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Abstract A challenging issue in General Relativity con-
cerns the determination of the manifestly covariant con-
tinuum Hamiltonian structure underlying the Einstein field
equations and the related formulation of the corresponding
covariant Hamilton–Jacobi theory. The task is achieved by
adopting a synchronous variational principle requiring dis-
tinction between the prescribed deterministic metric tensor
ĝ(r) ≡ {ĝμν(r)} solution of the Einstein field equations
which determines the geometry of the background space-
time and suitable variational fields x ≡ {g, π} obeying an
appropriate set of continuum Hamilton equations, referred
to here as GR-Hamilton equations. It is shown that a pre-
requisite for reaching such a goal is that of casting the same
equations in evolutionary form by means of a Lagrangian
parametrization for a suitably reduced canonical state. As a
result, the corresponding Hamilton–Jacobi theory is estab-
lished in manifestly covariant form. Physical implications
of the theory are discussed. These include the investigation
of the structural stability of the GR-Hamilton equations with
respect to vacuum solutions of the Einstein equations, assum-
ing that wave-like perturbations are governed by the canon-
ical evolution equations.

1 Introduction

This is the first paper of a two-part investigation dealing with
the Hamiltonian theory of the gravitational field, and more
precisely, the one which is associated with the so-called Stan-
dard Formulation of General Relativity (SF-GR) [1–4], i.e.,
the Einstein field equations. In the second paper the corre-
sponding quantum formulation will be presented. For this
purpose, in the two papers new manifestly covariant Hamil-
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tonian (respectively classical and quantum) approaches are
developed. The two formulations will be referred to as theo-
ries of Covariant Classical and, respectively, Quantum Grav-
ity (CCG/CQG) or briefly CCG- and CQG-theory.

As shown below CCG-theory is built upon the results
presented in Refs. [5,6] about the variational formulation
of GR achieved in the context of a DeDonder–Weyl-type
approach and the corresponding possible realization of a
super-dimensional and manifestly covariant Hamiltonian
theory. In particular, based on a suitable identification of the
effective kinetic energy and the related Hamiltonian density
4-scalars adopted in Ref. [6], the aim here is to prescribe
a reduced-dimensional continuum Hamiltonian structure of
SF-GR, to be referred to here as Classical Hamiltonian Struc-
ture (CHS). The crucial goal of the paper is to show that CHS
can be associated with arbitrary possible solutions of the Ein-
stein field equations corresponding either to vacuum or non-
vacuum conditions. In other words, this means that the same
Hamiltonian structure is coordinate-independent and occurs
for arbitrary external source terms which may appear in the
variational potential density.

Despite being intimately related to the one earlier consid-
ered in Ref. [6], the new Hamiltonian structure is achieved
in fact by means of the parametrization of the correspond-
ing canonical state in terms of the proper time determined
along arbitrary geodetics of the background metric field ten-
sor. This feature turns out to be of paramount importance for
the establishment of the corresponding canonical transforma-
tion and covariant Hamilton–Jacobi theories. The CHS deter-
mined in this way is shown to be realized by the ensemble
{xR, HR} represented by an appropriate variational canon-
ical state xR = {g, π}, with both g and π being suitably
identified tensor fields representing appropriate continuum
Lagrangian coordinates and conjugate momenta and HR a
corresponding variational Hamiltonian density.
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Its basic feature is that of being based, in analogy with
Ref. [6], on the adoption of the synchronous Hamiltonian
variational principle for the variational formulation of GR.
However, in difference with the same reference, new fea-
tures are added which, as we intend to show, are mandatory
for the construction of the corresponding canonical transfor-
mation and Hamilton–Jacobi theories. In particular for this
purpose, first, a reduced-dimensional representation is intro-
duced for the canonical momenta, which, however, leaves
formally unchanged the corresponding variational Hamil-
tonian density. Second, an appropriate parametrization by
means of a suitably defined proper time s is introduced so
that the resulting Euler–Lagrange equations are now realized
by means of Hamilton equations in evolution form.

Accordingly, variational and prescribed tensor fields are
introduced, with the prescribed ones, in contrast to the vari-
ational fields, being left invariant by the synchronous varia-
tions. In particular, the same Hamilton equations may reduce
identically to the Einstein field equations, which are fulfilled
by the prescribed fields, if suitable initial conditions are set.
This occurs provided the Poisson bracket of the Hamiltonian
density is a local function, i.e., it does not depend explicitly
on proper time. In the realm of the classical theory the phys-
ical behavior of variational fields provide the mathematical
background for the establishment of a manifestly covariant
Hamiltonian theory of GR, and in particular the CCG-theory
realized here. When passing to the corresponding covariant
quantum theory (i.e., in the present case the CQG-theory
to be developed in the subsequent paper) variational fields
become quantum fields and inherit the corresponding tensor
transformation laws of classical fields. Thanks to its intrinsic
consistency with the principles of covariance and manifest
covariance, the synchronous variational setting developed in
Refs. [5,6] provides at the same time:

– the natural framework for a Hamiltonian theory of clas-
sical gravity which is consistent with SF-GR;

– the prerequisite for the establishment of a covariant quan-
tum theory of gravitational field which is in turn consis-
tent with classical theory and SF-GR (see Ref. [7], herein
Part 2).

According to such an approach the 4-scalar, i.e., invariant,
4-volume element of the space-time (d�) entering the action
functional is considered independent of the functional class
of variations, so that it must be defined in terms of a pre-
scribed metric tensor field ĝ (r), represented equivalently
either in terms of its covariant or counter variant compo-
nent, i.e., either ĝ (r) ≡ {ĝμν (r)} or ĝ (r) ≡ {ĝμν (r)}. Here
r ≡ {rμ} and ĝ (r) denote, respectively, an arbitrary GR-
frame parametrization and an arbitrary particular solution of
the Einstein field equations. This is obtained therefore upon

identifying in the action functional d� ≡ d4r
√−|̂g|, with

d4r being the corresponding canonical measure expressed in
terms of the said parametrization and |̂g| denoting as usual
the determinant of the metric tensor ĝ (r). In the context of
the synchronous variational principle to GR a further require-
ment is actually included which demands that the prescribed
field ĝμν(r) must determine, besides d�, also the geomet-
ric properties of space-time. This means that ĝμν(r) should
uniquely prescribe the tensor transformation laws of arbi-
trary tensor fields, which may depend, in principle, besides
ĝμν(r), both on the variational state xR and the 4-position
r ≡ {rμ}. This requires in particular that ĝμν(r) and ĝμν(r),
respectively, lower and raise tensor indices of the same ten-
sor fields. In a similar way ĝμν(r) uniquely determines also
the standard Christoffel connections which enter both the
Ricci tensor ̂Rμν and the covariant derivatives of arbitrary
variational tensor fields. Therefore, in the context of syn-
chronous variational principle to GR the approach known
in the literature as “background space-time picture” [8–10]
is adopted, whereby the background space-time

(

Q4, ĝ (r)
)

is
considered defined “a priori” in terms of ĝμν(r), while leav-
ing unconstrained all the variational fields xR = {g, π} and
in particular the Lagrangian coordinates g (r) ≡ {gμν (r)}.

Indeed, consistent with Ref. [6], the physical interpreta-
tion which arises from CCG-theory exhibits a connection
also with the so-called induced gravity (or emergent gravity)
[11,12], namely the conjecture that the geometrical proper-
ties of space-time should reveal themselves as a mean field
description of microscopic stochastic or quantum degrees
of freedom underlying the classical solution. In the present
approach this is achieved by introducing the prescribed met-
ric tensor ĝμν (r) in the Lagrangian and Hamiltonian action
functionals, which is held constant in the variational prin-
ciples when performing synchronous variations and has to
be distinguished from the variational field gμν (r). In this
picture, ĝμν (r) should arise as a macroscopic prescribed
mean field emerging from a background of variational fields
gμν (r), all belonging to a suitable functional class. This per-
mits one to introduce a new representation for the action func-
tional in superabundant variables, depending both on gμν (r)

and ĝμν (r). Such a feature, as explained above, is found to be
instrumental for the identification of the covariant Hamilto-
nian structure associated with the classical gravitational field
and provides a promising physical scenario where to develop
a covariant quantum treatment of GR.

In this reference, one has to acknowledge the fact that
the Hamiltonian description of classical systems is a manda-
tory conceptual prerequisite for achieving a corresponding
quantum description [14,15], i.e., in the case of continuum
systems, the related relativistic quantum field theory. This
task involves the identification of the appropriate Hamilto-
nian representation of the continuum field, to be realized by
means of the following steps:
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Step #1 : Establishment of underlying Lagrangian and
Hamiltonian variational action principles.
Step #2 : Construction of the corresponding Euler–
Lagrange equations, realized, respectively, in terms
of appropriate continuum Lagrangian and Hamiltonian
equations.
Step #3 : Determination of the corresponding set of con-
tinuum canonical transformations and formulation of the
related Hamilton–Jacobi theory.

The proper realization of these steps remains crucial. In
actual fact, the last target appears as a prerequisite of fore-
most importance for being able to reach a consistent for-
mulation of relativistic quantum field theory for General
Relativity, i.e., the so-called Quantum Gravity. The con-
clusion follows by analogy with Electrodynamics. In fact,
as it emerges from the recent investigation concerning the
axiomatic foundations of relativistic quantum field theory
for the radiation-reaction problem associated with classical
relativistic extended charged particles (see Refs. [16–21]), it
is the Hamilton–Jacobi theory which naturally provides the
formal axiomatic connection between classical and quantum
theory, to be established by means of a suitable realization
of the quantum correspondence principle.

Prerequisite for reaching such goals in the context of rela-
tivistic quantum field theory is the establishment of a theory
fulfilling at all levels both the Einstein general covariance
principle and the principle of manifest covariance. Such a
viewpoint is mandatory in order that the axiomatic construc-
tion method of SF-GR makes any sense at all [22]. Indeed,
in order that physical laws have an objective physical char-
acter they cannot depend on the choice of the GR reference
frame. This requisite can only be met provided all classi-
cal physical observables and the corresponding mathemati-
cal relationships holding among them, i.e., the physical laws,
can actually be expressed in tensorial form with respect to
the group of transformations indicated above. In the context
of SF-GR the adoption of the same strategy requires there-
fore the realization of Steps #1–#3 in manifest covariant
form. As far as the actual identification of Steps #1 and
#2 for SF-GR is concerned, the candidate is represented by
the variational theory reported in Refs. [5,6]. The distinctive
features of such a variational theory, which sets it apart from
previous Hamiltonian formulations in the literature [23–28],
lie in its consistency with the criteria indicated above and the
DeDonder–Weyl classical field theory approach [29–37].

Nevertheless, well-known alternative approaches exist in
the literature which are based on non-manifestly covariant
approaches. For the purpose of formal comparison let us
briefly mention some of them, a detail analysis being left
to future developments. For definiteness, approaches can
be considered which are built upon space-time foliations,
namely based on so-called 3 + 1 and/or 2 + 2 splitting

schemes. In fact, GR can be formulated in any GR-frame
(i.e., coordinate system) by introducing a suitable local point
transformation rμ → r ′μ = f μ(r) leading to a decom-
position of this type. In particular, the 3 + 1 approach is
convenient for purposes related, for example, to the defi-
nition of conventional energy-momentum tensors, thermo-
dynamic and kinetic values, and to provide corresponding
methods of quantization [38–40]. The latter are exempli-
fied by the well-known approach developed by Arnowitt,
Deser and Misner (1959–1962 [28]), usually referred to as
ADM theory in the literature. The same theory is based on
the introduction of the so-called 3 + 1 decomposition of
space-time, which by construction is foliation dependent,
in the sense that it relies on a peculiar choice of a family
of GR frames for which time and space transform sepa-
rately so that space-time is effectively split into the direct
product of a 1-dimensional time and a 3-dimensional space
subsets, respectively (ADM-foliation) [41]. Instead, differ-
ent types of 2 + 2 splitting (or with double 3 + 1 and
2 + 2 splitting) are considered, for instance, to find new
classes of GR exact solutions [42–44], to develop the the-
ory of geometric flows related to classical gravity, quantum
gravity and geometric thermodynamics [45,46], or to elab-
orate some approaches based on deformation quantization
of GR and modified gravity theories [47,48]. In comparison
with these approaches, the manifestly covariant Lagrangian
and Hamiltonian formulations of GR reported in Refs. [5,6]
and developed below mainly differ because, first, there is no
introduction of foliation of space-time, so that the 4-tensor
formalism is preserved at all stages of investigation. Sec-
ond, in contrast to the Hamiltonian theory of GR obtained
from the ADM decomposition [4], both Lagrangian and
Hamiltonian dynamical variables and the canonical state are
expressed in 4-tensor notation and satisfy as well the mani-
fest covariance principle. Third, in the context of CCG-theory
the Hamiltonian flow associated with the Hamiltonian struc-
ture {xR, HR} (see Eq. (4) below) is defined with respect
to an invariant proper time s, and not a coordinate-time as
in ADM theory. Finally, it must be stressed that, in such
a context for the proper implementation of the DeDonder–
Weyl formalism, besides the customary 4-scalar curvature
term of the Einstein–Hilbert Lagrangian, 4-tensor (i.e., man-
ifestly covariant) momenta must be adopted in the action
functional. This property which can be fulfilled only adopt-
ing a synchronous variational principle is missing in the
ADM Hamiltonian theory, where field variables and conju-
gate momenta are identified only after performing the 3 + 1
foliation on the Einstein–Hilbert Lagrangian of the associ-
ated asynchronous variational principle. Despite this differ-
ence the two approaches are complementary in the sense that
they exhibit distinctive physical properties associated with
the two canonical Hamiltonian structures underlying SF-GR
(see again Ref. [6]).
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1.1 Goals of the paper

Going beyond the considerations discussed above, the con-
struction of CCG-theory involves a number of questions,
closely related to the continuum Hamiltonian theory reported
in Ref. [6], which remain to be addressed. This involves pos-
ing the following distinct goals:

• GOAL #1: Reduced continuum Hamiltonian theory for
SF-GR – The search for a reduced-dimensional realiza-
tion of the continuum Hamiltonian theory for the Ein-
stein field equations, which still satisfies the principle of
manifest covariance. In fact, as a characteristic feature of
the DeDonder–Weyl approach, in the Hamiltonian the-
ory given in Ref. [6] the canonical variables defining the
canonical state have different tensorial orders, with the
momenta being realized by third-order 4-tensors. In con-
trast, the new approach to be envisaged here should pro-
vide a realization of the canonical state xR ≡ {gμν, πμν}
in which both generalized coordinates and correspond-
ing momenta have the same tensorial dimension and are
represented by second-order 4-tensor fields.

• GOAL #2: Evolution form of the reduced continuum
Hamilton equations – A further problem is whether
the same reduced continuum Hamilton equations can
be given a causal evolution form, namely they can be
cast as canonical evolution equations. Since originally
the continuum Hamilton equations are realized by PDE,
this means that some sort of Lagrangian representation
should be determined. Hence, by introducing a suitable
Lagrangian Path (LP) parametrization of the canonical
state xR ≡ {gμν, πμν} in terms of the proper time asso-
ciated with the prescribed tensor field ĝμν(r) indicated
above, the corresponding continuum canonical equations
are found to be realized by means of evolution equations
advancing in proper time the canonical state. These will
be referred to as GR-Hamilton equations of CCG-theory:
they generate the evolution of the corresponding canon-
ical fields by means of a suitable canonical flow.

• GOAL #3: Realization of manifestly covariant contin-
uum Hamilton–Jacobi theory – A related question which
arises involves, in particular, the determination of the
canonical transformation, which generates the flow cor-
responding to the continuum canonical evolution equa-
tions. This concerns, more precisely, the development of
a corresponding Hamilton–Jacobi theory applicable in
the context of CCG-theory and the investigation of the
canonical transformation generated by the correspond-
ing Hamilton principal function.

• GOAL #4: Global prescription and regularity properties
of the corresponding GR-Lagrangian and Hamiltonian
densities. The Lagrangian and Hamiltonian formulations
should be globally prescribed in the appropriate phase

spaces. The global prescription should include also the
validity of suitable regularity properties of the corre-
sponding Hamiltonian density HR .

• GOAL #5: Identification of the gauge properties of the
classical GR-Lagrangian and Hamiltonian densities.
The related issue concerns the identification of the pos-
sible gauge indeterminacies, in terms of suitable gauge
functions, characterizing the Lagrangian and Hamilto-
nian densities.

• GOAL #6: Dimensionally-normalized form of CHS. In
particular, the goal here is to show that a suitable
dimensional normalization of the Hamiltonian structure
{xR, HR} can be reached so that the canonical momenta
acquire the physical dimensions of an action, a feature
required for the establishment of a quantum theory of
GR in terms of Hamilton–Jacobi theory. More precisely,
this involves the construction of a non-symplectic canon-
ical transformation for the GR-Hamiltonian density HR .
The issue is to show that this can be taken to be of the
form

⎧

⎨

⎩

gμν → gμν = gμν,

πμν → πμν = αL
k πμν,

HR → H R ≡ T R + V = αL
k HR,

, (1)

where κ is the dimensional constant κ = c3

16πG , L is a
4-scalar scale length to be defined, α is a suitable dimen-
sional 4-scalar, while T R, and V denote the correspond-
ing transformed effective kinetic and potential densities
defining the transformed Hamiltonian density H R . Then
the question arises whether α can be prescribed in such a
way that the transformed canonical momentum πμν has
the dimensions of an action.

• GOAL #7: Structural stability of the GR-Hamilton equa-
tions of CCG-theory – The final issue concerns the study
of the structural stability which in the framework of CCG-
theory the canonical equations exhibit with respect to
their stationary solutions, i.e., the solutions of the Ein-
stein equations. In fact, depending on the specific realiza-
tion of CHS considered here, infinitesimal perturbations
whose dynamics is governed by the said canonical evolu-
tion equations may exhibit different stability behaviors,
i.e., be stable/unstable or marginally stable, with respect
to arbitrary solutions of the Einstein field equations. For
definiteness, the case of vacuum solutions with a non-
vanishing cosmological constant � is treated. It is shown
that the stability analysis provides a prescriptions for the
gauge functions indicated above which characterize the
GR-Hamiltonian density.

In view of these considerations and of the results already
achieved in Refs. [5,6], in this paper the attention will be
focused on the investigation of GOALS #1–#7. These topics,
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together with the continuum Lagrangian and Hamiltonian
theories proposed in Refs. [5,6], have potential impact in the
context of both classical and quantum theories of General
Relativity.

2 Evolution form of Hamilton equations for SF-GR

In this section the problem of the determination of a reduced
continuum Hamiltonian theory for GR is addressed for a
prescribed Hamiltonian system. This is represented by the
CHS {xR, HR} which is formed by an appropriate 4-tensor
canonical state xR and a suitable 4-scalar Hamiltonian den-
sity HR (xR, x̂R(r), r, s). In particular, the target requires one
to find a realization of the variational canonical momentum
in such a way that, in the corresponding reduced canonical
state, fields and reduced momenta form a couple of second-
rank conjugate 4-tensors. The requisite is that such a Hamil-
tonian theory should warrant the validity of the non-vacuum
Einstein field equations to be achieved as realizations of suit-
able reduced continuum Hamilton equations set in evolution
form and referred to as GR-Hamilton equations of CCG-
theory. More precisely, these are realized by the initial-value
problem represented by the canonical equations:

⎧

⎨

⎩

Dgμν(s)
Ds = ∂ HR(xR ,̂xR(r),r,s)

∂πμν(s) ,

Dπμν(s)
Ds = − ∂ HR(xR ,̂xR(r),r,s)

∂gμν(s) ,
(2)

and the initial conditions of the type

{

gμν(so) ≡ g(o)
μν (so),

πμν(so) ≡ π
(o)
μν (so).

(3)

Then the solution of the initial-value problem (2) and (3)
generates the Hamiltonian flow

xR(so) → xR(s), (4)

which is associated with the Hamiltonian structure {xR, HR} .

Here the notation is as follows. First, s denotes the proper
time prescribed along an arbitrary geodesic curve r(s) ≡
{rμ(s)}. This is associated with the prescribed metric tensor
ĝμν(r) of the background space-time. Second,

xR(s) ≡ {gμν(r(s)), πμν(r(s))} (5)

identifies the s-parametrized reduced-dimensional varia-
tional canonical state, with gμν(r) and πμν(r) being the cor-
responding continuum Lagrangian coordinates and the con-
jugate momenta, x̂R(s) ≡ {

ĝμν(r(s)), π̂μν(r(s)) ≡ 0
}

being
the corresponding prescribed state and HR(xR, x̂R(r), r, s)

the variational Hamiltonian 4-scalar density to be suitably
determined. Finally, D

Ds is the covariant s-derivative

D

Ds
= ∂

∂s
+ tα(s)̂∇α, (6)

while tα(s) and ̂∇α are respectively the tangent 4-vector to
the geodesics r(s) ≡ {rμ(s)} and the covariant derivative
evaluated at the same position in terms of the prescribed
metric tensor ĝμν(r).

The GR-Hamilton equations are covariant with respect
to arbitrary canonical transformations. This property implies
that the same equations are covariant with respect to an arbi-
trary local point transformation (LPT) which leaves invariant
a given space-time represented by the differential manifold
of the type

(

Q4, ĝ(r)
)

, so that the general covariance princi-
ple and the principle of manifest covariance are necessarily
both fulfilled by construction.

The realization of the evolution form of the GR-Hamilton
equations represents a requirement for the construction of a
corresponding manifestly covariant Hamilton–Jacobi theory
of GR. The construction of these equations is based on the
following steps.

2A–Step #1: prescription of the reduced-dimensional
Hamiltonian density

In the first step the Hamiltonian density HR(xR, x̂R(r), r, s)
is identified, extending the treatment given in Ref. [6]. In
terms of the reduced canonical variables this yields

HR (x, x̂, r) ≡ TR (xR, x̂R) + V (g, x̂, r), (7)

where the effective kinetic and potential densities TR (xR, x̂R)

and V (g, x̂, r, s) can be taken, respectively, of the general
form

{

TR (xR, x̂R) ≡ 1
2κ f (h)

πμνπ
μν,

V (g, x̂, r, s) ≡ σ Vo (g, x̂) + σ VF (g, x̂, r, s) .
(8)

Here f (h) and σ denote suitable multiplicative gauge
functions which remain in principle still arbitrary at this
point. More precisely, f (h) identifies an “a priori” arbi-
trary non-vanishing and smoothly-differentiable real gauge
function depending on the variational weight-factor h =
(

2 − 1
4 gαβgαβ

)

introduced in Ref. [5] and prescribed in such
a way that

f (ĝμν(r)) = 1. (9)

We anticipate here that the function f (h) will be shown in
Part 2 to be identically f (h) = 1, as required by quantum

123



329 Page 6 of 16 Eur. Phys. J. C (2017) 77 :329

theory of GR. Furthermore, σ denotes the additional constant
gauge function σ = ±1. Finally, in Eq. (8) the two 4-scalars

Vo (g, x̂) ≡ κh[gμν
̂Rμν − 2�],

VF (g, x̂, r) ≡ hL F (g, x̂, r) ,
(10)

identify, respectively, the gravitational and external-field
source contributions defined in Ref. [5], with L F being asso-
ciated with a non-vanishing stress-energy tensor.

2B–Step #2: Lagrangian path parametrization

In the second step we introduce the notion of Lagrangian
path (LP) [14,15]. For this purpose, preliminarily the real
4-tensor tγ (ĝ(r), r) is introduced such that identically

{

tα(ĝ(r), r)̂∇αtγ (ĝ(r), r) = 0,

ĝγ δ(r)tγ (ĝ(r), r)tδ(ĝ(r), r) = 1,
(11)

so that by construction tγ (ĝ(r), r) is tangent to an arbitrary
geodetics belonging to an arbitrary 4-position r ≡ {rμ} of
the space-time

(

Q4, ĝ(r)
)

[2]. Then the LP is identified with
the geodetic curve

{rμ(s)} ≡ {

rμ(s)
∣

∣ ∀s ∈ R, rμ(so) = rμ
o

}

, (12)

which is solution of the initial-value problem

{

drμ(s)
ds = tμ(s),

rμ(so) = rμ
o .

(13)

Here the 4-scalar proper time s is defined along the same
curve {rμ(s)} so that ds2 = ĝμν(r)drμ(s)drν(s). Further-
more, tμ(s) identifies the L P-parametrized 4-vector tμ(s) ≡
tμ(ĝ(r(s)), r(s)). In Eq. (13) d

ds ≡ ∂
∂s identifies the ordi-

nary derivative with respect to s. In the following we shall
call implicit s-dependences the dependences on the proper
time s appearing in the variational fields through the LP
parametrization of the fields. In contrast, we shall denote as
explicit s-dependences the proper-time dependences which
enter either explicitly on s itself or through the dependence
on r(s) ≡ {rμ(s)}.

Let us now introduce the parametrization obtained replac-
ing everywhere, in all the relevant tensor fields, r ≡ {rμ} with
r(s) ≡ {rμ(s)}, namely obtained identifying

⎧

⎨

⎩

gμν(s) ≡ gμν(r(s)),
πμν(s) ≡ πμν(r(s)),
x̂(r) ≡ x̂(r(s)).

(14)

This yields for the Hamiltonian density HR the so-called
LP-parametrization, in terms of which the reduced Hamilton
equations (2) can in turn be represented. In the remainder,

for greater generality, such a representation shall be taken of
the form

HR(s) ≡ HR (xR(s), x̂R(r), r(s), s) , (15)

i.e., including also a possible explicit dependence in terms
of the proper time s. Specific examples in which explicit s-
dependences may occur in the theory include:

(1) Continuum canonical transformations and in particular
canonical transformations generating local or nor local
point transformations (see Ref. [13]). In this case explicit
s-dependences may arise in the transformed Hamiltonian
density due to explicit s-dependent generating functions.

(2) Hamilton–Jacobi theory (see Sect. 3), where in a similar
way the explicit s-dependence in the Hamiltonian density
may be generated by the canonical flow.

(3) Stability theory for wave-like perturbations where explicit
s-dependences may appear in the variational fields xR =
xR(s) (see Sect. 5).

2C–Step #3: the reduced Hamiltonian variational principle

Given these premises, in the context of CCG-theory the
explicit construction of the GR-Hamilton equations (2) fol-
lows in analogy with the extended Hamiltonian theory
achieved in Ref. [6]. The goal also in the present case is
in fact the development of a manifestly covariant variational
approach, i.e., in which at all levels all variational fields,
including the canonical variables, the Hamiltonian density,
as well as their synchronous variations and the related Euler–
Lagrange equations, are expressed in 4-tensor form. To this
end in the framework of the synchronous variational principle
developed there – and in agreement with the DeDonder–Weyl
approach – the variational functional is identified with a real
4-scalar

SR (x, x̂) ≡
∫

d�L R (x, x̂, r, s) , (16)

with L R (x, x̂, r, s) being the variational Lagrangian density

L R (x, x̂, r, s) ≡ πμν

D

Ds
gμν − HR (x, x̂, r, s) . (17)

Thus, L R (x, x̂, r, s) is identified with the Legendre trans-
form of the corresponding variational Hamiltonian density
HR (x, x̂, r, s) defined above, with πμν

D
Ds gμν denoting the

so-called exchange term. Then the variational principle asso-
ciated with the functional SR (x, x̂) is prescribed in terms of
the synchronous-variation operator δ (i.e., identified with the
Frechet derivative according to Ref. [5]), i.e., by means of
the synchronous variational principle
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δSR (x, x̂) = 0 (18)

obtained keeping constant both the prescribed state x̂ and
the 4-scalar volume element d�. This yields the 4-tensor
Euler–Lagrange equations cast in symbolic form

⎧

⎨

⎩

δSR(x ,̂x)
δgμν = 0,

δSR(x ,̂x)
δπμν

= 0,
(19)

which are manifestly equivalent to the Hamilton equations
(2). These equations can be written in the equivalent Poisson-
bracket representation

D

Ds
xR(s) = [xR, HR (xR, x̂R(r), r, s)](xR) , (20)

with [, ](xR) denoting the Poisson bracket evaluated with
respect to the canonical variables xR , namely

[xR, HR (xR, x̂R(r), r, s)](xR)

= ∂xR

∂gμν

∂ HR(s)

∂πμν

− ∂xR

∂πμν

∂ HR(s)

∂gμν
. (21)

Then, after elementary algebra, the PDE’s (20) yield the GR-
Hamilton equations in evolution form given above by Eq. (2).
In particular, invoking Eqs. (8)–(10) it follows that

∂V (g, x̂R(r), r, s)

∂gμν(s)
= σκh(s)̂Rμν

− σκgμν(s)
1

2
(gαβ(s)̂Rαβ − 2�) − σκ

8πG

c2 Tμν, (22)

where ̂Rμν ≡ ̂Rμν(s) and Tμν ≡ Tμν(s) denote the
LP-parametrizations of the Ricci and stress-energy tensors.
Hence, in the case the gauge function f (h) is prescribed as
f (h) = 1, the canonical equations (2) reduce to the single
equivalent Lagrangian evolution equation for the variational
field gμν(s) in the LP-parametrization:

D

Ds

[

D

Ds
gμν(s)

]

+ σh(s)̂Rμν

− σgμν(s)
1

2
[gαβ(s)̂Rαβ − 2�] − σ

8πG

c2 Tμν = 0. (23)

This concludes the proof that the GR-Hamilton equations
(2), as well as the equivalent Lagrangian equation (23) are –
as expected – both variational.

2D–Step #4: connection with Einstein field equations

The connection of the canonical equations (2) with the Ein-
stein theory of GR can be obtained under the assumption that
the Hamiltonian density does not depend explicitly on proper
time s, i.e., it is actually of the form

HR = HR (xR, x̂R(r), r) . (24)

In this case, one furthermore notices that the identities
ĝμν(s)ĝμν(s) = δ

μ
μ and D

Ds ĝμν(s) ≡ 0 hold, so that by
construction π̂μν(s) ≡ 0 and hence the canonical equation
for π̂μν(s) (or equivalently Eq. (23)) yields for the prescribed
fields

̂Rμν − ĝμν(s)
1

2
[̂gαβ(s)̂Rαβ − 2�] = 8πG

c2
̂Tμν, (25)

which coincides with the Einstein field equations. Therefore,
in this framework the latter are obtained by looking for a
stationary solution of the GR-Hamilton equation (2), i.e.,
requiring the initial conditions

{

gμν(so) ≡ ĝμν(so),

πμν(so) ≡ π̂μν(so) = 0,
(26)

while requiring furthermore for all s ∈ I

π̂μν(s) = 0. (27)

Notice that, in principle, additional extrema may exist for the
effective potential, i.e. such that ∂V (g,̂xR(r),r,s)

∂gμν(s) = 0. One can
show that this indeed happens, for example, in the case of vac-
uum, namely letting ̂Tμν ≡ 0. Thus, besides gμν(s) ≡ ĝμν

additional extrema include gμν(s) ≡ − 2
3 ĝμν and the case

in which gμν(s) satisfies identically the constraint equations
h(s) = 0 and 1 − 1

2 gμν(s)ĝμν = 0. However, once the ini-
tial conditions (26) are set the stationary solution is unique.
The prerequisite for the existence of such a particular solu-
tion is, however, the validity of the constraint condition (24),
i.e., the requirement that the GR-Hamilton equations (2) are
autonomous. Such a property is non-trivial. In fact, it might
be in principle violated if non-local effects are taken into
account (see for example Refs. [17,21]). Analogous circum-
stance might arise due to possible quantum effects. The issue
will be further discussed in Part 2.

Finally, for completeness, we mention also the connection
between the reduced Hamiltonian system {xR, HR} defined
according to Eqs. (5) and (7) and the representation given
in Ref. [6] in terms of the “extended” Hamiltonian system
{x, H} and based on the adoption of the “extended” canonical
state x ≡ {

gμν,
α
μν

}

. More precisely, the connection is
obtained, first, by the prescription H = HR , and, second,
upon identifying 
α

μν = tαπμν . In fact it then follows that
πμν = tα
α

μν , so that πμν (r) represents the projection of

α

μν (r) along the tangent vector tα(s) to the background
geodesic curve.

2E–Step #5: alternative Hamiltonian structures

As indicated above, Eq. (22) together with the GR-Hamilton
equations (2) provides the required connection with the Ein-
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stein field equations. In practice this means that any suitably-
smooth 4-scalar function such that

∂V (g, x̂R(r), r, s)

∂gμν(s)

∣

∣

∣

∣

gμν(s)=ĝμν(s)

= σκ ̂Rμν − σκ ĝμν(s)
1

2
(ĝαβ(s)̂Rαβ − 2�)

−σκ
8πG

c2 Tμν = 0 (28)

realizes an admissible Hamiltonian structure of GR. The
choice corresponding to Eq. (8) with the functions Vo (g, x̂)

and VF (g, x̂, r) prescribed according to Eq. (10) corre-
sponds to the lowest-order polynomial representation (but
it is still non-linear, and thus non-trivial) in terms of the vari-
ational field gμν(s) for the variational Hamiltonian.

However, alternative possible realizations of the Hamil-
tonian structure {xR, HR} can be readily identified. In fact,
once the initial conditions (26) are set, alternative possible
realizations of the GR-Hamilton equations (2), leading to
the correct realization of the Einstein field equations, can be
achieved. These are obtained introducing a transformation of
the type

⎧

⎪

⎨

⎪

⎩

gμν(s) → gμν(s),

πμν(s) → πμν(s) − (s − so)Pμν (̂xR),

V (g, x̂, r, s) → V1 (g, x̂, r, s) + Uo (ĝ, x̂, s) .

(29)

Notice that here the function Uo (ĝ, x̂, s) remains in prin-
ciple arbitrary, so that it can always be determined so that
the extremal value of the potential density is preserved,
namely V (ĝ, x̂, r, s) = V1 (ĝ, x̂, r, s) + Uo (ĝ, x̂, s). How-
ever, π̂μν(s), Pμν (̂xR) and V1 (g, x̂, r, s) can always be
determined so that:

(1) the extremal momentum π̂μν(s) is prescribed so that

π̂μν(s) = (s − so)Pμν (̂xR); (30)

(2) Pμν (̂xR) and V1 (g, x̂, r, s) are such that

∂V1 (g, x̂R(r), r, s)

∂gμν(s)

∣

∣

∣

∣

gμν(s)=ĝμν(s)
− Pμν (̂xR)

= σκ ̂Rμν − σκ ĝμν(s)
1

2
(̂R − 2�) − σκ

8πG

c2 Tμν.

(31)

Hence, a particular possible realization which leads to a
functionally-different prescription of the potential den-
sity, and hence of the same Hamiltonian structure, is
provided, for example, by the setting

⎧

⎨

⎩

V1 (g, x̂R(r), r, s) ≡ κhgμν
̂Rμν + VF (g, x̂, r) ,

Uo (ĝ, x̂, s) = −2κ�,

Pμν (̂xR) = −σκ ĝμν(s)�,

(32)

with VF (g, x̂, r) being given by Eq. (10). The present
example means that the contribution of the cosmologi-
cal constant in the Einstein field equations can also be
interpreted as arising due to a non-vanishing canonical
momentum of the form given by Eq. (30). Alternatively,
a realization of the Einstein field equations with vanish-
ing cosmological constant (� ≡ 0) can be achieved in
terms of the potential density V (g, x̂R(r), r, s) of the
form given above by Eq. (10), while setting at the same
time

Pμν (̂xR) = σκ ĝμν(s)�, (33)

where now � can be interpreted as an arbitrary real 4-
scalar.

From the previous considerations it follows, however, that
if a solution of the type (30) is permitted the actual identifi-
cation of the variational potential density remains essentially
undetermined. It is, however, obvious that once the require-
ment Pμν (̂xR) ≡ 0, or equivalently the constraint condition
introduced above (27) are set, the transformations (29) reduce
necessarily to the trivial one, namely

⎧

⎨

⎩

gμν(s) → gμν(s),
πμν(s) → πμν(s),
V (g, x̂, r, s) → V1 (g, x̂, r, s) + Uo (ĝ, x̂, s) ,

(34)

which leaves unaffected the CHS. As a consequence, in valid-
ity of the constraint (27), the same Hamiltonian structure
remains uniquely determined.

3 Manifestly covariant Hamilton–Jacobi theory

From the results established in the previous section, it follows
that, thanks to the realization introduced here for the GR-
Hamilton equations of CCG-theory (i.e. Eq. (2)), the same
take the form of dynamical evolution equations. This fol-
lows as a consequence of the parametrization in terms of the
proper time s adopted for all geodetics belonging to the back-
ground space-time. This feature permits one to develop in a
standard way, in close analogy with classical Hamiltonian
mechanics, the theory of canonical transformations. Given
these premises, in this section the problem of constructing a
Hamilton–Jacobi theory of GR is addressed. Such a theory
should describe a dynamical flow connecting a generic phase-
space state with a suitable initial phase-space state charac-
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terized by identically-vanishing (i.e., stationary with respect
to s) coordinate fields and momenta. In view of the similar-
ity of the LP formalism for GR with classical mechanics, it
is expected that also in the present context the Hamilton–
Jacobi theory follows from constructing a symplectic canon-
ical transformation associated with a mixed-variable gener-
ating function of type S(gβγ , Pμν, x̂R, r, s).

Accordingly, the transformed canonical state X R ≡
{Gμν, Pμν} must satisfy the constraint equations

D

Ds
Pμν(so) = 0, (35)

D

Ds
Gμν(so) = 0, (36)

which imply the Hamilton equations

0 = [Pμν, K R(X R, ̂X R, r, s)](X R), (37)

0 = [Gμν, K R(X R, ̂X R, r, s)](X R), (38)

where K R(X R, ̂X R, r, s) is the transformed Hamiltonian
given by

K R(X R, ̂X R, r) = HR (xR, x̂R, r, s)

+ ∂

∂s
S(gβγ , Pμν, x̂R, r, s). (39)

Thanks to Eqs. (37) and (38), the transformed Hamiltonian
is necessarily independent of X R . As a consequence, K R

identifies an arbitrary gauge function, i.e., in actual fact
K R = K R (̂xR, r), which can always be set equal to zero
(K R = 0). On the other hand, canonical transformation the-
ory requires that it must be

πιξ = ∂S(gβγ , Pμν, x̂R, r, s)

∂gιξ
, (40)

Gιξ = ∂S(gβγ , Pμν, x̂R, r, s)

∂ Pιξ

. (41)

Then, introducing the s-parametrization, it follows that Eq.
(39) yields

HR

(

gβγ ,
∂S(gβγ , Pμν, x̂R, s)

∂gιξ
, x̂R, r, s

)

+ ∂

∂s
S(gβγ , Pμν, x̂R, r, s) = 0, (42)

which realizes the GR-Hamilton–Jacobi equation for the
mixed-variable generating function S(gβγ , Pμν, x̂R, r, s).
Due to its similarity with the customary Hamilton–Jacobi
equation, well known in Hamiltonian classical dynamics, in
the following S will refer to the (classical) GR-Hamilton
principal function. The canonical transformations generated
by S(gβγ , Pμν, x̂R, s) are then obtained by the set of Eqs.
(40)–(42).

Now we notice, in view of the discussions given above,
that the inverse canonical transformation X R → xR locally
exists provided the invertibility condition on the Hessian

determinant det
∣

∣

[ ∂2 S
(

gβγ ,Pμν ,̂xR ,r,s
)

∂gρσ ∂ Pιξ

]

X R=x̂R

∣

∣ 	= 0 is met.
Under such a condition the direct canonical equation (41)
determines gβγ as an implicit function of the form gβγ =
gβγ (Gβγ , Pμν, x̂R, r, s).

The following statement holds on the relationship between
the GR-Hamilton–Jacobi and the GR-Hamilton equations.

THM.1 – equivalence of GR-Hamilton and
GR-Hamilton–Jacobi equations

The GR-Hamilton–Jacobi equation (42) subject to the con-
straint (40) is equivalent to the set of GR-Hamilton equations
expressed in terms of the initial canonical variables, as given
by Eq. (2).

Proof Without loss of generality and avoiding possible mis-
understandings, the compact notation S (g, P, x̂R, r, s) will
be used in the following proof to denote the GR-Hamilton
principal function. To start with, we evaluate first the par-
tial derivative of Eq. (42) with respect to gik , keeping both
∂S(g,P ,̂xR ,r,s)

∂gιξ and rμ constant. This gives

∂

∂gik
HR

(

gβγ ,
∂S (g, P, x̂R, s)

∂gιξ
, x̂R, r, s

)

+ ∂

∂s

[

∂

∂gik
S (g, P, x̂R, r, s)

]

(g,P)

= 0. (43)

Then let us evaluate in a similar manner the partial derivative
with respect to ∂S(g,P ,̂xR ,s)

∂gik , keeping gμν and rμ constant.
This gives

∂

∂
∂S(g,P ,̂xR ,r,s)

∂gik

HR

(

gβγ ,
∂S (g, P, x̂R, s)

∂gιξ
, x̂R, r, s

)

+
⎡

⎣

∂

∂
∂S(g,P ,̂xR ,r,s)

∂gik

∂

∂s
S (g, P, x̂R, r, s)

⎤

⎦

(g,P)

= 0. (44)

With the identification πιξ = ∂S(g,P ,̂xR ,s)
∂gιξ provided by Eq.

(40) it follows that Eq. (43) becomes

∂

∂gik
HR(gβγ , πιξ , x̂R, r) + D

Ds
πik = 0, (45)

which coincides with the second Hamilton equation in (2).
To prove also the validity of the Hamilton equation for gβγ

we first invoke the following identity:
⎡

⎣

∂

∂
∂S(g,P ,̂xR ,s)

∂gik

∂

∂s
S (g, P, x̂R, s)

⎤

⎦

(g,P)

= ∂

∂
∂S(g,P ,̂xR ,s)

∂gik

∂

∂s
S (g, P, x̂R, s)

− D

Ds
gβγ ∂

∂
∂S(g,P ,̂xR ,s)

∂gik

∂S (g, P, x̂R, s)

∂gβγ
, (46)
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where

∂

∂
∂S(g,P ,̂xR ,r,s)

∂gik

∂S (g, P, x̂R, r, s)

∂gβγ
= δi

βδk
γ . (47)

The first term on the r.h.s. of Eq. (46) vanishes identically
because ∂

∂s S (g, P, x̂R, r, s) must be considered as indepen-
dent of πik . Therefore, Eq. (44) gives

∂

∂πik
HR(gβγ , πιξ , x̂R, r, s) − D

Ds
gik = 0, (48)

which coincides with the Hamilton equation for gik and
gives also the relationship of the generalized velocity D

Ds gik

with the canonical momentum, since here no explicit s-
dependence appears. This proves the equivalence between
the GR-Hamilton–Jacobi and GR-Hamilton equations, both
expressed in manifestly covariant form. 
�

This conclusion recovers the relationship between Hamil-
ton and Hamilton–Jacobi equations holding in Hamiltonian
Classical Mechanics for discrete dynamical systems. The
connection is established also in the present case for the con-
tinuum gravitational field thanks to the manifestly covari-
ant LP-parametrization of the theory and the representa-
tion of the Hamiltonian and Hamilton–Jacobi equations as
dynamical evolution equations with respect to the proper
time s characterizing background geodetics. The physical
interpretation which follows from the validity of THM.1 is
remarkable. This concerns the meaning of the Hamilton–
Jacobi theory in providing a wave mechanics description of
the continuum Hamiltonian dynamics. This follows also in
the present context by comparing the mathematical struc-
ture of the Hamilton–Jacobi equation (42) with the well-
known eikonal equation of geometrical optics. In fact, Eq.

(42) contains the squared of the derivative ∂S(gβγ ,Pμν ,̂xR ,r,s)
∂gιξ ,

so that the Hamilton principal function S(gβγ , Pμν, x̂R, r, s)
is associated with the eikonal (i.e., the phase of the wave),
while the remaining contributions due to the geometrical and
physical properties of the curved space-time formally play
the role of a non-uniform index of refraction in geometrical
optics [49]. The outcome pointed out here proves that the
dynamics of the field gμν(s) in the virtual domain of varia-
tional fields where the Hamiltonian structure is defined and
the Hamilton–Jacobi theory (42) applies must be character-
ized by a wave-like behavior and can therefore be given a
geometrical optics interpretation. This feature is expected
to be crucial for the establishment of the corresponding
manifestly covariant quantum theory of the gravitational
field.

An important qualitative feature must be pointed out
regarding the Hamilton–Jacobi theory developed here. This

refers to a formal difference arising between the Hamilton–
Jacobi theory for continuum fields built on the DeDonder–
Weyl covariant approach and the Hamilton–Jacobi theory
holding in classical mechanics for particle dynamics. This
concerns, more precisely, the dimensional units to be adopted
for the Hamilton principal function S and hence also the
canonical momentum πμν . Indeed, as is well known, in parti-
cle dynamics S retains the dimension of an action (and there-
fore of the action functional), so that [S] = [h̄]. In the present
case instead (see Eq. (7)) one has [S] = [

h̄L−3
]

, namely the
dimension of S differs from that of an action by the cubic
length L−3. This arises because for continuum fields the
action functional is an integral over the 4-volume element
of the Hamiltonian density, while for particle mechanics it
is expressed as a line integral over the proper-time length.
One has to notice, however, that, first, the dimensions of
S may be changed by the introduction of a non-symplectic
canonical transformation. This means that, by a suitable
choice of the same transformation, S can actually recover
the dimension of an action. Second, the relationship between
the Hamilton principal function S and the Hamiltonian func-
tion itself remains in all cases the same, with the two func-
tions differing by the dimension of a length (see also Sect. 4
below).

Before concluding, the following additional remarks are
in order:

(1) The GR-Hamilton–Jacobi description permits one to
construct explicitly canonical transformations mapping
in each other the physical and virtual domains. The
generating function determined by the GR-Hamilton–
Jacobi equation is a real 4-scalar field.

(2) The generating function obtained in this way realizes
the particular subset of canonical transformations which
map the physically-observable state x̂R into a neighbor-
ing admissible virtual canonical state xR .

(3) The virtue of the approach is that it preserves the validity
of the Einstein equation in the physical domain. In other
words, the canonical transformations do not affect the
physical behavior.

(4) A further issue concerns the connection between the
same prescribed metric tensor ĝ(r) ≡ {ĝμν(r)} and the
variational/extremal state xR(s) = {g(s), π(s)}. This
can be obtained by establishing a proper statistical the-
ory achieved by considering the initial state

xR(so) = x̂(so) + δxR(so) (49)

as a stochastic tensor and thus endowed with a suit-
able phase-space probability density. The topic can be
developed in the framework of a statistical description
of classical gravity to be discussed elsewhere in detail.
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4 Properties of CHS

In this section some properties are discussed which charac-
terize the manifestly covariant Hamiltonian theory of GR.

4A – global prescription and regularity

This refers, first of all, to the global prescription and reg-
ularity of the GR-Lagrangian and GR-Hamiltonian densi-
ties L R ≡ L R(y, ĝ, r, s) and HR ≡ HR(x, ĝ, r, s) defined
according to Eqs. (17) and (7) which are associated with
the corresponding Hamiltonian structure {xR, HR} indicated
above. For this purpose we notice that in Eq. (17) the
effective kinetic and potential densities expressed in terms
of the Lagrangian state y = {

gμν,
D
Ds gμν

}

and the LP-
parametrization (20) can be taken to be of the general type

{

TR (y, ĝ) = f (h)
2κ

D
Ds gμν

D
Ds gμν,

V (g, ĝ, r, s) ≡ σ Vo (g, ĝ) + σ VF (g, ĝ, r, s) .
(50)

Here, f (h) and σ identify the two distinct multiplicative
gauge functions introduced above (see Sect. 2), κ is the
dimensional constant κ = c3

16πG , while the rest of the
notations is expressed in standard form according to Refs.
[5,6]. More precisely, in the second equation Vo (g, ĝ) and
VF (g, ĝ, r, s) ≡ hL F (g, ĝ, r, s) are defined as in Eq. (10)
and must be expressed here in Lagrangian variables, with
the field Lagrangian L F (g, ĝ, r, s) being prescribed accord-
ing to Ref. [5]. Furthermore,TR (y, ĝ) identifies the generic
form of the effective kinetic density. It follows that a suffi-
cient condition for the global prescription of the canonical
state, i.e., the existence of a smooth bijection connecting the
Lagrangian and Hamiltonian states is the so-called regu-
larity condition of the GR-Hamiltonian (and corresponding
GR-Lagrangian) density. This requires more precisely that
in the whole Hamiltonian phase space

∣

∣

∣

∣

∂2 HR

∂πμν∂παβ

∣

∣

∣

∣

≡
∣

∣

∣

∣

∂2TR

∂πμν∂παβ

∣

∣

∣

∣

= 1

κ f (h)
	= 0. (51)

4B – gauge indeterminacies of CHS

As shown in Ref. [6] at the classical level the Hamilto-
nian structure {xR, HR} of SF-GR remains intrinsically non-
unique, with the Hamiltonian density HR being characterized
by suitable gauge indeterminacies. Leaving aside the treat-
ment of additive gauge functions earlier discussed in Refs.
[5,6], these refer more precisely to the following properties:

• (A) The first one is the so-called multiplicative gauge
transformation of the effective kinetic density. To iden-
tify it we notice that the scalar factor f (h) appearing in
the prescriptions of the effective kinetic density (see first

equation in (50)) remains in principle essentially indeter-
minate. In fact the regularity condition (51) requires only
that
∣

∣

∣

∣

∂2TR

∂πμν∂παβ

∣

∣

∣

∣

= 1

κ f (h)
	= 0, (52)

implying that the function f (h) can be realized by an
arbitrary non-vanishing (for example, strictly positive)
and suitably smooth dimensionless real function. In addi-
tion, in order that both TR (y, ĝ) and V (y, ĝ) (see again
Eq. (50)) are realized by means of integrable functions
in the configurations space Ug , accordingly the functions
f (h) and 1/ f (h) should be summable too. As a conse-
quence the prescription of f (h) remains in principle still
free within the classical theory of SF-GR developed in
Sect. 2. This means that f (h) should be intended in such
a context as a gauge indeterminacy affecting the Hamil-
tonian density HR , i.e., with respect to the multiplicative
gauge transformation

⎧

⎪

⎨

⎪

⎩

TR (xR, ĝ) ≡ 1
2κ

πμνπ
μν → T ′

R (xR, ĝ)

≡ 1
2κ f (h)

π ′
μνπ

′μν = 1
f (h)

TR (xR, ĝ) ,

πμν → π ′
μν = f (h)πμν.

(53)

• (B) The second indeterminacy is related to the so-
called multiplicative gauge transformation of the effec-
tive potential density V (g, ĝ, r, s) (see again Sect. 2).
More precisely the indeterminacy is related to the con-
stant gauge factor σ = ±1.

• (C) The third indeterminacy is related to the so-called
additive gauge transformation. Indeed, one can readily
show (see Ref. [6]) that L R(y, ĝ, s) is prescribed up to
an arbitrary additive gauge transformation of the type

L R(y, ĝ, r, s) → L R(y, ĝ, r, s) + �V (54)

being �V a gauge scalar field of the form �V =
DF(g,̂g,r,s)

Ds , with F(g, ĝ, s) being an arbitrary, suitably-
smooth real gauge function of class C (2) with respect to
the variables (g, s) (see also related discussion in Ref.
[5]).

4C – dimensional normalization of CHS

In this section it is shown that the Hamiltonian structure
{xR, HR} can be equivalently realized in such a way that xR ,
and consequently also HR , can be suitably normalized, i.e.,
so that to achieve prescribed physical dimensions. Granted
the non-symplectic canonical nature of the transformation
indicated above ( i.e., Eq. (1)) one can always identify the 4-
scalar α with a classical invariant parameter, i.e., both frame-
independent and space-time independent. In particular, in the
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framework of a classical treatment it should be identified with
the classical parameter α ≡ αClassical, being

αClassical = mocL > 0, (55)

with c being the speed of light in vacuum, mo a suitable rest-
mass (to be later identified with the non-vanishing graviton
mass in the framework of quantum theory of GR) and L a
characteristic scale length to be considered as an invariant
non-null 4-scalar. Without loss of generality this can always
be assumed of the form

L = L(mo), (56)

with mo itself being regarded as an invariant 4-scalar. Here
L is regarded as a classical invariant parameter, so that it
should remain independent of all quantum parameters, i.e.,
in particular �. In addition, in view of the covariance property
of the theory, whereby the choice of the background space-
time

(

Q4, ĝ(r)
)

is in principle arbitrary, the 4-scalars mo and
L should be universal constants, namely also invariant with
respect to the action of local and non-local point transfor-
mations [13]. As an example, a possible consistent choice
for the invariant function L(mo) is realized by means of the
so-called Schwarzschild radius, i.e.,

L(mo) = 2moG

c2 . (57)

The invariant rest-mass mo remains, however, still arbitrary
at this level, its prescription being left to quantum theory. It
follows that the transformed GR-Hamilton equations (2) can
always be cast in the dimensional normalized form

⎧

⎨

⎩

Dgμν

Ds = ∂ H R
∂πμν ≡ ∂ HR

∂πμν ,

Dπμν

Ds = − ∂ H R
∂gμν ≡ −αL

k
∂ HR
∂gμν ,

(58)

where the transformed Hamiltonian H R identifies the nor-
malized GR-Hamiltonian density

H R(x R, ĝ, r, s) = 1

f (h)
T R(x R, ĝ, r, s) + V (g, ĝ, r, s) .

(59)

Here the notation is as follows. First, for an arbitrary curved
space-time (Q4, ĝ(r)) the functions T R and V now are iden-
tified with

{

T R(x R, ĝ, r, s) = πμνπμν

2αL ,

V (g, ĝ, r, s) ≡ σ V o (g, ĝ, r, s) + σ V F (g, ĝ, r, s) ,

(60)

so that T R(x R, ĝ, r, s) identifies the normalized effective
kinetic density and V by analogy is the corresponding
normalized effective potential density, with V o (g, ĝ) and
V F (g, ĝ, r, s) now being prescribed, respectively, in terms
of Vo (g, ĝ) and VF (g, ĝ, r, s) as

{

V o (g, ĝ) ≡ hαL
[

gμν
̂Rμν − 2�

]

,

VF (g, ĝ, r, s) ≡ hαL
2k L F (g, ĝ, r, s) .

(61)

From the canonical equations (58) it is obvious that by con-
struction the transformed canonical momentum πμν takes the
dimensions of an action, i.e., [πμν] = [�]. The set {x R, H R}
thus provides an admissible representation of CHS. In partic-
ular it follows that the GR-Hamilton equations in normalized
form become, respectively,

⎧

⎨

⎩

Dgμν

Ds = πμν

αL ,

Dπμν

Ds = − ∂V (g,̂g,r,s)
∂gμν ,

(62)

with the operator D/Ds being prescribed again in terms of
the corresponding prescribed metric tensors ĝμν(r).

For completeness, we mention here also the normalized
Hamilton–Jacobi equation corresponding to the canonical
equations (62). This is reached introducing the correspond-
ing normalized Hamilton principal function S(g, P, ĝ, r, s),
i.e., the mixed-variable generating function for the canonical
transformation

xR(so) ≡ (Gμν,Pμν) ⇔ x(s) ≡ (gμν(s), π
μν(s)), (63)

with xR(so) ≡ (Gμν,Pμν) denoting the initial canonical GR-
state. Then S(g,P, ĝ, r, s) is prescribed in such a way that the
normalized canonical momentum πμν(s) is given by πμν =
∂S(g,P,̂g,r,s)

∂gμν , while the initial canonical coordinate Gμν is
determined by the inverse canonical transformation Gμν =
∂S(g,P,̂g,r,s)

∂Pμν . It follows that the corresponding dimensionally
normalized Hamilton–Jacobi equation which is equivalent to
Eqs. (62) is provided by

∂S(g,P, ĝ, r, s)

∂s
+ H R

(

g, π ≡ ∂S(g,P, ĝ, r, s)

∂g
, ĝ, r, s

)

= 0, (64)

with H R being prescribed by Eq. (59).

5 Structural stability of the GR-Hamilton equations

In this section we present an application of the GR-
Hamiltonian theory for the Einstein field equations developed
in this paper, which is represented by Eq. (2) or equivalently
by the Hamilton–Jacobi equation (42). This refers to the sta-
bility of the GR-Hamilton equations with respect to their
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stationary solution. As shown above the latter realizes by
construction a solution of the Einstein field equations (25) in
its most general form, i.e., in the presence of arbitrary exter-
nal sources. Therefore the task to be addressed concerns the
so-called structural stability of the GR-Hamilton equations
(with respect to the Einstein field equations), namely the sta-
bility of stationary solutions of the GR-Hamilton equations
assuming that the perturbed fields realize particular solutions
of the same GR-Hamilton equations.

As a first illustration of the problem, here we consider the
case of arbitrary vacuum solutions realized by setting a van-
ishing stress-energy tensor (̂Tμν = 0) and possibly retaining
also a non-vanishing cosmological constant as corresponds
to de Sitter (� > 0 ) or anti-de Sitter (� < 0) space-times.

Let us address the problem in the context of the reduced
continuum manifestly covariant Hamiltonian theory. The
study is supported by the conclusions concerning the wave
mechanics interpretation of the reduced continuum Hamil-
tonian dynamics of the gravitational field determined by the
Hamilton–Jacobi theory. For this purpose we shall consider
perturbations of the reduced canonical state xR(s) which are
suitably close to x̂R(s), namely of the form

gμν(s) = ĝμν(s) + εδgμν(s), (65)

πμν(s) = εδπμν(s), (66)

where ε 
 1 is an infinitesimal dimensionless parameter
identifying the perturbations of the canonical fields. In par-
ticular, consistent with the existence of a Hamilton–Jacobi
theory and its physical interpretation pointed out above, we
are authorized to consider a wave-like form of the pertur-
bations. These are assumed to propagate along field geode-
tics, namely the same perturbations of the canonical fields
(δgμν(s), δπμν(s)) are taken of the form

δgμν(s) = δĝμν(ĝ(s)) exp {G(s)} , (67)

δπμν(s) = δπ̂μν(ĝ(s)) exp {G(s)} . (68)

Here G(s) denotes the eikonal

G(s) = i
ω

c
s − i Krμ(s)tμ(s), (69)

with ω and K being 4-scalar parameters which, by con-
struction, have, respectively, the dimensions of a frequency
and that of a wave number ( i.e., the inverse of a length).
Therefore, denoting K ≡ 1/λ, according to the represen-
tation (69), ω and λ identify the invariant frequency and
wave-length of the wave-like perturbations of the canon-
ical fields. The invariant character of ω and λ is a char-
acteristic feature of the manifestly covariant Hamiltonian
theory.

It is then immediate to show that, in terms of the canonical
evolution equations (20), the following set of linear differen-
tial equations advancing in proper time the perturbed fields

δgμν(s) and δπμν(s) and accurate through O (ε) is obtained
thanks also to the requirement (9):

D

Ds
δgμν(s) = 1

κ
δπμν(s), (70)

D

Ds
δπμν (s) = σ

2
κ(̂R + 2�)δgμν (s)

+σ

2
κ(ĝμν(s)̂Rαβ + ̂Rμν ĝαβ(s))δgαβ. (71)

In particular, introducing the representation (69) and recall-
ing the definition of the differential operator D

Ds , the first
equation yields a unique relationship between δπμν(s) and
δgμν(s), namely δπμν(s) = iκ[ω

c − K ]δgμν(s). Then Eq.
(71) determines the algebraic linear equation for δgμν (s):
(

−κ
[ω

c
− K

]2 − σ

2
κ[̂R + 2�]

)

δgμν(s)

= σκ

2
(ĝμν(s)̂Rαβ + ̂Rμν ĝαβ(s))δgαβ (s) . (72)

To solve it explicitly one needs to determine the corre-
sponding algebraic equations holding for the independent
tensor products ĝμν(s)δgαβ

̂Rαβ and ĝαβ(s)δgαβ
̂Rμν appear-

ing on the r.h.s. of the same equation. Thus, by first multi-
plying tensorially term by term Eq. (72) by ̂Rμν it follows
(

−
[ω

c
− K

]2 − σ [̂R + �]
)

̂Rμνδgμν (s)

= σ

2
̂Rμν

̂Rμν ĝαβ(s)δgαβ (s) . (73)

Next, multiplying tensorially term by term Eq. (72) by
ĝμν (s) one obtains instead
(

−
[ω

c
− K

]2 − σ [̂R + �]
)

ĝμν (s) δgμν (s)

= 2σ ̂Rαβδgαβ (s) . (74)

Combining together Eqs. (73) and (74) one is finally left with
the equation

(

−
[ω

c
− K

]2 − σ [̂R + �]
)2

− ̂Rμν
̂Rμν = 0, (75)

which identifies the dispersion relation between ω and K ,
i.e., the condition under which in the context of the reduced
continuum Hamiltonian theory the infinitesimal perturba-
tions (67) and (68) can occur.

To analyze in terms of Eq. (75) the conditions for the
existence of stable, marginally stable or unstable oscillatory
solutions for the canonical fields

(

δgμν(s), δπμν(s)
)

, it is
convenient to classify the possible complex roots for ω which
can locally occur. Such a classification has therefore neces-
sarily a local character. More precisely, single roots of this
equation such that locally (a) I m(ω) < 0, (b) I m(ω) = 0
or (c) I m(ω) > 0 will be referred to as (locally) stable,
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marginally stable and unstable, respectively. Correspond-
ingly, the perturbation

(

δgμν(s), δπμν(s)
)

will be classified
to be locally (a) decaying, (b) oscillatory, (c) growing. There-
fore, the equilibrium solution ĝ(r) will be denoted as (a)
locally stable, (b) locally marginally stable and (c) locally
unstable, respectively, if:

(a) all roots of ω are locally stable: namely for them
I m(ω) < 0;

(b) there is at least one root of ω which is locally marginally
stable, namely such that I m(ω) = 0;

(c) there is at least one locally unstable root of ω, namely
such that I m(ω) > 0.

To investigate the stability problem we consider the vac-
uum configuration in which Tμν ≡ 0, but still � 	= 0, so that
̂Rμν = �ĝμν and ̂R = 4� is the constant Ricci scalar. Then
Eq. (75) yields the dispersion relation in the explicit form

(

−
[ω

c
− K

]2 − 5σ�

)2

− 4 (−σ�)2 = 0, (76)

which yields the roots,

ω

c
− K =

{±√−7σ�

±√−3σ�
. (77)

Therefore, two possible alternatives can be distinguished in
which respectively:

(A) First case: −σ� ≥ 0. Then the equilibrium solution
ĝ(r) is marginally stable since all roots of the dispersion
relation (76) have vanishing imaginary part.

(B) Second case: −σ� < 0. Then ĝ(r) is necessarily unsta-
ble (there exists always an unstable root of the same Eq.
(76)).

Hence, both for the case of de Sitter and anti-de Sitter
space-times (�, respectively, > 0 or < 0) the possible occur-
rence of stability or instability depends on the multiplicative
gauge parameter σ appearing in the definition of the effective
potential density V (see the second equation given above in
(60)). However, a physically admissible Hamiltonian theory
of GR should predict stable solutions, i.e., which are struc-
turally stable in the sense indicated above. This should occur
in principle not just for special realizations of the background
space-time but – at least in the case of vacuum – for arbi-
trary vacuum background space-times

(

Q4, ĝ(r)
)

. In partic-
ular, if � > 0 – as most frequently invoked in the literature
(see for example [50,51]) – this happens provided the gauge
factor σ is uniquely identified with σ = −1. Although the
rigorous proof of the validity of such a choice still remains
a mere conjecture at this point, its full justification should

ultimately emerge from quantum theory. Nevertheless, the
stability property pointed out here can be viewed as a pre-
requisite for the consistent development of a covariant quan-
tum gravity theory. For this reason the issue will be further
discussed in Part 2.

6 Conclusions

A common fundamental theoretical aspect laying at the foun-
dation of both General Relativity (GR) and classical field the-
ory is the variational character of the fundamental dynamical
laws which identify these disciplines. This concerns both the
representation of the Einstein field equations and the covari-
ant dynamics of classical fields as well as of discrete (e.g., test
particles) or continuum systems in curved space-time. Issues
related to the variational formulation of the Einstein equa-
tions have been treated in Refs. [5,6], where the existence
of a new type of Lagrangian and Hamiltonian variational
approaches has been identified in terms of synchronous varia-
tional principles realized in the framework of the DeDonder–
Weyl formalism. As shown in Ref. [6], this leads to the real-
ization of a manifestly covariant Hamiltonian theory for the
Einstein equations.

In this paper new aspects of the Hamiltonian structure of
GR have been displayed which is referred to here as CCG-
theory.

In particular, we have shown that a reduced-dimensional
realization of the continuum Hamiltonian theory for the Ein-
stein field equations, denoted here as Classical Hamiltonian
Structure of GR (CHS), actually exists in which both gen-
eralized coordinates and corresponding conjugate momenta
are realized by means of second-order 4-tensors. The virtue
of such an approach lies precisely in its general validity. This
means in fact that the same Hamiltonian structure holds for
arbitrary particular solutions of the Einstein field equations
and arbitrary realizations of the external source terms appear-
ing in the variational potential density. As a result, a causal
form has been obtained for the corresponding continuum
Hamilton equations by introducing a suitable Lagrangian
parametrization prescribed in terms of the proper time s
defined along field geodetics of the curved space-time. As
a result, the same equations are cast in the equivalent form
of an initial-value problem for suitable canonical evolution
equations, referred to here as GR-Hamilton equations. This
provides a physical interpretation for the reduced Hamilto-
nian theory, according to which an arbitrary initial canonical
state is dynamically advanced by means of the canonical flow
generated by the same Hamilton equations.

Given validity to such Hamiltonian theory, the case of
canonical transformations which generate the flow corre-
sponding to the continuum canonical equations has been con-
sidered. This has been obtained by introducing the appro-
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priate mixed-variable generating function – the so-called
Hamilton principal function – and by developing the cor-
responding Hamilton–Jacobi theory in manifestly covariant
form. As a result, the same generating function has been
shown to obey a 4-scalar continuum Hamilton–Jacobi equa-
tion which has been proved to be equivalent to the corre-
sponding canonical evolution equations of the Hamiltonian
theory. The global prescription and regularity of the Hamilto-
nian structure have been analyzed and the gauge transforma-
tion properties of the reduced Hamiltonian density HR have
been pointed out.

Finally, as an application of the Hamiltonian formulation
developed here, the structural stability of the Hamiltonian
theory has been investigated, a feature which is required for
a consistent development of a corresponding quantum the-
ory of GR based on the same canonical representation. In this
paper we have studied the stability of perturbed fields which
realize particular solutions of the GR-Hamilton equations
with respect to stationary solutions, i.e., metric tensor solu-
tions of the Einstein field equations. The case of background
vacuum solutions having vanishing stress-energy tensor and
non-null cosmological constant has been analyzed, determin-
ing the conditions for the occurrence of stable and unstable
roots, adopting an eikonal representation for the perturbed
fields.

These conclusions highlight the key features of the
reduced Hamiltonian theory and corresponding Hamilton–
Jacobi equation determined here. The new theory, besides
being a mandatory prerequisite for the covariant theory of
quantum gravity to be established in Part 2, is believed to
be susceptible of applications to physics and astrophysics-
related problems and to provide at the same time new insights
in the axiomatic foundations of General Relativity.
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