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Abstract We study the P–V criticality and phase transi-
tion in the extended phase space of anti-de Sitter (AdS) black
holes in higher-dimensional de Rham, Gabadadze and Tol-
ley (dRGT) massive gravity, treating the cosmological con-
stant as pressure and the corresponding conjugate quantity
is interpreted as thermodynamic volume. Besides the usual
small/large black hole phase transitions, the interesting ther-
modynamic phenomena of reentrant phase transitions (RPTs)
are observed for black holes in all d ≥ 6-dimensional space-
time when the coupling coefficients cim2 of massive potential
satisfy some certain conditions.

1 Introduction

Einstein’s general relativity (GR) is a relativistic theory of
gravity where the graviton is a massless spin-2 particle [1–
3]. It is also the current description of gravitation in modern
physics and has significant astrophysical implications. Nev-
ertheless, whether there exist a consistent extension of GR
by a mass term is a basic challenge of classical field the-
ory, since the open questions such as the old cosmological
constant problem and the origin of the late-time accelera-
tion of the Universe remain behind the puzzles at the inter-
face between gravity/cosmology and particle physics. In gen-
eral, by adding generic mass terms for the gravitons on the
given background usually brings about various instabilities
for the gravitational theories, sometimes on the nonlinear
level. A new nonlinear massive gravity theory was proposed
by de Rham, Gabadadze and Tolley (dRGT) [4–6], where
the Boulware–Deser ghost [7] was eliminated by introduc-
ing higher order interaction terms in the action. Until now,
a nontrivial black hole solution with a Ricci flat horizon has
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been constructed by Vegh [8,9] in four-dimensional dRGT
massive gravity. Later, spherically symmetric solutions were
also addressed in [10–12], and the corresponding charged
black hole solution was found in [13], including its bi-gravity
extension [14,15]. Moreover, the charged AdS black hole
solution in higher-dimensional dRGT massive gravity, and
its corresponding thermodynamics and phase structure in
the grand canonical and canonical ensembles were also pre-
sented in [16]. Ge et al. [17] examined the relations between
dynamical instabilities and thermodynamic instabilities in
the dRGT massive gravity.

Recently, the study of thermodynamics in AdS black holes
has been generalized to the extended phase space, where the
cosmological constant is regarded as a variable and also iden-
tified with thermodynamic pressure [18,19]

P = − �

8π
= (d − 1)(d − 2)

16πl2
(1)

in geometric units GN = h̄ = c = k = 1. Here d stands for
the number of spacetime dimensions and l denotes the AdS
radius. In this case, the variation of the cosmological constant
is included in the first law of black hole thermodynamics,
which ensures the consistency between the first law of black
hole thermodynamics and the Smarr formula. In [20], it was
pointed out that the extended phase space can be interpreted
as an RG-flow in the space of field theories, where isotherm
curves codify how the number of degrees of freedom N (or
the central charge c) runs with the energy scale. Moreover, the
variation of cosmological constant could be corresponded to
variation of number of the colors in Yang–Mills theory resid-
ing on the boundary spacetime [21,22]. In the extended phase
space, the charged AdS black hole admits a more direct and
precise coincidence between the first order small/large black
holes (SBH/LBH) phase transition and Van der Waals liquid-
gas phase transition, and both systems share the same critical
exponents near the critical point [23]. As a result, the analogy
between the charged AdS black hole and the Van der Waals

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-4822-9&domain=pdf
mailto:dczou@yzu.edu.cn
mailto:rhyue@yzu.edu.cn
mailto:shakellar@126.com


256 Page 2 of 8 Eur. Phys. J. C (2017) 77 :256

system becomes more complete. More discussions in vari-
ous gravity theories can be found in [24–47]. In this direction,
some investigations for thermodynamics of AdS black holes
in the dRGT massive gravity have been generalized to the
extended phase space [48–53], which revealed the existence
of Van der Waals-like SBH/LBH phase transition. In addi-
tion, a link between the Van der Waals-like SBH/LBH phase
transition and quasinormal modes (QNMs) has established in
four [54] and higher-dimensional Reissner–Nordström AdS
black hole [55], including time-domain profiles [56], and
higher-dimensional charged black hole in the presence of
Weyl coupling [57]. In terms of AdS/CFT, holographic entan-
glement entropy (HEE), Wilson loop, and two point correla-
tion function also provide useful tools to probe the Van der
Waals-like SBH/LBH phase transition [58–63].

Recently, Ref. [64] firstly recovered the existence of inter-
mediate/small/large phase transitions in the four- dimen-
sional Born–Infeld–AdS black hole, which is reminiscent of
reentrant phase transitions (RPTs) observed for multicom-
ponent fluid systems, ferroelectrics, gels, liquid crystals, and
binary gases, e.g., [65]. A system undergoes an RPT if a
monotonic variation of any thermodynamic quantity results
in two (or more) phase transitions such that the final state
is macroscopically similar to the initial state. Moreover, this
RPT also appears in the higher-dimensional rotating AdS
black holes [66,67], five-dimensional hairy AdS black hole
[68], and higher-dimensional Gauss–Bonnet AdS black hole
[69,70]. It is interesting to generalize the discussion to the
black holes in the dRGT massive gravity. In this paper, we
will report the finding of interesting RPTs in all d ≥ 6-
dimensional black holes when the coupling coefficients cim2

of massive potential satisfy some certain conditions.
This paper is organized as follows. In Sect. 2, we review

the thermodynamics of massive gravity black holes in the
extended phase space. In Sect. 3, we study the critical behav-
ior of higher-dimensional AdS black hole in context of P–V
criticality and phase diagrams. We end the paper with closing
remarks in Sect. 4.

2 Thermodynamics of higher-dimensional AdS black
hole in dRGT massive gravity

We start with the action of higher-dimensional dRGT massive
gravity in the presence of a negative cosmological constant

I = 1

16π

∫
dd x

√−g

[
R − 2� + m2

4∑
i=1

ciUi (g, f )

]
,

(2)

where the last four terms are the massive potential associate
with graviton massm, ci are constants and f is a fixed rank-2
symmetric tensor. Moreover, Ui are symmetric polynomials

of the eigenvalues of the d × d matrix K μ
ν ≡ √

gμα fαν

U1 = [K ],
U2 = [K ]2 − [K 2],
U3 = [K ]3 − 3[K ][K 2] + 2[K 3],
U4 = [K ]4 − 6[K 2][K ]2 + 8[K 3][K ]

+ 3[K 2]2 − 6[K 4]. (3)

The square root in K is understood as the matrix square
root, i.e., (

√
A)

μ
ν(

√
A) ν

λ = Aμ
λ, and the rectangular brackets

denote traces [K ] = K μ
μ .

Consider the metric of d-dimensional spacetime in the
following form:

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2hi jdx

idx j , (4)

where hi jdxidx j is the line element for an Einstein space
with constant curvature (d − 2)(d − 3)k. The constant k
characterizes the geometric property of black hole horizon
hypersurface, which takes values k = 0 for flat, k = −1 for
negative curvature and k = 1 for positive curvature, respec-
tively.

By using the reference metric

fμν = diag(0, 0, c2
0hi j ), (5)

the metric function f (r) is obtained [16]:

f (r) = k + c2
0c2m

2 + 16π P

(d − 1)(d − 2)
r2 + c0c1m2

d − 2
r

− 16πM

(d − 2)Vd−2rd−3 + (d − 3)c3
0c3m2

r

+ (d − 3)(d − 4)c4
0c4m2

r2 . (6)

Here c0 is a positive constant, Vd−2 is the volume of space
spanned by coordinates xi , and M is the black hole mass.
It is necessary to point out that the terms c3m2 and c4m2

only appear in the black hole solutions for d ≥ 5 and
d ≥ 6, respectively [16]. When m → 0, namely, without
the massive potential, Eq. (6) reduces to the d-dimensional
Schwarzschild AdS (SAdS) black hole solution.

In terms of the radius of the horizon r+, the mass M ,
Hawking temperature T and entropy S of black holes can be
written as

M = (d − 2)Vd−2r
d−3+

16π

[
k + 16π P

(d − 1)(d − 2)
r2+ + c0c1m

2r+
d − 2

+ c0c2m
2 + (d − 3)c3

0c3m
2

r+
+ (d − 3)(d − 4)c4

0c4m
2

r2+

]
,

T = f ′(r+)

4π
= 1

4πr+

[
(d − 3)k + 16π P

d − 2
r2+ + c0c1m

2r+

+ (d − 3)c2
0c2m

2 + (d − 3)(d − 4)c3
0c3m

2

r+
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+ (d − 3)(d − 4)(d − 5)c4
0c4m

2

r2+

]
,

S = Vd−2

4
rd−2+ . (7)

The black hole mass M can be considered as the enthalpy
rather than the internal energy of the gravitational system.
Moreover, the first law of black hole thermodynamics and
the Smarr relation are given by [48]

dM = T dS + V dP + c0m2Vd−2r
d−2+

16π
dc1

+ (d − 2)c2
0m

2Vd−2r
d−3+

16π
dc2

+ (d − 2)(d − 3)c3
0m

2Vd−2r
d−4+

16π
dc3

+ (d − 2)(d − 3)(d − 4)c4
0m

2Vd−2r
d−5+

16π
dc4, (8)

(d − 3)M = (d − 2)T S − 2V P − c0c1m2Vd−2

16π
rd−2+

+ (d − 2)(d − 3)c3
0c3m2Vd−2

16π
rd−4+

+ (d − 2)(d − 3)(d − 4)c4
0c4m2Vd−2r

d−5+
8π

,

(9)

where Vd−2 denotes the thermodynamic volume and equals
Vd−2
d−1 r

d−1+ .

3 Critical behaviors of higher-dimensional AdS black
holes

3.1 Equation of state

For further convenience, we denote

T̂ = T − c0c1m2

4π
, w2 = −k + c2

0c2m2

8π
,

w3 = −c3
0c3m2

8π
, w4 = −c4

0c4m2

8π
. (10)

Here T̂ denotes the shifted temperature and can be negative
according to the value of c0c1m2. Then the equation of state
of the black hole can be obtained from Eq. (7)

P = d − 2

4r+

[
T̂ + 2(d − 3)w2

r+
+ 2(d − 3)(d − 4)w3

r2+

+ 2(d − 3)(d − 4)(d − 5)w4

r3+

]
. (11)

To compare with the Van der Waals fluid equation, we can
translate the “geometric” equation of state to a physical one
by identifying the specific volume v of the fluid with the

radius of the horizon of the black hole as v = 4r+
d−2 . Evidently,

the specific volume v is proportional to the radius of the
horizon r+, therefore we will just use the radius of the horizon
in the equation of state for the black hole hereafter in this
paper.

We know that the critical point occurs when P has an
inflection point,

∂P

∂r+

∣∣∣
T̂=T̂c,r+=rc

= ∂2P

∂r2+

∣∣∣
T̂=T̂c,r+=rc

= 0, (12)

where the subscript stands for the quantities at the critical
point. The critical shifted temperature is obtained:

T̂c = −2(d−3)

rc

[
2w2+ 3(d−4)w3

rc
+ 4(d−4)(d−5)w4

r2
c

]
,

(13)

and the equation for the critical radius of the horizon rc is
given by

6(d − 4)(d − 5)w4 + 3(d − 4)w3rc + w2r
2
c = 0. (14)

One can easily find that in four-dimensional spacetime (d =
4, w3 = w4 = 0), the absence of positive solution of Eq. (14)
indicates that no criticality can occur [48]. A similar situation
also occurs in the d-dimensional Schwarzschild AdS black
hole (m → 0), since there does not exist any real root of
Eq. (14) with w3 = w4 = 0.

We further discuss the critical behaviors of the higher-
dimensional (d ≥ 5) AdS black hole when w2 �= 0 and
w3 �= 0. When setting w4 = 0, one has

rc = −3(d − 4)w3

w2
, T̂c = 2(d − 3)w2

2

3(d − 4)w3
,

Pc = − (d − 2)(d − 3)w3
2

54(d − 4)2w2
3

. (15)

Note that the critical behavior occurs only when w2 < 0 and
w3 > 0. We can easily find an interesting relation among the
critical pressure Pc, temperature T̂c and radius of the horizon
rc:

Pcrc

T̂c
= d − 2

12
. (16)

For d = 5, Eqs. (15) and (16) reduce to the equations
described in [48].

With regard to the case of w4 �= 0, which only appears
for d ≥ 6, the direct solution of Eq. (14) reads

rc1,2 = 1

2w2

[
±

√
9(d − 4)2w2

3 − 24(d − 4)(d − 5)w2w4

− 3(d − 4)w3

]
≡ χ±

2w2
(17)

if 3(d − 4)w2
3 ≥ 8(d − 5)w2w4. In this case, rc1 and rc2

correspond to the “−” and “+” branches, respectively. The
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condition of rc1,2 > 0 crucially depends on the dimension of
the spacetime and values of w2, w3 and w4.

For w2 < 0, the positivity of solution rc1 leads to w3 < 0
and w4 > 0 or w3 > 0. In order for rc2 to be positive, it
requires an additional constraint: w3 > 0 and w4 < 0. By
substituting the solutions rc1,2 (17) into Eqs. (11) and (13),
we obtain

T̂c1,2 = 8(d − 3)(d − 4)w2
2

[
16(d − 5)w2w4 + 3w3χ±

]
χ3±

, (18)

Pc1,2 = ±4(d − 2)(d − 3)(d − 4)w3
2

[
6(d − 5)w2w4 + w3χ±

]
χ4±

.

(19)

Due to the shifted temperature T̂c1,2 can be negative; here we
only evaluate the results of Pc1,2. When Pc1 > 0, we shall
keep w3 < 0 and w4 > 0 or w3 > 0. On the other hand,

taking w3 > 0, w4 < 0 and
3(d−4)w2

3
8(d−5)w4

< w2 <
3(d−4)w2

3
9(d−5)w4

lead to Pc2 > 0. As a result, two critical points (rc1,2 > 0

and Pc1,2 > 0) will appear in the range of
3(d−4)w2

3
8(d−5)w4

< w2 <

3(d−4)w2
3

9(d−5)w4
with w3 > 0 and w4 < 0.

In case of w2 > 0, there is only one critical point (rc1 > 0

and Pc1 > 0) for w3 < 0, w4 > 0 and w2 <
(d−4)w2

3
3(d−5)w4

. We
summarize the critical points in Table 1. The corresponding
P–r+ diagrams for d = 6 are displayed in Figs. 1 and 2.

To study the possible phase transitions in the system, let
us now turn to the expression for the Gibbs free energy.

3.2 Gibbs free energy

The behavior of the free energy G is important to determine
the thermodynamic phase transition. The free energyG obeys
the thermodynamic relation

G = M − T S = −Vd−2r
d−3+

[
Pr2+

(d − 1)(d − 2)
+ w2

2

+ (d − 3)w3

r+
+ 3(d − 3)(d − 4)w4

2r2+

]
. (20)

Here r+ is understood as a function of pressure and temper-
ature, r+ = r+(P, T̂ ), via equation of state (11).

In the range of
3(d−4)w2

3
8(d−5)w4

< w2 <
3(d−4)w2

3
9(d−5)w4

with w3 > 0
and w4 < 0, the behavior of G in the six-dimensional space-
time is depicted in Fig. 3a. We have one physical (with posi-

Table 1 The behavior of critical points for different values of coupling
constants when d ≥ 6

T Tc

T Tc

T Tc

5 10 15 20
r

0.05

0.10

0.15

0.20
P

(a) w4 = 0.1

T Tc1

T Tc1

Tc2 T Tc1

T Tc2

T Tc2

2 3 4 5 6
r

0.05

0.05

0.10

0.15

P

(b) w4 =−0.7

Fig. 1 The P−r+ diagrams of six-dimensional AdS black holes for
w2 = −1 and w3 = 1. a The upper dashed line corresponds to the idea
gas phase behavior for T̂ > T̂c. The critical temperature case T̂ = T̂c is
denoted by the solid line. The line below is with temperatures smaller
than the critical temperature. We have T̂c = 0.9788 in a. In b, we
have now two critical points at positive pressure. The upper one has
higher radius, temperature, and mass. We have T̂c1 = 1.27718 and
T̂c2 = 1.1718 in b

tive pressure) critical point and the corresponding first order
SBH/LBH phase transition. This phase transition occurs for
T̂ < T̂c1 and terminates at T̂ = T̂t . In particular, there also
exists a certain range of temperatures, T̂ ∈ (T̂t , T̂z), for which
the global minimum ofG is discontinuous; see Fig. 3b. In this
range of temperatures, two separate branches of intermediate
size and small size black holes co-exist. They are separated
by a finite jump in G, which is so-called “zeroth-order phase
transition”. This phenomenon is also seen in superfluidity
and superconductivity [71].

This novel situation can also clearly be illustrated in the
P−T̂ diagrams in Fig. 4. There is the expected SBH/LBH
line of coexistence, which initiates from the critical point
(T̂c1, Pc1) and terminates at (T̂t , Pt ). Especially, a “triple
point” between the small, intermediate, and large black holes
appears in the point (T̂t , Pt ). For T̂ ∈ (T̂t , T̂z), a new
IBH/SBH line of coexistence appears and then it terminates
in another critical point (T̂z, Pz). The range for the RPT is
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T Tc

T Tc

T Tc

0.5 1.0 1.5 2.0 2.5 3.0
r

5

10

15

P

(a) w2 =−1, w3 =−1 and w4 = 0.6

T Tc

T Tc

T Tc

1.0 1.5 2.0 2.5 3.0
r

0.5

1.0

1.5

2.0
P

(b) w2 = 1, w3 =−1 and w4 = 0.5

Fig. 2 The P−r+ diagrams of six-dimensional AdS black holes. The
upper dashed line corresponds to the idea gas phase behavior for T̂ >

T̂c. The critical temperature case T̂ = T̂c is denoted by the solid line. The
lines below is with temperatures smaller than the critical temperature.
We have T̂c = 19.2290 in a and T̂c = 1.1547 in b

quite narrow and must be determined numerically. Taking
w2 = −1, w3 = 1, w4 = −0.7 and d = 6, we obtain

(T̂t , T̂z, T̂c1) ≈ (1.22194, 1.22459, 1.27718),

(Pt , Pz, Pc1) ≈ (0.08615, 0.08747, 0.09899). (21)

In Fig. 5, we also plot the behavior of Gibbs free energy of
six-dimensional AdS black hole for three other cases, showed
in Table 1. One can see that the G surface demonstrates the
characteristic “swallow tail” behavior, which indicates the
occurrence of Van der Waals-like SBH/LBH phase transi-
tion when P < Pc in the corresponding system. Moreover,
the corresponding P−T̂ diagram (not shown) is reminiscent
of what was observed for charged black holes in [23] and
is analogous to the Van der Waals P−T̂ diagram in each
case.

P Pc1

P Pc1Pt P Pz

P Pc2P Pc2

Tc1Tc2

1.15 1.20 1.25 1.30
T

110

120

130

140

150
G

(a)

T0 T1

1.220 1.225 1.230 1.235 1.240 1.245 1.250
T

110

120

130

140

150
G

(b)

Fig. 3 The G−T̂ diagrams of six-dimensional AdS black holes for
w2 = −1, w3 = 1 and w4 = −0.7. For P ∈ (Pt , Pz), we observe a
“zeroth-order phase transition” signifying the onset of an RPT in a. In b
with P = 0.0869 ∈ (Pt , Pz), a close-up of a illustrates the discontinuity
in the global minimum of G at T̂ = T̂0 ≈ 1.223398 ∈ (T̂t , T̂z) and the
so-called Van der Waals-like phase transition at T̂ = T̂1 ≈ 1.22554

When m → 0, namely, w3 = w4 = 0 and w2 =
− k

8π
, we find that the free energy G always maintains

negative in cases of k = 0 and k = −1, which corre-
spond to a Ricci flat and hyperbolic topology of the black
hole horizon of d-dimensional Schwarzschild AdS black
hole, respectively. It is of great interest to discuss the d-
dimensional Schwarzschild AdS black hole with spherical
horizon (k = 1). In Fig. 6, it is shown that the temper-
ature T has a minimal value Tmin, below which no black
hole solution exists. When the temperature drops to a cer-
tain value larger than Tmin, the Gibbs free energy G will
be larger than zero, and then a more stable vacuum will be
found. At T = THP, there is a first order Hawking–Page [72]
phase transition between thermal radiation and black hole
phase. This phase transition can be interpreted as a confine-
ment/deconfinement phase transition in the dual quark–gluon
plasma [73].
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Pc1

Pt

Critical Point

Tc1Tt

Small BH

Large BH

1.22 1.24 1.26 1.28 1.30
T0.080

0.085

0.090

0.095

0.100

0.105
P

(a)

Pz

Pt

TzTt

Intermediate BH Small BH

Large BH

1.222 1.224 1.226 1.228 1.230
T

0.0855

0.0860

0.0865

0.0870

0.0875

0.0880
P

(b)

Fig. 4 The P−T̂ diagram of six-dimensional AdS black holes for
w2 = −1, w3 = 1 and w4 = −0.7. The coexistence line of Van
der Waals-like phase transition is depicted by a thick solid line, which
initiates from the critical point (Pc1, T̂c1) and terminates at (Pt , T̂t ).
The solid line in the inset indicates the coexistence line of small and
intermediate black holes, separated by a finite gap in G, indicating the
RPT. It commences from (Pz, T̂z) and terminates at (Pt , T̂t )

4 Closing remarks

In this paper we have studied the thermodynamic behavior
of higher-dimensional AdS black hole in the dRGT mas-
sive gravity. We discussed this issue in the extended phase
space where the cosmological constant appears as the pres-
sure of the thermodynamic system and its conjugate quantity
is the thermodynamic volume of the black holes. Follow-
ing the standard thermodynamic techniques, we have written
out the equations of state and examined the phase structures.
When the coupling coefficients of massive potential satisfy
3(d−4)w2

3
8(d−5)w4

< w2 <
3(d−4)w2

3
9(d−5)w4

with w3 > 0 and w4 < 0, we
found that a monotonic lowering of the temperature yields
a large-small-large black hole transition, where we refer to
the latter “large” state as an intermediate black hole (IBH),
which is reminiscent of reentrant phase transitions. More-
over, this process is also accompanied by a discontinuity
in the global minimum of the Gibbs free energy, referred

P PcP PcP Pc

0.6 0.8 1.0 1.2 T

5000

4000

3000

2000

1000

1000

2000
G

(a) w2 =−1, w3 = 1 and w4 = 0.1

P PcP PcP Pc

14 16 18 20 22 T

75

70

65

60

55

50

G

(b)w2 =−1, w3 =−1 and w4 = 0.6

P PcP PcP Pc

0.6 0.8 1.0 1.2 1.4 1.6 T
64

62

60

58

56

54

52

50
G

(c) w2 = 1, w3 =−1 and w4 = 0.5

Fig. 5 The G−T̂ diagrams of six-dimensional AdS black holes. The
behavior of the Gibbs free energy is depicted as a function of tempera-
ture for fixed pressure. There is one critical point and the corresponding
Van der Waals-like phase transition for T̂ < T̂c

to as a zeroth-order phase transition. For three other cases
in Table 1, the usual Van der Waals-like small/large black
hole phase transition occurred when coupling coefficients of
massive potential adopt some proper values in the higher-
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THPRadiation Tmin

0.5 1.0 1.5 2.0 2.5 3.0 3.5
T

10

5

5

10

15
G

(a) 4d SAdS black hole

Radiation THPTmin

0.5 1.0 1.5 2.0 2.5 3.0 3.5
T

20

20

40

60
G

(b) 5d SAdS black hole

Fig. 6 The G−T diagrams of four- and five-dimensional
Schwarzschild AdS black holes for P = 0.2 and k = 1. The
radiation phase is displayed by a horizontal magenta line. The
Hawking–Page phase transition between thermal radiation and black
holes occurs at T = THP. For T > THP, this branch has a negative
Gibbs free energy and the corresponding black holes represent the
globally thermodynamically preferred state

dimensional spacetime. In addition, the solution (6) recov-
ered d-dimensional Schwarzschild AdS black holes in the
case of m → 0. It demonstrated the existence of a so-called
Hawking–Page phase transition between SAdS black hole
with spherical horizon and vacuum if d ≥ 4.

It is necessary to point out that the charged black hole [74],
Born–Infeld black hole [75], and black hole in the Maxwell
and Yang–Mills fields [76] have been recently constructed in
Gauss–Bonnet massive gravity. It has also showed the exis-
tence of Van der Waals like first order SBH/LBH phase tran-
sition in these models. It would be interesting to extend our
discussion to these black hole solutions and see whether the
reentrant phase transition can appear.
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