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Abstract In this paper, we have explored the effects of dis-
sipation on the dynamics of charged bulk viscous collaps-
ing cylindrical source which allows the out-flow of heat flux
in the form of radiations. The Misner—Sharp formalism has
been implemented to drive the dynamical equation in terms
of proper time and radial derivatives. We have investigated
the effects of charge and bulk viscosity on the dynamics of
collapsing cylinder. To determine the effects of radial heat
flux, we have formulated the heat transport equations in the
context of Miiller—Israel-Stewart theory by assuming that
thermodynamics viscous/heat coupling coefficients can be
neglected within some approximations. In our discussion, we
have introduced the viscosity by the standard (non-causal)
thermodynamics approach. The dynamical equations have
been coupled with the heat transport equation; the conse-
quences of the resulting coupled heat equation have been
analyzed in detail.

1 Introduction

The stars composed of some nuclear matter which is contin-
uously gravitating and is attracted toward its center due to the
gravitational interaction of its particles. This phenomenon in
the theory of general reactivity is known as gravitational col-
lapse. The description of this phenomenon is the main objec-
tive of the relativistic theories of gravity (including general
relativity) [1-3]. Oppenheimer and Snyder [4] theoretically
illustrated the process of collapse in 1939, they addressed the
contraction of a highly idealized spherically symmetric dust
cloud. They used the exterior and interior spacetimes of the
Schwarzschild metric and a Friedman like solution, respec-
tively. An enormous amount of contributions in the research
of gravitational collapse have been added by Vaidya [5], who
provided the exterior gravitational field of a stellar body send-
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ing out radiations. Misner and Sharp [6,7] studied a perfect
fluid spherically symmetric collapse and also some authors
[8-20] considered it in different situations.

Rossland [21] proved that the atoms are converted into
ions with great strength and the law of central force should
be observed by the forces between the free particles. Its order
of magnitude should be greater than that of remaining forces
acting between neutral atoms. The effect of electrical forces
is fairly large if the star is built of heavy elements with 1.5
times the solar mass and a mean molecular weight 2.8 unit.
Eddington [22] explored the fact that, in the internal elec-
trical field of star, the electric potential ¢ directly relates
the gravitational potential ¥, the mass m and charge e of a
proton, a scalar parameter « affected by the density n; of
the ions, the atomic weight A; of the ions and the effective
charge eZ;. Mitra [23] introduced the fact that the forma-
tion and evolution of stars would happen due to gravitational
collapse, which is a high energy dissipating process and can
be characterized by two respective cases: the free streaming
approximation and the diffusion approximation. In the free
streaming approximation case, Tewari added some models
[24-26] by the solution of the Einstein field equation with
a different approach. A number of distinguished researchers
such as Bonner et al. [27], Bowers and Liang [28], de Oliveria
[29], Mahraj and Govender [30], Ivanov [31] and Phinheiro
and Chan [32] discussed many realistic models in the diffu-
sion approximation with anisotropy, inhomogeneity, viscos-
ity, and an electromagnetic field, and one also addressed the
different dissipative processes analytically.

Since then, a huge amount of literature [8—20] on grav-
itational collapse considered the spherical symmetry of the
star, which is the simplest geometry. In order to determine
a realistic model of gravitational collapse, it would be inter-
esting to study the dynamics of a collapsing star with a non-
spherical background. It would be implied by the existence of
gravitational waves that cylindrical and plane symmetries are
more important for a non-spherical background. The cylin-
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drical sources may serve as a test bed for numerical relativ-
ity, quantum gravity, and for probing the cosmic censorship
and hoop conjecture, among other important issues, and they
represent a natural tool to seek the physics that lies behind
the two independent parameters in the Levi-Civita metric
[34]. Herrera et al. [33] have discussed gravitational collapse
and junction/interface criteria for a gravitating source which
has cylindrical geometry. Sharif and Ahmad [35] have pre-
dicted that gravitational radiations can be emitted during a
gravitational collapse of two perfect fluids. Di Prisco et al.
[36] studied the shear-free conditions and cylindrical gravi-
tational waves by taking the Einstein—Rosen spacetime in the
exterior of a general non-static cylindrical spacetime. Nakao
and Morisawa [37] have explored the gravitational radiations
from the collapse of a hollow cylinder.

Since Einstein and Rosen [38] initially predicted cylindri-
cal gravitational waves theoretically, the observational evi-
dence of gravitational waves through advance detectors such
as LIGO [39] and GEO [40] has motivated researchers to
study the cylindrically symmetric gravitating source. The for-
mation of a naked singularity during the generic gravitational
collapse would be expected during a cylindrical gravitational
collapse. Several numerical approximations [41] depict the
emission of gravitational cylindrical waves from a cylindrical
gravitating source. These results have been verified analyti-
cally by Nakao and Morisawa [42]. During the recent years,
many attempts [43—45] have been made to study the dynam-
ics of collapsing cylindrical sources, but all these involve
cylindrical spacetimes which are very similar to spherical
spacetimes. In the current study, we have taken the nontriv-
ial cylindrical spacetime.

In the present study, we have considered the two types
of dissipation processes, heat dissipation associated to the
radial heat flux and bulk viscosity. These both dissipative
terms have been included in the stress energy tensor of the
gravitating source. In order to see the effects of these terms
on the dynamics of the collapse, we used the heat trans-
port equations in the context of Miiller—Israel-Stewart the-
ory [46—49]. Such equations provide the physically reason-
able heat transportation process as compared to Landau—
Eckart approach [50,51] (by neglecting the thermodynam-
ics viscous/heat coupling coefficients). The bulk viscosity
has been described according to standard (non-causal) irre-
versible thermodynamics approach in the stress energy tensor
of the gravitating source. The inclusion of the bulk viscos-
ity in the fluid implies that we are assuming the relativis-
tic Stokes equations, which corresponds to the irreversible
thermodynamics. This equation does not satisfy causality,
because implicitly it is assumed that the corresponding bulk
viscosity relaxation time vanishes, and this assumption is
valid within some approximations.

The plan of the paper is as follows: in Sect. 2 we present
a cylindrical source and the field equations. The dynamical
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equations with Misner—Sharp approach have been presented
in Sect. 3. The derivation of heat transport equation and its
coupling is given Sect. 4. The last section is devoted to a
summary of the results of this paper.

2 Gravitating source and field equations

In this section, we shall briefly introduce matter source,
geometry of star for both interior and exterior regions and
the field equations for the charged radiating bulk viscous
source. The cylindrically symmetric spacetime [52] is

ds? = —X*(r, )d1* + Y2 (r, )dr* + R*(r, 1)d6? + dz?,
(1)
where —00 <t < 00,0 <r,—00<7<00,0<6 <2m.
Inside the cylindrical star, we take a charged, anisotropic,

bulk viscous fluid with radial heat flux, which has the fol-
lowing form of energy momentum tensor:

Totﬁ = (u+ Pr)VotVﬂ — (P - Pz)SaSﬂ + (P — P@)XaX,B
—(gup + VaVBEO + qo Vg + Vugp + Prgup

1 14 1 1z
+E Fa Fﬁy - ZF Fyﬁgaﬁ 5 (2)

where u is the energy density, P, is the pressure perpendic-
ular to z direction, Py is the pressure in the 6 direction, P,
is the pressure in z direction, Vj, is the four-velocity, & is the
coefficient of the bulk viscosity, ® is the expansion scalar and
o is the radial heat flux. Also, Fyg = —¢u,g + ¢p,« is the
Maxwell field tensor with four-potential ¢,. Moreover, S
and x, are the unit four-vectors, which satisfy the following
relations:

XaXazsaSOt:l’ Vavaz_l,
VOSe = S = V¥xa = 0.

The four-vector velocity V,, and four-vectors x, and S, can
be defined as follows:

Xa = R8Z, vy =—X8), Sy =6

The Maxwell field equations are
Fo{;}3 =4 JY, Flap.) =0, 3)

where J,, is the four-current. It is assumed that there exists
only a non-vanishing electric scalar potential and the mag-
netic vector potential will be zero; then the four-potential
takes the following form:

bo = ¢80, J* =V,

where ¢(r, t) is the charge density and ¢ (r, t) is the electric
scalar potential.
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The expansion scalar is

0= 21‘/+R )
“x\Y R)’

where a dot and a prime denote differentiation with respect
to ¢ and r, respectively.
The set of Einstein-Maxwell field equations is

b 2 ! p! "

T N, YR (X\)(XR R
IR x2= 4 (2 - =), 5
"(“ 2 ) YR+<Y XR R )

: (6)

(P -g0+ zEz) yro XR (Y>2 (—I.é + XR)
2 XR " \Xx R XR)’
(7
K<P9_§@_HE2>:<1)(XY_X/Y/_Y._{_XN)
2 xy)\x2 vz x "1 )
(3)

(P—E@— 2)__L+X7H_i_ﬂ

2 XY ' Xy?2 X2R  XY3

X (R X R (Y X
+ﬁ(i+§)‘ﬁi(?+?)

YR R’

“XYR TR ®)

where E(r, 1) = Q(r) with total charge Q (r) =47 Jo ¢YRdr.

Analogous to the Misner—Sharp mass in spherically sym-
metry, Thorne [38] introduced the mass function for cylin-
drical spacetime in terms of the gravitational C-energy per
unit length of the cylinder. The specific energy m(r, t) in the
presence of an electromagnetic field is [53]

(r, 1) : 14 LAY Ry’ +Q212 (10)
m(r,t) = = - = -
8 X Y 2R
Here [ is the constant specific length of the cylinder.
Let X be a boundary surface, which separates the interior
region (defined in Eq. (1)) from the exterior region, the exte-

rior region is described for a cylindrically symmetric mani-
fold in the retarded time coordinate by [52]

2M(©v) G (v)
2
ds+:_(_ R + R )

—2dvdR + R*(d6? + y2dz?), (11)

where M (v) and (j(v) are the mass and the charge, respec-
tively, and y2 %, A is the cosmological constant. Using
the continuity of hne elements and extrinsic curvature of line
elements given by Eqgs. (1) and (11) and the field equations,
we get [53]

- M= L
81
=¥ 4R. (12)

P, —£0 =¥ (qY),

QZIZ _z 52’ i

These are the necessary conditions for the smooth matching
of internal and external geometries of cylindrical stars over
the hypersurface 2. For the assumed cylindrical source the
difference of M and m (specific energy) is non-zero in general
and the constraint / == 4R must be satisfied over .

3 Dynamical equations

According to Misner and Sharp [6,7], we introduce the proper
time derivative D; as follows:

10
Di=-2 (13)
X ot

The velocity U of the fluid collapse may be stated in terms
of Eq. (13) as
U=DR <0 (in the case of collapse). (14)

Hence Eq. (10) yields

2 Qzl
<1—|—U T+ )

where E is the energy of an element of the fluid that under-
goes collapse. The proper time derivative of the mass function
described in Eq. (10) takes the following form:

D=

= E, (15)

"<I=u\

RR R:X RR  R*Y ROI2
Dtm = l — + — .
4X3  YX4  4v2x ' 4XY3 2XR?
(16)
Using Egs. (5) and (7) and E = L we obtain
Dim = —27l (EqB +UP, — g@)) R. (17)

These equations provide the rate of change of the total energy
available inside the cylinder of radius R. Here, we briefly
explain the effect of each term on the change of total internal
energy, on the right hand side of the above equation with the
term E g B being the multiple of negative sign. This stands
for the amount of heat energy leaving the surface of the cylin-
drical star. In other words, the out-flow of heat from the col-
lapsing system reduces the total energy of the system. In the
second term U (P, — £0®) < 0 (as U < 0, and ® < 0 due
to collapse and & > 0), hence this having a pre-factor —2x,
increases the energy inside the collapsing source. The proper
radial derivative DR is used to address the dynamics of the
collapsing system, which is defined as follows:

10
DR = — (18)
R’ or

@ Springer
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Using Eqgs. (10) and (18), we have

Do — - RR'  R’X' RR’ N Y'R"? N 100" 1Q°R
RU= R ax2 ~ ax3 ~ ay2 " 4y’ R 2R?
(19)
Now Egs. (5), (6) and (19) yield
U 0012 02
DRm=27rRl (4M+EQY>+ RR' —?. (20)

This expression yields the change in total energy contained
inside the various cylindrical surfaces of different radii. The
term 4 + LqY increases the energy as for the physically
realistic ﬂuig w > 0, although it is affected by the heat flux
and U < 0O reduces p. The second term implies the pres-
ence of an electromagnetic field inside the gravitating source.
After the integration of Eq. (20), we obtain

R A272 2 R A2
U (O 0
= 2RI 4 —qY |dR+— —— —dR.
" /o g ( o Eq ) + 2R 2/0 R?
(21)

Here, we have assumed that m (0) = 0.

Now we obtain D;U, which is the acceleration of the col-
lapsing matter inside the ¥. From Eq. (13), we get the fol-
lowing relation:

pu— L2 R :>DU—ié RX (22)
T xar \x T x2 x3

The above equation with Eq. (7) gives

DU (m 4 87(P §®)R) + X'E + o (. 1
= — | — i —_ —_— _—
! R2 r XY ' R \2R?

l X
—(1+U*-E?. 2
+ 3 R2( +U ) (23)
By the conservation law (T,Oéﬂ =0), we deduce the following

dynamical equations:

cyv2 l 2 7
qY R qY* (R 3Y
P+——(Po—P)—+—|=+—
r+ X (@ r)R+ X <R+Y

/

+ (P + )X s®/+X/$®
r T M % %

+ (%) (E'R—R'E)=0. (24)

Using the value of XY/ from Eq. (24) in Eq. (23) and consid-
ering the field equations, after some algebra we obtain
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(Pr+pn—§0)DU

2A2 A2 2
=—<M+Pr—s®>['" Lo g ZU}

8TR(P, —£@) 4 —=_ £ 4 7
g2 PATR(P =50+ s o T 3R

o8 L 8 et 1)
R R 7R3 8R?

—E [5’ + % +YDiq +qY% - ‘SS + ZSYQRZ} . (25)
The factor (P, 4 u —£&®) being a multiple of the acceleration
D7U plays the role of an effective inertial mass density,
while the same factor on the right hand side before the square
bracket is the passive gravitational mass density. This factor
is affected by the radial pressure and bulk viscosity, but it is
independent of the electric charge. The first square bracket
on the right hand side shows the effects of dissipation and
charge on the dynamical process. The second square bracket
gives the effects of the local anisotropy, electric charge and
gravitational mass density. In the last square bracket P/ is the
pressure gradient and the terms involving ¢, & and Q explain
the collective effects of dissipation and the electromagnetic
field on the hydrodynamics of the collapsing source. The
consequences of D;g will be dealt with in the next section
by deriving the heat transport equation and then performing
the possible coupling of the dynamical equation with the
resulting heat transport equation.

4 Heat transport equation

As already mentioned in the introduction, we shall use
a transport equation that comes from the Miiller—Israel—
Stewart [46—49] second order phenomenological theory for
dissipative fluids (by neglecting the thermodynamics vis-
cous/heat coupling coefficients). Since we have introduced
the bulk viscosity in a fluid source, we have to take accord-
ingly the full causal approach as discussed in [54-59], but, for
the sake of simplicity, we neglect the thermodynamics vis-
cous’/heat coupling coefficients and only take into account
the only transportation of heat flux governed bythe Cattaneo
type equation [60] (leading to a hyperbolic equation for the
propagation of a thermal perturbation). Thus according to
[12,14], the transport equation for the heat flux is

th*f V7 g, +q% = —Kh*P(T g + Tag)

1 VA
— =K T2< > q%. (26)
2
2 KT>).4

In the above equation 4*# denotes the projection onto the
space orthogonal to V#, K is the thermal conductivity and
T and 7 are temperature and relaxation time, respectively.
With the symmetry of the given interior spacetime, the heat
transport equation has the following form as regards the inde-
pendent component:
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KYT'  KTY (X'\ 1 s/ T Y
YDg = — —~ 2 ) - —kT1%Y (—)q
T T X 21 KT?
Yq Ygq 3 .
424 yuy 27
X Txe ' @7

Applying the value of % from Eq. (23) in the above equation,
we get
KYT' KTY? KTY?
YDiq = — - ———DU - —
T TE tE
012 N 02 11+U?)
2R3 R 8R2

m
x| 2 +8TR(P, —56)—

kry? (1E 1KT2Y3( ! ) +?q
8tR2 |~ 2t k1)1 X
Yq 3 .

After substituting the value of ¥ D,q in Eq. (25), we have
KTY?
(Pr+1—§0)— . DU
m
= (P, + 1 —£O) (RQSnR(P, ~£0) -

0% 10+U»
+R+8Rz) (1‘

QZZZ
2R3
KTY? )
T(Pr+pn—£0)
I e G e 1)
R 7R3 8R2

IKTY?
8R2t

£ P;+4qf/ KYT' 1 Ksz3( T )
y T X T 27 k724
——]. (29)

Equation (29) may be written as

(Pr+1n—-§0)(1—-a) DU

[P 4qY KYT'
= Foray (1 — ) + Fhya — E 74’7— .
1 ' Y 3qYY
_ _KT2y3<L)q_q__q_ . (30)
27 KT? Xt 2X

Here, Fgray, Fhyd and « are defined by

m Q212
Fgravz_(Pr+M_";:®) E‘FSNR(PV_E@)_W

22 11+ U?
L@ vy
R 8R2

P P Q* lu+ P —£O
thd:_Ez[_r__e_ @  luth-f ):|,

R R =#R3 8R2
(3D
KTY?
e=—" (32)
(P +pn—£0)

From Eq. (30), it is noted how dissipation affects the final
stage of the charged collapsing cylinder. This fact was inves-
tigated for the first time in [61], when the authors discussed
the thermal conduction in systems out of hydrostatic equilib-
rium. They analyzed the fact that the evolution of the gravi-
tating source depends on the parameter « (which is defined in
terms of the thermodynamic variables), further for the valid-
ity of causality, the constraints on o have been determined in
that work.

It is clear that the left hand side of Eq. (30) will be zero as
o — 1, which confirms that the effective inertial mass den-
sity of the fluid element tends to zero. Further, we observe
that the inertial mass will be decreased as o exceeds than 1.
Moreover, Fgr,y, being a multiple of (1 — «), is affected by
this factor. Also, it is evident that both inertial mass and grav-
itational attraction are affected by the same factor (1 — «).
In other words, we can say that this equation satisfies the
equivalence principle and we would like to point out that the
factor (1 — ) has no effects on Fryq. One may observe that a
collapsing cylinder would evolve in such a way that the value
of o keeps on increasing and attains a critical value of 1. With
the passage of time during collapse the rapid decrease in the
force of gravity may gradually result in altering the physical
effects of the right hand side of Eq. (30). As is clear from the
definition of «, it is inversely related to the effective inertial
mass density, so as long as « increases from 1, then there
would be a decrease in the inertial mass density. Physically,
it is only possible when the gravitating source depicts the
bouncing behavior. The factor (I — «) does not depend on
the charge parameter but it heavily depends on the bulk vis-
cosity, which is explicitly clear from Eq. (32). Further, one
can see the dependence of the factor (1 —«) on the dissipative
variables when a full causal approach [62] is used to discuss
the dynamics of dissipative collapse (see Eq. (54) of [62]).

5 Conclusion

The cylindrically symmetric systems which combine transla-
tions along the axis are exactly known to general relativists.
The study of such systems was started by Weyl [63] and
Levi-Civita [34] in the early 20th century immediately after
the birth of the Einstein theory of relativity. In the beginning
physicists were interested in finding the gravitating objects
that are exactly axially symmetric. The realistic fluids are
very important in the modeling of astronomical objects. So,
one cannot ignore the effects of dissipation during the grav-
itational collapse.

Here, we discuss the gravitational collapse of charged
radiating cylindrically symmetric stars. To this end, we for-
mulated the Finstein field equations and conservation equa-
tion for a non-static charged bulk viscous heat conducting
anisotropic cylindrically symmetric source. Using the Misner
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and Sharp formalism, the dynamical equations are derived.
Further, we have considered the two types of dissipation pro-
cesses, heat dissipation associated to the radial heat flux and
bulk viscosity. In order to see the effects of these terms on the
dynamics of the collapse, we have excluded thermodynamics
viscous/heat coupling coefficients in the heat transport equa-
tions in the context of Miiller—Israel-Stewart theory [46—49].

The inclusion of the bulk viscosity in the fluid implies that
we are assuming the relativistic Stokes equations, which cor-
responds to irreversible thermodynamics. This equation does
not satisfy causality, because implicitly it is assumed that the
corresponding bulk viscosity relaxation times vanishes. But
this assumption is sensible, because within some approx-
imations, such relation times could be neglected. A full
causal approach to the dynamics of dissipative collapse has
been analyzed with significant consequences in [62], without
excluding the thermodynamics viscous/heat coupling coef-
ficients for the heat flux and bulk viscosity. As an implica-
tion of their analysis to astrophysical scenario, they pointed
out that in a pre-supernova event, the dissipative parameters
(particularly the thermal conductivity) would be so large as to
produce a significant decreasing in the force of gravity which
leads to the reversal of the collapse. We would like to mention
that we have introduced the bulk viscosity by the standard
(non-causal) irreversible thermodynamics approach, so we
have used the partially causal approach (the thermodynam-
ics viscous/heat coupling coefficients have been excluded)
to discuss the dynamics of the dissipative source considered.
Further, the form of Eqgs. (17), (23), (24), (25), (29), (30), and
(32) depends on the standard (non-causal) irreversible ther-
modynamics approach, which we have used in the present
analysis. If one considers the full causal approach to the dis-
cussion of the dynamics of dissipative gravitational collapse
as in [62], then in the present case the term —£® in Eqs. (17),
(23), (24), (25), (29), (30), and (32) will be replaced by a dis-
sipative variable IT.

Finally, in our analysis, it has been investigated that during
the evolution of the cylindrical star, charge, bulk viscosity and
anisotropic stresses reduce the energy of the system and we
conclude the following.

e The out flow of heat from the collapsing cylindrical star
reduces the total energy of the system.

e The bulk viscosity reduces the radial pressure of the col-
lapsing fluid.

e The bulk viscosity and charge of the fluid would affect
the rate of collapse prominently.

e Active/passive gravitational mass density is affected by
the bulk viscosity and it is independent of the electro-
magnetic field.

e In Eq. (30), the factor (1 — &) would explain the possible
evolutionary stages of the charged dissipative cylinder.

@ Springer

e The term « is inversely related to the gravitational mass
density, which is affected by the bulk viscosity, while it
is linearly related to temperature of the fluid.

e The inclusion of the bulk viscosity would increase the
value of «.

e Fora < 1,0 > 1 and ¢ = 1, we have an expanding, col-
lapsing and bouncing behavior of the fluid distribution,
respectively.
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