2

4αL

∂2ρ

ρ∂gμν∂gμν
.

(28)

Then one can show that the validity of Eqs. (25) and (26)
necessarily requires one to uniquely fix the arbitrary multi-
plicative gauge function f (h) in Eq. (16) so that identically

in the prescription of the function H
(q)

c given above Eq. (24)
must be fulfilled.

The proof of the statement follows from elementary alge-
bra. One notices in fact that, upon substituting Eq. (23) in
Eq. (20), explicit evaluation yields, respectively, for arbitrary
s ∈ I ≡ R:

∂ρ(s)

∂s
+ 1

f (h)

∂

∂gμν

(ρ(s)Vμν(s)) = 0, (29)

∂S(q)(s)

∂s
+ 1

f (h)

1

2αL

∂S(q)(s)

∂gμν

∂S(q)(s)

∂gμν

+ VQM (s)

+V R(s) = 0, (30)

where the first one coincides with Eq. (25) if Eq. (24) is sat-
isfied. Hence this implies necessarily that also in Eq. (28)

which defines H
(q)

c , f (h) must be determined in the same
way. Incidentally one notices also that the prescription for
f (h) given above is also consistent with the normalization
condition (6) holding for the CQG-PDF and in particular with
Eq. (22) too. Indeed, integration of the continuity equation
(25) manifestly recovers identically Eq. (22). Hence the con-
straint condition of Eq. (24) is actually required to warrant
the quantum unitarity principle, namely the conservation of
quantum probability, i.e., the validity of Eq. (6) for all s ∈ I .
In addition, this uniquely determines also the Hamiltonian
structure holding at the classical level, i.e., the precise form
of the variational Hamiltonian density HR .

Important theoretical results follow from the CQG-
quantum Hamilton–Jacobi equation determined here. The
first one is that the same equation generalizes the classical
GR-Hamilton–Jacobi equation earlier determined in Part 1

(see Eq. (32) in Part 1), so that—in analogy to the same equa-
tion and Ref. [51]—it must imply the validity of the corre-
sponding Hamilton equations to be expressed in terms of the

effective quantum Hamiltonian density H
(q)

c (see Eq. (27)).
It follows that, due to the presence of the Bohm-like effective
quantum potential VQM (g, ĝ(r), r, s), the latter now gener-
ally must depend explicitly on the proper time s (see also
the related discussion in Part 1, Subsection 2D). Detailed
implications, involving the construction of time-dependent
solutions of the non-stationary-dependent CQG-wave equa-
tion (20), will be discussed elsewhere.

The second outcome concerns the validity of the so-called
semiclassical limit of CQG, to be prescribed letting � → 0.
By requiring that in the same limit both α and L(mo) reduce
to their classical definitions and that the real limit function
lim�→0

S(q)(s)
�

= S(s)
α

exists for arbitrary s ∈ I ≡ R,
with S(s) identifying the classical reduced Hamilton prin-
cipal function (see Part 1), one can show that the quan-
tum Hamilton–Jacobi equation (26) reduces to the analo-
gous classical Hamilton–Jacobi equation (see Part 1), while
the limit lim�→0

VQM (s)
�

= 0 holds identically. In fact, con-
sidering without loss of generality the case of vacuum, the
semiclassical limit of Eq. (30) yields

1

α

∂S(s)

∂s
+ 1

2α2L

∂S(s)

∂gμν

∂S(s)

∂gμν

+ lim
�→0

VQM(s)

�
= 0, (31)

where by construction the last term on the lhs vanishes iden-
tically. As a consequence the effective quantum Hamiltonian

density H
(q)

c necessarily must reduce to the limit function

Ho = 1

2αL

∂S(s)

∂gμν

∂S(s)

∂gμν

. (32)

This coincides in form with the classical normalized Hamilto-
nian density given above by Eq. (15), while Eq. (31) reduces
to the classical GR-Hamilton–Jacobi equation. Hence, this
proves that the derivation of the quantum hydrodynamic
equations is a fundamental theoretical result to be established
for the validity of CQG-theory. Indeed, the CQG-quantum
continuity equation prescribes the expression of the gauge
function f (h), while the CQG-quantum Hamilton–Jacobi
equation establishes the connection of the CQG-wave equa-
tion with the classical Hamilton–Jacobi theory determined
in Part 1. This issue represents a necessary conceptual con-
sistency aspect of quantum theory to be ascertained to hold
between classical and quantum descriptions of gravitational
field dynamics.

Finally, one notices that the effective potential VQM (s)
introduced here (see Eq. (28)) is analogous to the well-known
Bohm potential met in non-relativistic quantum mechanics
(see for example Refs. [50,51]), its physical origin being
similar and arising due to the non-uniformity of the quantum
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PDF. In the present case the non-uniformity occurs because
generally we must have ∂

∂gμν
ρ(s) �= 0, with consequent non-

vanishing contributions arising in Eqs. (25) and (26).

4 Perturbative approximation scheme

In this section a theoretical feature related to the CQG-wave
equation determined above is analyzed. The issue here is
whether—based on suitable asymptotic orderings—a pertur-
bative scheme can be developed both for the classical GR-
Hamiltonian theory and the corresponding CQG-theory indi-
cated above, in order to allow the adoption of a harmonic
oscillator approximation for the analytical treatment of the
Hamiltonian potential. To prove how this goal can be reached
we start by considering the decomposition

gμν = ĝμν(r) + δgμν, (33)

with δgμν, referred to here as the displacement 4-tensor field,
to be assumed suitably small. Concerning the notation, we
remark that the symbol δgμν is used to indicate displace-
ment of the 4-tensor field gμν and must be distinguished from
the similar notation adopted in Part 1, which refers instead
to the synchronous variations of tensorial fields. Then it is
obvious that δgμν identifies, both in the context of classical
and quantum theories, an equivalent possible realization of
the Lagrangian coordinates, which is alternative to gμν . To
make further progress, however, we need also an approxima-
tion scheme. For this purpose gμν is required to belong to a
suitable infinitesimal neighborhood of ĝ(r) ≡ {ĝμν(r)}, i.e.,
the subset of Ug denoted

Ug(ĝ(r), ε) = {gμν ≡ ĝμν(r) + δgμν, δgμν

� O(ε), gμν ∈ Ug}, (34)

such that for all displacements δgμν the asymptotic ordering

δgμν � O(ε) (35)

holds. Here ε is a suitable infinitesimal real parameter, while
by construction in such a set all components of δgμν are of
order O(ε) or higher. Let us consider the implications of
Eqs. (33) and (35) in the two cases and applying them—
for definiteness—as regards the validity of the prescription
f (h) ≡ 1.

First, in the case of the classical Hamiltonian theory one
notices that in Ug(ĝ(r), ε) the normalized GR-Hamilton
equations (see Part 1) can be equivalently represented as

⎧

⎨

⎩

Dδgμν

Ds = πμν

αL ,

Dπμν

Ds = − ∂V
(a)

(g,̂g)
∂δg

μν ,
(36)

with V
(a)

(g, ĝ) being the potential to be conveniently
approximated. When the identity V (g, ĝ) ≡ V o(g, ĝ) holds,
elementary algebra yields up to an additive constant gauge
the asymptotic approximation

V (g, ĝ) ∼= σαL

4
{−[δgαβδgαβ ĝμν + 2ĝαβδgαβδgμν]̂Rμν

+ 2
δgμνδg
μν} ≡ V

(a)

R (g, ĝ). (37)

Then, thanks to the vacuum solution with non-vanishing cos-
mological constant discussed in Part 1, for which ̂Rμν =

ĝμν , the previous equation yields

V
(a)

R (g, ĝ) ≡ −σαL


2
{δgαβδgαβ + ĝαβδgαβδgμν ĝμν},

(38)

V
(a)

R (g, ĝ) representing the vacuum normalized effective
potential density in the same infinitesimal neighborhood as
indicated above. An analogous approximation holding for
the non-vacuum case can readily be obtained. It must be
remarked that in all cases the conceptual consistency under-
lying the harmonic expansion of the Hamiltonian potential
is granted by the structural stability analysis of the classi-
cal Hamiltonian theory performed in Part 1 and the related
determination of the conditions for the occurrence of stable
classical solutions.

In the context of CQG-theory the transformation of the
Lagrangian coordinates gμν → δgμν is manifestly obtained
replacing the correspondence principle realized by means of
Eq. (16) with the equivalent map

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δgμν → δg(q)
μν ≡ δgμν,

πμν → π
(q)
μν = −i� ∂

∂δgμν ≡ δπμν,

HR → H
(q)

R = π(q)μνπ
(q)
μν

2αL + V .

(39)

Notice that in principle the asymptotic ordering (35) may
affect, in some sense, also the behavior of the quantum
PDF ρ(s) = ρ(ĝ(r) + δg, ĝ(r), r(s), s). Indeed in the limit
δgμν → 0, and consequently also if δgμν is considered as
an infinitesimal of O(ε), it means that the probability den-
sity ρ(s) should be suitably localized in the set Ug(ĝ(r), ε)
indicated above. Nevertheless, due to the arbitrariness of the
solutions which the CQG-wave equation may have, the pos-
sibility of prescribing a priori its precise asymptotic behavior
seems unlikely.

5 Application #1 – Construction of the stationary
vacuum CQG-wave equation

The CQG-wave equation (20) admits generally non-stationary
solutions ψ(s) ≡ ψ(g, ĝ, r, s), i.e., in which the proper-
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time dependence cannot be simply factored out. This happens
because the CQG-wave equation admits generally solutions
which are far from the classical one, i.e., the prescribed back-
ground solution ĝμν(r) (which is stationary by assumption;
see also Part 1). For sure they are important for applica-
tions/developments of the theory, although the proper treat-
ment of such issues must be forcibly left to a separate inves-
tigation.

However, an equally important issue is to investigate the
possible existence of a discrete spectrum associated with the
stationary CQG-wave equation following from Eq. (20). Let
us consider for this purpose the case of vacuum in which by
construction V = V o, requiring that the cosmological con-
stant 
 and the still arbitrary multiplicative gauge constant σ
are such that −σ
 > 0, and hence either (
 > 0, σ = −1)

or (
 < 0, σ = 1). For definiteness, let us assume that

the CQG-Hamiltonian operator H
(q)

R defined by the quan-
tum correspondence principle (see Eq. (16)) does not depend
on s, at least in an asymptotic sense, so that the CQG-wave
equation admits exact (or asymptotic) separable particular
solutions of the form

i�
∂

∂s
ψ(s) = E

c
ψ(s), (40)

with E being a real constant 4-scalar independent of the
proper time s. It follows that ψ(s) is of the form

ψ(s) = exp

{

− i

�c
E(s − so)

}

ψo(g, ĝ, r), (41)

ψo(g) ≡ ψo(g, ĝ, r) being a solution of the asymptotic
proper-time-independent quantum wave equation

H
(q)

R ψo(g) = E

c
ψo(g), (42)

to be referred to as the stationary vacuum CQG-wave equa-
tion. Notice, in particular, that ψo(g, ĝ, r) here is assumed to
be suitably localized in the neighborhood of the background
equilibrium solution ĝ(r) ≡ {ĝμν(r)} so that possible addi-
tional classical stationary solutions can be effectively ignored
(see Part 1).

For definiteness, let us now invoke the perturbative
approximation scheme indicated above requiring in addition
that the normalized effective quantum potential density hold-
ing in the case of vacuum V ≡ V o can be considered, at least
in a suitable asymptotic sense, as independent of s. It fol-
lows that in the subset of the configuration-space set defined
above, i.e., the infinitesimal neighborhood Ug(ĝ(r), ε) (see
Eq. (34))—upon ignoring constant additive gauge contribu-

tions (to H
(q)

R )—Eq. (42) when expressed in terms of the
field variables δgμν takes the form

1

2αL

(

−i�
∂

∂δgμν

) (

−i�
∂

∂δgμν

)

ψ(s)

−σαL


2
{δgαβδgαβ + ĝαβδgαβδgμν ĝμν}ψ(s) = 0, (43)

where by construction −σαL

2 > 0. Next, let us introduce

the notations:

{

δg2 ≡ δgμνδgμν,

δπ2 ≡ δπμνδπ
μν,

(44)

with δπμν identifying now the normalized quantum canon-
ical momentum operator δπμν ≡ − i�

L
∂

∂δgμν
conjugate to

the displacement field δgμν . Hence the same quantum wave
equation (43) can be equivalently written in the form

[

δπ2

2M
+ 1

2
Mω2L2(δg2 + ĝαβδgαβδgμν ĝμν)

]

ψ(s) = 0,

(45)

to be referred to as the quantum-oscillator quantum wave
equation, with the operator

H ≡ δπ2

2M
+ 1

2
Mω2L2(δg2 + ĝαβδgαβδgμν ĝμν) (46)

being referred to as the (quantum) invariant-energy opera-
tor. Moreover, here M and ω are the real 4-scalars which,
respectively, identify the effective mass and characteristic
frequency defined as

{

M = α
cL ≡ mo,

ω = c
√−σ
.

(47)

We conclude, therefore, that in the case of vacuum Eq. (45)
realizes in the same infinitesimal neighborhood Ug(ĝ(r), ε)
the stationary CQG-wave equation indicated above (see
Eq. (42)).

6 Application #2 – The discrete spectrum of the
stationary CQG-wave equation

The eigenvalue equation (45) is qualitatively similar in form
to the analogous quantum wave equation holding for the
quantum harmonic oscillator (QHO) in the case of ordinary
quantum mechanics. In this respect it must be clarified that
the quadratic expansion of the potential determined by Eq.
(38) applies in the neighborhood of the extremum set by the
condition ĝμν(r) = gμν(r). The validity of Eq. (45) is phys-
ically supported by the fact that:

(a) In the framework of the first-quantization approach
adopted here, quantum solutions are defined with respect
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to the classical background represented by ĝμν(r) only
if the condition ĝμν(r) = gμν(r) is set to determine
the extremum of the potential. If this is not the case,
one would have a harmonic expansion around a solution
which is not the stationary one, namely it is not the clas-
sical solution of the Einstein equation. Other alternative
extrema of the potential remain necessarily excluded on
such basis.

(b) The condition ĝμν(r) = gμν(r) to set the extremum of
the harmonic expansion is the only physically accept-
able one in the conceptual framework developed here
also because it yields the stationary solution, thus moti-
vating the search of eigenstates of the stationary quantum
harmonic oscillator given above.

(c) The harmonic solution must be intended as a perturbative
solution, i.e., it is an approximate local analytical solution
of the stationary quantum wave equation, and therefore
it applies in a neighborhood of the extremum point set by
the condition ĝμν(r) = gμν(r).

The question which arises now is whether Eq. (45) actu-
ally admits a discrete spectrum for its energy eigenvalues like
QHO. In this section we intend to prove that in validity of the
prescription −σ
 > 0 and based on Dirac’s ladder operator
approach, Eq. (45) can be shown to admit indeed a discrete
spectrum of eigenvalues. For this purpose, let us introduce the
creation and annihilation operators for a spin-2 particle, i.e.,
represented by second-order 4-tensors. These can be identi-
fied, respectively, with the operators aμν and a†

μν :

aμν =
√

Mω

2�

(

Lδgμν + L

Ko
ĝμνδg

αβ ĝαβ − i

Mω
δπμν

)

,

(48)

a†
μν =

√

Mω

2�

(

Lδgμν + L

Ko
ĝμνδg

αβ ĝαβ + i

Mω
δπμν

)

,

(49)

with Ko denoting a suitable real number identified with one
of the two roots of the algebraic equation K 2

o −2Ko−4 = 0,
namely Ko = 1 ± √

5. Then one can show that in terms of
the operator products aμνa†μν and a†

μνa
μν the identities

H = �ω(aμνa
†μν + γ ), (50)

H = �ω(a†
μνa

μν − γ ), (51)

hold, H being the invariant-energy operator (46) and γ the
constant real parameter γ = 8+ 2

Ko
. The proof of both identi-

ties (50) and (51) follows from elementary algebra. Consider
for example the proof of the first one (i.e., Eq. (50)). The
product aμνa†μν gives in fact

aμνa
†μν = Mω

2�

(

L2δg2 + L2
(

4

K 2
o

+ 2

Ko

)

ĝαβδgαβδgμν

×ĝμν − �

Mω

(

16 + 4

Ko

)

+ 1

(Mω)2 δπ2
)

.

(52)

Hence, requiring that 4
K 2
o

+ 2
Ko

= 1 one obtains

aμνa
†μν = 1

2�

(

MωL2δg2 + MωL2 ĝαβδgαβδgμν ĝμν

+ 1

Mω
δπ2

)

− γ, (53)

so that Eq. (50) manifestly applies. Furthermore, it is imme-
diate to obtain the following commutator relations:

[aμν, a
†μν] ≡ −2γ, (54)

[aμν, a
†αβ ] ≡ −

(

δα
μδβ

ν + 1

Ko
ĝαβ ĝμν

)

, (55)

so that the operator H can equivalently be represented in
the form indicated by (51). Next, in terms of the operator
N = a†

μνa
μν , elementary algebra shows that

[N , aμν] = aμν + 1

Ko
ĝμν ĝ

αβaαβ, (56)

[N , a†
μν] = −a†

μν − 1

Ko
ĝμν ĝ

αβa†
αβ. (57)

In analogy with the axioms given in Sects. 2 and 3 and
the adoption of a 4-scalar wave function, it is possible
to introduce also the 4-scalar operators a = aμν ĝμν and
a† = a†

μν ĝ
μν representing the projections of the tensor oper-

ators aμν and a†
μν along the prescribed metric tensor ĝμν .

Then, defining the normalized operator ̂N = N/β, with
β ≡ 1 + 4

Ko
, it follows

[ ̂N , a] = a, (58)

[ ̂N , a†] = −a†, (59)

while the identity (51) yields for the invariant-energy opera-
tor the representation

H = �ω(β ̂N − γ ). (60)

Therefore let us denote by |n〉, n, respectively, the eigen-
state and real eigenvalue of the same operator ̂N , i.e., such
that ̂N |n〉 = n|n〉, one notices that |n〉 is necessarily also
an eigenvector of the quantum energy operator H , with n
being generally not an integer number. In addition, as a con-
sequence of the commutator identities (56) and (57), it fol-
lows

̂Na|n〉 = (a ̂N + [ ̂N , a])|n〉
= (a ̂N + a)|n〉 = (n + 1)a|n〉, (61)
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̂Na†|n〉 = (a†
̂N + [ ̂N , a†])|n〉

= (a†
̂N − a†)|n〉 = (n − 1)a†|n〉, (62)

which proves that the 4-tensor operators aμν and a†
μν act

indeed as creation and annihilation operators. Therefore the
eigenvalues of the transformed states a|n〉 and a†|n〉 are,
respectively, n + 1 and n − 1, so that introducing the cor-
responding eigenstates of the same operator, namely such
that

̂N |n + 1〉 = (n + 1)|n + 1〉, (63)
̂N |n − 1〉 = (n − 1)|n − 1〉, (64)

one expects that a†|n〉 = K(n+1)|n + 1〉 and a|n〉 =
K(n−1)|n − 1〉, K(n+1) and K(n−1) being suitable 4-scalars.
These results show that the spectrum of the non-negative
eigenvalues corresponding to the set of eigenstates

|n − s〉, |n − s + 1〉, . . . |n〉, |n + 1〉, |n + 2〉, . . . (65)

is discrete and numerable, with the integer k ≡ min(s) to be
suitably prescribed. It is interesting to notice that in terms
of the operator ̂N defined above also the so-called number
operator can be prescribed, which by construction has only
integer eigenvalues. In fact, denoting by no the minimum
positive integer such that no ≡ int(n) ≥ n, then N = ̂N no

n
identifies the so-called number operator. By construction N
has only integer eigenvalues, namely it is such that N |n〉 =
no|n〉, while being N |n−s〉 = (no−s)|n−s〉. Now we notice
that for all relative integers in the set {−s,−s + 1, . . . + ∞}
the state |n − s〉 is also an eigenstate of the invariant-energy
operator H . Its eigenvalue, referred to as an invariant-energy
eigenvalue, is manifestly

En−s ≡ �ω(β(n − s) − γ ). (66)

Then, the positive integer k in the set of eigenstates (65)
can be prescribed in such a way that En−s has for s = k the
minimum positive value, and hence it identifies the minimum
invariant-energy eigenvalue,

Emin ≡ En−k = �ω(β(n − k) − γ ). (67)

In terms of the integer no indicated above one obtains for the
minimum positive eigenvalue of H , namely Emin ≡ En−k

(see Eq. (67)), the upper estimate

Emin < �ω(β(no − k) − γ ) ≡ γo�ω, (68)

where γo is the positive real number γo = int (γ ) − γ > 0,
and int (γ ) ≡ no − k is the minimum positive integer such
that β(no − k) > γ . Since Ko = 1 ± √

5, one can show
that the only admissible root is the one associated with the
positive-root, namely Ko1 ≡ 3.236. Hence, γ = 8+ 2

1+√
5

≡

γ1 ∼= 8.618 and β = 1 + 4
1+√

5
≡ β1 ∼= 2.236. This means

also that γo ∼= 0.326, so that the majorization (68) actually
requires the weak upper bound Emin � 0.326�ω to hold
for the minimum invariant-energy Emin. In view of these
considerations it follows therefore that the stationary CQG-
wave equation (45) admits a spectrum of invariant-energy
eigenvalues En associated with the quantum energy operator
H (see Eq. (46)). The minimum invariant energy Emin is non-
vanishing as it is proportional to the characteristic frequency
ω (see Eq. (68)). Finally, provided the cosmological constant

 is non-vanishing and −σ
 > 0, the spectrum indicated
above is discrete and numerable.

7 Application #3 – Quantum prescription of the
characteristic scale length L(mo) and the graviton
rest mass mo

An interesting issue is related to the physical prescription
at the quantum level for the invariant parameter L(mo) and
consequently for the rest mass mo and the invariant param-

eter α appearing in the quantum Hamiltonian operator H
(q)

R
(see Eq. (16)). In principle these quantities are not neces-
sarily the same as those entering the corresponding classical
normalized Hamiltonian structure {x R, HR}.

It should be stressed in fact that the precise prescription of
the invariant mass mo as well of L(mo) should follow from
the theory of CQG itself and be consistent with the physical
interpretation ofmo in terms of the graviton mass. A possible
solution of the task can be achieved based on the asymptotic
treatment developed above in the case of vanishing external
fields and non-vanishing cosmological constant. It follows
that, in the perturbative framework considered here, both the
mass prediction and the invariant length therefore depend on
actual (experimental or theoretical) estimates for a possibly
non-vanishing cosmological constant. We notice, in fact, that
the eigenvalue stationary quantum wave equation (45) and
the related quantum energy operator (46) still depend both
on the invariant mass mo and the characteristic scale length
L ≡ L(mo). It must be remarked, however, that the mini-
mum energy prediction (68) provides a possible prescription
for the invariant mass mo. The minimum energy, or ground-
state, eigenvalue Emin, which is associated with the quantum-
oscillator quantum wave equation (45), yields in fact the cor-
responding ground-state mass estimate mo = Emin

c2 .
In view of Eq. (47) and the expression for Emin considered

above, the upper bound estimate

mo � 0.326
�
√−σ


c
(69)

must apply, with the invariant rest mass mo depending
accordingly on the cosmological constant. In case −σ
 > 0,
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the model established by the stationary CQG-wave equa-
tion (45) thus provides a tentative candidate for the iden-
tification of the rest mass of the massive graviton. Such
a particle would therefore necessarily be endowed with a
sub-luminal speed of propagation. For the example consid-
ered above one can estimate the numerical value of Emin

and mo. Adopting for 
 the current astrophysically esti-
mated value 
 ∼= 1.2 × 10−52 m−2 [36], it is found that
Emin ∼= 1.1 × 10−52 J ∼ 7 × 10−34 eV, while mo ∼=
1.26 × 10−69 kg ∼ 7 × 10−34 eV/c2, so that the resulting
graviton–electron mass ratio is

mo

me

∼= 1.38 × 10−39, (70)

with me denoting the electron rest mass.
The final problem to address pertains to the identifica-

tion of the invariant length L(mo) in the CQG-theory. If the
graviton is considered as a point particle this can be identified
either with the classical Schwarzschild radius LSch ≡ 2Gmo

c2

associated with the graviton rest mass mo (see Part 1), or
the Compton wavelength λC ≡ h̄

moc
. In the first case upon

invoking Eq. (69) one finds that LSch � LPlanck, where
LPlanck ∼= 10−35 m is the Planck length. On the other hand it
is well known that the same Planck length provides, at least
in order of magnitude, the minimum physically admissible
quantum length. Thus, a fortiori, it necessarily must realize a
lower bound for the same characteristic length L(mo). This
means that in the quantum regime the classical prescription
for L(mo)based on the Schwarzschild radius is not physically
acceptable, thus implying that quantum phenomena for the
graviton are dominant with respect to classical ones. There-
fore the prescription of L(mo) must be realized by means of
the Compton wavelength. In terms of Eq. (69) this yields in
the present case

λC ≡ 1

γo

1√−σ

, (71)

while a numerical evaluation of Eq. (71) gives λC ∼= 2.8 ×
1026 m. In view of the estimate for Emin this shows that
L(mo) necessarily coincides up to a factor of order unity
with the invariant characteristic length L
 ≡ 1√−σ


asso-
ciated with the cosmological constant 
, suggesting at the
same time also the possible quantum origin of the cosmolog-
ical constant [37–39]. The result is based on the analytical
estimate of the minimum eigenvalue of the discrete spec-
trum associated with the invariant-energy operator (the pre-
cise calculation of the same eigenvalue can in principle be
performed numerically). The interpretation of L
 in terms
of the graviton Compton wavelength follows therefore on
physical grounds and not simply on dimensional analysis
arguments.

In this framework, the cosmological constant 
 is associ-
ated with the Compton wavelength of the ground-state oscil-
lation mode of the quantum of the gravitational field, i.e., the
graviton mass mo. As a final comment, it must be stressed
that the estimate given here for mo refers to the ground-state
eigenvalue of the discrete spectrum corresponding to the vac-
uum CQG-equation (45). However, each eigenvalue of the
same discrete spectrum should give rise to its corresponding
mass value, so that the discrete energy spectrum is sided by a
discrete mass spectrum. On similar grounds, quantum wave
equations different from the vacuum one (45) studied here
should generate a corresponding different mass spectrum.
Hence, the value of mo is non-unique and depends both on
the physical properties of the background space-time as well
as the solution spectrum of the CQG-wave equation to be
solved (e.g., stationary or non-stationary equation, vacuum
or non-vacuum equation, etc.).

In connection with this we notice that, in the first-
quantization approach developed here, the metric tensor of
the background space-time ĝμν(r), the Ricci curvature 4-
tensor Rμν(ĝ(r)) as well as the cosmological constant 
 are
all considered to be in principle arbitrarily prescribed quan-
tities. The theory turns out to be intrinsically background
independent, i.e., it holds for any realization of the space-
time ĝμν(r). Nevertheless the stationary approximation (40)
might not be generally applicable, while even in the case in

which the Hamiltonian operator H
(q)

R does not depend explic-
itly on s, the proper-time-dependent equation (20) may still
admit non-trivial explicitly time-dependent solutions. As a
consequence a more general class of solutions with respect
to that considered above might occur for the CQG-wave
equation, as corresponds to complex physical phenomenolo-
gies characterized by non-uniform behavior of both the pre-
scribed metric tensor ĝμν(r), of the corresponding Ricci ten-
sor Rμν(ĝ(r)), as well as of the cosmological constant and
the non-vanishing external fields.

As a final point, a peculiar connection exists between the
classical GR-Hamiltonian structure developed in Part 1 and
the corresponding quantum one represented by the quan-
tum state x (q) ≡ (g(q)

μν , π
(q)
μν ) and the Hamiltonian operator

H
(q)

R . As pointed out in Part 1, an arbitrary solution of the
GR-Hamilton equation, in particular the stationary solution
ĝμν(r) determined by the vacuum Einstein field equations,
is stable with respect to infinitesimal perturbations provided
suitable physical conditions are met. As shown here, the same
requirement applies in the context of CQG-theory when the
stationary quantum wave equation (42) is reduced to a quan-
tum harmonic oscillator. The interesting consequence which
emerges is therefore the validity of the following mutual log-
ical implication: the existence of a stable stationary solution
of the classical Hamiltonian structure of GR appears effec-
tively, at the same time, as a prerequisite and a consequence
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of the existence of a discrete energy spectrum for the station-
ary CQG-wave equation, and hence also the existence of a
finite graviton rest mass mo.

8 Discussion and comparisons with literature

Quantization methods, both in quantum mechanics and quan-
tum gravity, are usually classified in two approaches, the
canonical and the covariant ones [7]. However, while for
quantum mechanics the same approaches are equivalent, this
is not so in the case of quantum gravity. The reason is the
radically different approach taken in the two cases for the
treatment of the quantum state, of the causality principle and
of space-time itself.

In the canonical framework a canonical quantization
approach is developed which leaves formally arbitrary the
space-time. Key ingredients usually adopted for this pur-
pose are, first, the introduction of (3 + 1)- or (2 + 2 )-
decompositions [8–12] for the representation of the same
space-time and, second, the adoption of a quantum state rep-
resented in terms of non-4-tensor continuum fields. In the
covariant approaches, instead, all physical quantities includ-
ing the quantum state are represented exclusively by means
of 4-tensor fields so that the property of manifest covariance
is automatically fulfilled. As a consequence covariant quan-
tization necessarily involves the assumption of some sort of
classical background space-time structure, for example iden-
tified with the flat Minkowski space-time. In order to realize
such a strategy, however, it turns out that the quantum state is
typically described by means of superabundant variables. As
a consequence covariant quantization usually also requires
the treatment of suitable constraint conditions.

Let us consider first the canonical approach. A choice of
this type, for example, is the one adopted by Dirac and based
on the Dirac constrained dynamics [19–23]. By construc-
tion such an approach is not manifestly covariant. We stress
that this refers in principle both to transformation proper-
ties with respect to local point transformations, i.e., LPT-
theory, as well as the theory of non-local point transfor-
mations (NLPT) developed in Ref. [18]. It is immediate to
realize that this is indeed the case for the Dirac Hamilto-
nian approach. In this picture in fact the field variable is
identified with the metric tensor gμν , but the correspond-
ing generalized velocity is defined as gμν,0, namely with
respect to the “time” component of the 4-position. Conse-
quently, in Dirac’s canonical theory, the canonical momen-
tum remains identified with the manifestly non-tensorial
quantity π

μν
Dirac = ∂LEH

∂gμν,0
, where LEH is the Einstein–

Hilbert variational Lagrangian density. Hence, such a choice
necessarily violates the principle of manifest covariance
[16,17].

The same kind of strategy was adopted in the approach
developed later by Arnowitt, Deser and Misner (ADM the-
ory, 1959–1962 [6]). In this case manifest covariance is lost
specifically because of the adoption, inherent in the ADM
approach, of Lagrangian and Hamiltonian variables which
are not 4-tensors. In fact this is based on the introduction of
the so-called 3 + 1 decomposition of space-time, which by
construction is foliation dependent, in the sense that it relies
on a peculiar choice of a family of GR-frames for which
time and space transform separately so that space-time is
effectively split into the direct product of a 1-dimensional
time and a 3-dimensional space subset, respectively [9]. For
the same reason, the quantum wave equation (20) proposed
in this research is intrinsically different from the Wheeler–
DeWitt wave equation [40]. In fact, Eq. (20) yields a dynam-
ical evolution with respect to the invariant proper time s
defined on the background space-time, while the Wheeler–
DeWitt equation follows from the ADM foliation theory
and is expressed as an evolution Schrödinger-like equation
advancing the dynamics of the wave function with respect
to the coordinate-time t , which is not an invariant parameter.
In addition, in the absence of a background space-time, the
same equation carries a conceptual problem related to the
definition of coordinate time, which is simultaneously the
dynamical parameter and a component of space-time which
must be quantized by solving the same equation. This prob-
lem, however, does not arise in the theory of CQG proposed
above.

Another interesting example worth to be mentioned is the
one exemplified by the so-called Ashtekar variables, origi-
nally identified, respectively, with a suitable self-dual spino-
rial connection (the generalized coordinates) and their con-
jugate momenta (see Refs. [41,42]). It is well known that
Ashtekar variables provide an alternative canonical represen-
tation of SF-GR. Such a choice is at the basis of the so-called
“loop representation of quantum general relativity” [43] usu-
ally referred to as “loop quantum gravity” (LQG) and first
introduced by Rovelli and Smolin in 1988–1990 [44,45] (see
also Ref. [46]). Nevertheless, also the Ashtekar variables can
be shown to be by construction intrinsically non-tensorial in
character either with respect to the LPT or NLPT-groups. The
basic consequence is that also the canonical representation of
Einstein field equations based on these variables, as well as
ultimately also LQG itself, violates the principle of manifest
covariance.

Despite these considerations, it must be stressed that, as far
as the classical Hamiltonian formulation of GR is concerned,
the canonical approach and the manifestly covariant theory
proposed in Paper 1 and in the present work are complemen-
tary, in that they exhibit distinctive physical properties asso-
ciated with two canonical Hamiltonian structures underlying
GR itself. The corresponding Hamiltonian flows, however,
are different, being referred to an appropriate coordinate-
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time of space-time foliation in the canonical approach, and
to a suitable invariant proper time in the present theory. As
a consequence, the physical interpretation of quantum the-
ories of GR built upon these Hamiltonian structures remain
distinctive. The CQG-theory developed here in fact reveals
the possible existence of a discrete spectrum of metric ten-
sors having non-vanishing momenta at the quantum level,
but whose realization at the classical level remains excluded
for the extremal field equations, i.e., when the Hamiltonian
theory is required to recover the Einstein field equations (see
also Part 1 and further discussions on the issue reported below
in Sect. 9).

Let us now consider the covariant approaches to quantum
gravity [47–49]. In this case the usual strategy is to split the
space-time metric tensor gμν into two parts according to the
decomposition of the type gμν = ημν + hμν , where ημν is
the background metric tensor defining the space-time geom-
etry (usually identified with the flat background), and hμν is
the dynamical field (deviation field) for which quantization
applies. From the conceptual point of view there are some
similarities between the literature covariant approaches and
the manifestly covariant quantum-gravity theory developed
here. The main points of contact are: (1) the adoption of 4-
tensor variables, without invoking any space-time foliation;
(2) the implementation of a first-quantization approach, in the
sense that there exists by assumption a continuum classical
background space-time with a geometric connotation, over
which the relevant quantum fields are dynamically evolving;
(3) the adoption of superabundant variables, which in the
two approaches are identified with the sets (ημν, hμν) and
(̂gμν, gμν), respectively.

Nevertheless, important differences must be pointed out
as well. In fact, first of all, the CQG-theory developed here
(and the CCG theory reported in Part 1 on which it is based) is
intrinsically non-perturbative in character. It means, in other
words, that the background metric tensor can be identified
with an arbitrary continuum solution of the Einstein equa-
tions, while a priori the canonical variable gμν is not required
to be a perturbation field. On the other hand, a decomposition
of the type (33) resembling the one invoked in covariant liter-
ature approaches can always be introduced a posteriori for the
implementation of appropriate perturbative schemes. This
occurs in particular for an analytical evaluation of discrete-
spectrum quantum solutions (see Sects. 4–6). Second, the
present theory is constructed starting from the De Donder–
Weyl manifestly covariant approach. As a consequence the
present approach is based on a variational formulation, which
relies on the introduction of a synchronous variational princi-
ple for the Einstein equations first reported in Ref. [16]. Such
a feature is unique since all previous literature is actually
based on the adoption of asynchronous variational principles,
i.e., principles in which the invariant volume element is con-
sidered variational rather than prescribed. Indeed, as shown

in the same reference it is precisely the synchronous princi-
ple which makes possible the distinction between variational
and extremal (or prescribed) metric tensors, and the conse-
quent introduction of non-vanishing canonical momenta. As
a result, manifestly covariant classical Lagrangian, Hamilto-
nian and Hamilton–Jacobi theories of GR have been formu-
lated as pointed out in Refs. [16,17] and Part 1. In particular,
based on the GR-Hamiltonian structure determined in Part 1
such a feature allows for the adoption of the canonical quanti-
zation represented by Eq. (18). Third, in the present approach
superabundant variables are implemented, while the same
covariant quantization holds with respect to a 4-dimensional
space-time, with no extra-dimensions being required for its
prescription. Fourth, the CQG-theory proposed in this paper
is obtained from the preliminary derivation of the reduced
Hamiltonian theory given in Paper 1, which establishes a con-
nection between field theory and particle dynamics, although
without requiring specification of any additional degrees of
freedom for the dynamical system predicted by Hamilton–
Jacobi wave theory [50,51]. As a consequence the Hamilto-
nian structure which CCG-theory is built on is free of con-
straints, a feature which permits the implementation of the
canonical quantization rule represented by the same equation
(see again Eq. (18)).

Finally, regarding covariant quantization, a further inter-
esting comparison concerns the Batalin–Vilkovisky (BV)
formalism originally developed in Refs. [52–55]. Such a
method is usually implemented for the quantization of gauge
field theories and topological field theories in Lagrangian
formulation [56–58]. Nevertheless also a corresponding
Hamiltonian formulation is available [59,60]. Further crit-
ical aspects of the BV formalism can be found for example
in Ref. [61]. In the case of the gravitational field it has been
formerly applied in the context of perturbative quantum grav-
ity to treat constraints arising from initial metric decompo-
sition (i.e., in reference with the so-called gauge-fixing and
ghost terms). Its basic features are the adoption of an asyn-
chronous Lagrangian variational principle of GR [16], the
use of superabundant canonical variables and the consequent
introduction of constraints. These features mark the main dif-
ferences with the present manifestly covariant Hamiltonian
approach, which is non-perturbative, which follows from the
synchronous Lagrangian variational principle defined in Ref.
[16] and is constraint-free. The key implication, as indicated
in Part 1, is that of permitting the construction of both the
corresponding Hamiltonian and Hamilton–Jacobi classical
theories. These features are crucial also for the validity of
the CQG-wave equation presented here (see Eq. (20)).

In conclusion, CQG-theory realizes at the same time a
canonical and a manifestly covariant quantization method, in
this way establishing a connection both with former canon-
ical and covariant approaches. Nevertheless, the emerging
new features of the present theory depart in several ways from
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previous literature and might/should hopefully help shading
further insight into the long-standing problem of quantization
of gravity.

9 Conclusions

The paper has been devoted to the formulation of a new the-
ory of covariant quantum gravity (CQG), referred to here as
CQG-theory. The theoretical foundations of the research pre-
sented here are based on the manifestly covariant Hamilto-
nian theory for the Einstein field equations earlier developed
in Refs. [1,16,17].

The quantum theory of gravitational field developed here
distinguishes itself from previous literature with approaches
to the problem. In fact, from one side the present theory
satisfies the principle of manifest covariance, while at the
same time the validity of the classical GR field equations is
preserved identically. Therefore, the realization of the CQG-
theory does not rely on the violation of manifest covariance
in order to attempt a quantization of the space-time through
a discretization of its geometric properties, nor it requires
a modification of the Einstein field equations at the varia-
tional level or the assumption a priori of the implementation
of perturbative treatments from the start. The present theory
respects the canonical procedure well known in the founda-
tions of quantum field theory, which requires one to follow the
logical path consisting in: (a) the identification of the appro-
priate classical Lagrangian density in 4-scalar form; (b) the
subsequent definition of conjugate momenta and realization
of a corresponding classical Hamiltonian theory holding for
a canonical state; (c) the introduction of canonical transfor-
mations and development of Hamilton–Jacobi theory; (d) the
canonical quantization method relying on classical Poisson
brackets and the prescription of quantum wave equation.

The development of the present CQG-theory is made pos-
sible by the adoption of the new type of variational principle
for the Einstein field equations, for the first time pointed
out in Ref. [16]. The synchronous variational formulation
is characterized by distinguishing variational (gμν(r)) and
prescribed (̂gμν(r)) tensor fields in such a way that the vari-
ational ones are allowed to possess different physical prop-
erties with respect to the prescribed fields, while preserv-
ing at the same time the correct validity of the prescribed
equations. In the realm of the classical theory the physi-
cal behavior of variational fields provide the mathematical
background for the establishment of a manifestly covariant
Hamiltonian theory of GR. The background metric tensor
ĝμν(r) is purely classical and has a geometric connotation,
raising/lowering tensor indices and defining the Christoffel
symbols. At the classical level it must be ̂∇α ĝμν(r) = 0,
namely the covariant derivative of the prescribed metric ten-
sor is identically vanishing. Adopting the language of clas-

sical dynamics, we can say by analogy that ĝμν(r) does not
possess a “kinetic energy”, since the corresponding gener-
alized “velocity field” ̂∇α ĝμν(r) is null by definition. How-
ever, the advantage of the synchronous variational principle
lies in the possibility of having variational metric tensor fields
gμν(r) for which the covariant derivative defined with respect
to the background space-time can be non-vanishing, so that
̂∇αgμν(r) �= 0. We stress that this feature remains a prop-
erty of variational (and therefore virtual) fields gμν(r), which
therefore acquire a non-null generalized kinetic energy. This
permits the identification of canonical momenta and the
construction of corresponding covariant Hamiltonian theory
holding for the Hamiltonian structure {xR, HR}. When pass-
ing to the covariant quantum theory variational fields become
quantum observables and inherit the corresponding tensor
transformation laws of classical fields together with the men-
tioned physical properties. It is then found that the quantum
observable corresponding to gμν(r) is endowed with non-
vanishing momenta having a quantum probability density.
The resulting physical interpretation of the present theory is
straightforward. In actual classical theory the physical field
gμν(r) is “frozen-in” with the prescribed field ĝμν(r) which
has a geometrical connotation. Violation of the condition
̂∇α ĝμν(r) = 0 is only allowed for variational fields. In the
realm of quantum theory the prescribed field ĝμν(r) keeps
on retaining its meaning consistent with the picture of GR,
while the field gμν(r) acquires the physical meaning of a
quantum field which is permitted to deviate from ĝμν(r) and
to “oscillate” over the background space-time, thus violating
at the quantum level the frozen-in condition ̂∇α ĝμν(r) = 0.
These features are exemplified by the structure of the Hamil-
tonian density determined above, which can be expressed as
the sum of kinetic and potential density terms, in full analogy
with standard quantum theory of fields, as well as the possi-
bility of recovering (at least in a proper asymptotic treatment)
the peculiar structure of the Hamiltonian characteristic of the
harmonic oscillator having a discrete spectrum of eigenval-
ues.

The theory proposed here is believed to be susceptible
of applications to a wide range of quantum physics, the-
oretical physics and astrophysics-related problems and to
provide also new insight to the axiomatic foundations of
Quantum Gravity. Among the applications of CQG-theory
special mention deserve those which have been investigated
in the paper. These include in particular the proof of the
existence of discrete energy spectra for the stationary CQG-
wave equation for solutions which are close to the classi-
cal prescribed one ĝμν(r) and the related quantum prescrip-
tion of the free parameters which characterize the classical
Hamiltonian structure, namely the estimate for the gravi-
ton rest mass mo and the determination of the characteris-
tic scale length L(mo). Nevertheless, important issues con-
cern also the search of more general solutions pertaining to
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the non-stationary CQG-wave equation as well as second-
quantization effects such as the possible quantum modifica-
tion of the prescribed metric tensor associated with the back-
ground space-time. Such tasks will be undertaken in forth-
coming investigations.
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