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Abstract We use observations related to the variation of
fundamental constants, in order to impose constraints on the
viable and most used f (T ) gravity models. In particular,
for the fine-structure constant we use direct measurements
obtained by different spectrographic methods, while for the
effective Newton constant we use a model-dependent recon-
struction, using direct observational Hubble parameter data,
in order to investigate its temporal evolution. We consider two
f (T ) models and we quantify their deviation from �CDM
cosmology through a sole parameter. Our analysis reveals
that this parameter can be slightly different from its �CDM
value, however, the best-fit value is very close to the �CDM
one. Hence, f (T ) gravity is consistent with observations,
nevertheless, as every modified gravity, it may exhibit only
small deviations from �CDM cosmology, a feature that must
be taken into account in any f (T ) model-building.

1 Introduction

Modified gravity [1] is one of the two main roads one can fol-
low in order to provide an explanation for the early and late-
time universe acceleration (the second one in the introduction
of the dark-energy concept [2,3]). Furthermore, apart from
the cosmological motivation, modified gravity has a theoret-
ical motivation too, namely to improve the renormalizability
properties of standard general relativity [4].

In constructing a gravitational modification, one usually
starts from the Einstein–Hilbert action and extends it accord-
ingly. Thus, one can obtain f (R) gravity [5], Gauss–Bonnet
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and f (G) gravity [6,7], gravity with higher-order curva-
ture invariants [8,9], massive gravity [10] etc. Nevertheless,
one could start from the equivalent, torsional formulation
of gravity, namely from the Teleparallel Equivalent of Gen-
eral Relativity (TEGR) [11–13], in which the gravitational
Lagrangian is the torsion scalar T , and construct various
modifications, such as f (T ) gravity [14–29] (see [30] for
a review), teleparallel Gauss–Bonnet gravity [31,32], grav-
ity with higher-order torsion invariants [33], etc.

An important question in the above gravitational modifica-
tions is what are the forms of the involved unknown functions,
and what are the allowed values of the various parameters.
Excluding forms and parameter regimes that lead to obvi-
ous contradictions and problems, the main tool we have in
order to provide further constraints is to use observational
data. For the case of torsional gravity one can use solar sys-
tem data [34–37], or cosmological observations from Super-
novae type Ia, cosmic microwave background and baryonic
acoustic oscillations [38–41].

On the other hand, in some modified cosmological scenar-
ios one can obtain a variation of the fundamental constants,
such as the fine-structure constant and the Newton constant.
Such a possibility has been investigated in the literature since
Dirac [42,43] and Milne and Jordan [44–47] times. Later on,
Brans and Dicke proposed the time variation of the Newton
constant, driven by a dynamical scalar field coupled to cur-
vature [48,49], while Gamow triggered subsequent specula-
tions on the possible variation of the fine-structure constant
[50]. Similarly, in recent modified gravities, which involve
extra degrees of freedom compared with general relativity,
one may obtain such a variation of the fundamental constants
[51–63]. However, since experiments and observations give
strict bounds on these variations [64–76], one can use them
in order to constrain the theories at hand.
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In the present work we are interested in investigating the
constraints on f (T ) gravity by observations related to the
variation of fundamental constants. In particular, since f (T )

gravity predicts a variation of the fine-structure constant and
the Newton constant, we will use the recent observational
bounds of these variations in order to constrain the f (T )

forms as well as the range of the involved parameters. The
plan of the work is the following: In Sect. 2 we give a brief
review of f (T ) gravity and cosmology. In Sect. 3 we investi-
gate the constraints on specific f (T ) gravity models arising
from the observational bounds of the fine-structure constant
variation, while in Sect. 4 we study the corresponding con-
straints that arise from the observational bounds of the New-
ton constant variation. Finally, in Sect. 5 we summarize our
results.

2 f (T ) gravity and cosmology

In this section we provide a short review of f (T ) gravity
and cosmology. We use the tetrad fields eμ

A, which form an
orthonormal base at each point of the tangent space of the
underlying manifold (M, gμν), where gμν = ηABeAμe

B
ν is

the metric tensor defined on this manifold (we use Greek
indices for the coordinate space and Latin indices for the
tangent one). Furthermore, instead of the torsionless Levi-
Civita connection which is used in the Einstein–Hilbert
action, we use the curvatureless Weitzenböck connection
w
�

λ

νμ ≡ eλ
A ∂μeAν [13]. Hence, the gravitational field in such a

formalism is described by the following torsion tensor:

T ρ
μν ≡ eρ

A

(
∂μe

A
ν − ∂νe

A
μ

)
. (1)

Subsequently, the Lagrangian of the teleparallel equivalent of
general relativity, namely the torsion scalar T , is constructed
by contractions of the torsion tensor as [13]

T ≡ 1

4
T ρμνTρμν + 1

2
T ρμνTνμρ − Tρμ

ρT νμ
ν . (2)

One may consider generalized theories in which the
Lagrangian T is extended to an arbitrary function f (T ), sim-
ilarly to the f (R) extension of curvature-based gravity. In
particular, such a gravitational action will read

Sgr = 1

16πGN

∫
d4x |e| f (T ), (3)

where e = det(eAμ) = √−g, and GN is the Newton constant.
Additionally, along the gravitational action (3) we consider
the matter sector, and hence the total action writes as

S = 1

16πGN

∫
d4x |e| f (T ) +

∫
d4x Lm(eAμ,
M ), (4)

where Lm(eAμ,
M ) is the total matter Lagrangian including
the electromagnetic field. Finally, variation in terms of the
tetrad fields give rise to the field equations as

e−1∂μ(eeρ
ASρ

μν) fT − fT e
λ
AT

ρ
μλSρ

νμ + 1

4
eν
A f (T )

+eρ
ASρ

μν∂μ(T ) fT T = 4πGNe
ρ
AT

(m)
ρ

ν, (5)

where fT = ∂ f/∂T , fT T = ∂2 f/∂T 2, and with T (m)
ρ

ν the
total matter energy-momentum tensor. In the above equa-
tion we have inserted for convenience the “super-potential”
tensor Sμν

ρ = 1
2

(
Kμν

ρ + δ
μ
ρ T αν

α − δν
ρT

αμ
α

)
, defined in terms

of the co-torsion tensor Kμν
ρ = − 1

2

(
Tμν

ρ − T νμ
ρ − Tμν

ρ

)
.

Applying f (T ) gravity in a cosmological framework we
consider a spatially flat FLRW universe with line element
ds2 = −dt2+a2(t)[dr2+r2 dθ2+sin2 θ dφ2], which arises
from the diagonal tetrad eAμ = diag(1, a(t), a(t), a(t)), with
a(t) the scale factor. In this case, the field equations (5)
become

H2 = 8πGN

3
(ρ + ρT ) , (6)

Ḣ = −4πGN [(p + pT ) + (ρ + ρT )] , (7)

where ρ and p are, respectively, the total matter energy den-
sity and pressure, and where ρT , pT are the effective dark-
energy density and the pressure of gravitational origin, given
by

ρT = 1

16πGN
[2T fT − f (T ) − T ] , (8)

pT = 1

16πGN

[
4Ḣ (2T fT T + fT − 1)

] − ρT . (9)

In the above expressions we have used

T = −6H2, (10)

which arises straightforwardly from (2) in the FLRW uni-
verse. Finally, from Eqs. (8), (9) we can define the effective
dark-energy equation of state (EoS) as

w = −1 − 2Ḣ

3H2 = −1 + 2

3
H(1 + z)

dH

dz
, (11)

where as usual we use the redshift z = a0
a − 1, as the inde-

pendent variable, and for simplicity we set a0 = 1. Clearly,
w has a dynamical nature.

In the following we focus on two well-studied, viable
f (T ) models, which correspond to a small deviation from
�CDM cosmology, and which according to [38–41] are the
ones that fit the observational data very efficiently.
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• The first scenario is the power-law model (hereafter
f1CDM) introduced in [14], with

f (T ) = T + θ (−T )b , (12)

where θ , b are the two free model parameters, out of
which only one is independent. Inserting this f (T ) form
into the first Friedmann equation (6) at present time, i.e.
at redshift z = 0, one may derive that

θ = (6H2
0 )1−b

(
1 − �m0

2b − 1

)
, (13)

where �m0 = 8πGρm0

3H2
0

is the corresponding density

parameter at present. Hence, and using additionally that
ρm = ρm0(1 + z)3, Eq. (6) for this model can be written
as

H2(z)

H2
0

= (1 − �m0)

[
H2(z)

H2
0

]b

+ �m0(1 + z)3. (14)

Lastly, we mention that the above model for b = 0
reduces to �CDM cosmology, while for b = 1/2 it gives
rise to the Dvali–Gabadadze–Porrati (DGP) model [77].

• The second scenario is the square-root-exponential (here-
after f2CDM) of [15], with

f (T ) = T + βT0(1 − e−p
√
T/T0), (15)

in which β and p the two free model parameters out of
which only one is independent. Inserting this f (T ) form
into (6) at present time, one obtains

β = 1 − �m0

1 − (1 + p)e−p
. (16)

Finally, the first Friedmann equation (6) for this model
can be written as

H2(z)

H2
0

+ 1 − �m0

1 − (1 + p)e−p

{[
1 + pH(z)

H0

]
e
− pH(z)

H0 −1

}

= �m0 (1 + z)3. (17)

Lastly, note that this model reduces to �CDM cosmology
for p → +∞. Hence, in the following, for this model
it will be convenient to set b ≡ 1/p, and hence �CDM
cosmology is obtained for b → 0+.

3 Observational constraints from fine-structure
constant variation

In this section we will use observational data of the variation
of the fine-structure constant α, in order to constrain f (T )

gravity. Let us first quantify the α-variation in the frame-
work of f (T ) cosmology. In general, in a given theory the
fine-structure constant is obtained using the coefficient of the
electromagnetic Lagrangian. In the case of modified gravi-
ties, this coefficient generally depends on the new degrees
of freedom of the theory [56–63,78]. Even if one starts from
the Jordan-frame formulation of a theory, with an uncou-
pled electromagnetic Lagrangian, and although the electro-
magnetic Lagrangian is conformally invariant, and it is not
affected by conformal transformations between the Jordan
and Einstein frames, thus it will acquire a dependence on the
extra degree(s) of freedom due to quantum effects [79,80].
In particular, if φ is the extra degree of freedom that arises
from the conformal transformation g̃μν = �2gμν from the
Jordan to the Einstein frame, then quantum effects such as
the presence of heavy fermions (note that this does not nec-
essarily require new physics till the Planck scale) will induce
a coupling of φ to photons, namely [79,80]

SEM = − 1

g2
bare

∫
d4x

√−gBF (φ)FμνF
μν, (18)

where Fμν is the electromagnetic tensor, gbare the bare cou-
pling constant, and

BF (φ) = 1 + βγ

φ

Mpl
+ · · · , (19)

with Mpl = 1/(8πGN) the Planck mass and βγ = O(1)

a constant (we have assumed that βγ φ � Mpl). Hence,
the scalar coupling to the electromagnetic field will imply
a dependence of the fine-structure constant of the form [78–
80]

1

αE
= 1

αJ
BF (φ), (20)

where the subscripts denote the Einstein and Jordan frames,
respectively, or equivalently

�α

α
≡ αE − αJ

αJ
= 1

BF (φ)
− 1. (21)

The above factor is in general time (i.e. redshift) dependent.
Therefore, it proves convenient to normalize it in order to
have �α = 0 at present (z = 0), which in the case where
BF (z = 0) ≡ BF0 �= 1 is obtained through a rescaling
Fμν → √

BF0Fμν and BF → BF/BF0. Thus, we result to

�α

α
= BF0

BF (φ)
− 1. (22)

Although the above procedure is straightforward in cases
where a conformal transformation from the Jordan to the
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Einstein frame exists, it becomes more complicated for the-
ories where such a transformation is not known. In case of
f (T ) gravity, it is well known that a conformal transforma-
tion does not exist in general, since transforming the metric as
g̃μν = �2gμν , with �2 = fT a smooth non-vanishing func-
tion of spacetime coordinates, one obtains Einstein gravity
plus a scalar field Lagrangian, plus the transformed matter
Lagrangian, plus a non-vanishing term 2�−6∂̃μ�2T̃ ρ

ρμ [81].
This additional term forbids the complete transformation to
the Einstein frame, and hence in every application one has
indeed to perform calculations in the more complicated Jor-
dan one.

In order to avoid performing calculations in the Jor-
dan frame we will make the reasonable assumption that
f (T ) = T + const. + corrections, which has been shown to
be the case according to observations [34–41], and holds for
the two forms considered in this work, namely (12) and (15),
too. Hence, �2 = 1 + corrections, and then ∂̃μ�2 is negligi-
ble, which implies that the above extra term can be neglected.
In the end of our investigation, we will verify the validity of
the above assumption. Thus, we can indeed obtain an approx-
imate transformation to the Einstein frame, and in particular
the introduced degree of freedom reads φ = −√

3/ fT [81].
Hence, inserting this into (19) we acquire

BF (φ) = 1 −
√

3βγ

Mpl fT
+ · · · , (23)

and thus inserting into Eq. (22), we can easily extract the
variation of the fine-structure constant as

�α

α
(z) = Mpl fT 0 − √

3βγ

Mpl fT (z) − √
3βγ

− 1, (24)

where fT 0 = fT (z = 0). Lastly, since βγ = O(1), the above
relation becomes

�α

α
(z) ≈ fT 0

fT (z)
− 1. (25)

Hence, for a general f (T ), the ratio �α/α indeed depends
on z, through the fT (z) function (we recall that according
to (10), T (z) = −6H2(z)), while in the case of standard
�CDM cosmology, where f (T ) = T + �, �α/α becomes
zero.

In the following, we confront Eq. (25) with observations
of the fine-structure constant variation, in order to impose
constraints on f (T ) gravity (it proves that the neglected
term between (24) and (25) imposes an error of the order
of 10−9 and hence our approximation is justified). We use
direct measurements of the fine-structure constant that are
obtained by different spectrographic methods, summarized
in Table 1. Additionally, along with these data sets, and in
order to diminish the degeneracy between the free parame-

Table 1 Compilation of recent measurements of the fine-structure con-
stant obtained by different spectrographic methods. For details in each
case, see the corresponding references

z �α/α (ppm) References

1.08 4.3 ± 3.4 [82]

1.14 −7.5 ± 5.5 [83]

1.15 −0.1 ± 1.8 [84]

1.15 0.5 ± 2.4 [85]

1.34 −0.7 ± 6.6 [83]

1.58 −1.5 ± 2.6 [86]

1.66 −4.7 ± 5.3 [82]

1.69 1.3 ± 2.6 [87]

1.80 −6.4 ± 7.2 [82]

1.74 −7.9 ± 6.2 [83]

1.84 5.7 ± 2.7 [84]

ters of the models, we use 580 Supernovae data (SNIa) from
Union 2.1 compilation [88], as well as data from BAO obser-
vations, adopting the three measurements of A(z) obtained
in [89], and using the covariance among these data given in
[90].

In the following two subsections, we analyze two viable
models, namely f1CDM of (12) and f2CDM of (15), sepa-
rately.

3.1 Model f1CDM: f (T ) = T + θ (−T )b

For the power-law f1CDM model of (12), we easily acquire

fT (z) = 1 − b

(
1 − �m0

2b − 1

) [
H2(z)

H2
0

](b−1)

, (26)

where we have used also (10). Inserting (26) into (25) we can
derive the evolution of �α/α as

�α

α
(z) ≈

[
1 − b

(
1−�m0
2b−1

)]
{

1 − b
(

1−�m0
2b−1

) [
H2(z)
H2

0

](b−1)
} − 1, (27)

where the ratio H2(z)/H2
0 is given by (14).

We mention that while analyzing the model for the data
set of �α/α of Table 1, we have marginalized over �m0, and
thus the statistical information focuses only on the parameter
b. For the fittings �α/α + SNIa and �α/α + SNIa + BAO,
we have considered �m0 as a free parameter, and we have
found that �m0 = 0.23 ± 0.13 (for �α/α + SNIa) and
�m0 = 0.293 ± 0.023 (for �α/α + SNIa + BAO) at 1σ

confidence level.
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0.24 0.26 0.28 0.30 0.32 0.34

0.6

0.4

0.2

0.0

0.2

m0

b

Fig. 1 1σ and 2σ confidence regions for the f1CDM power-law model
of (12), obtained from the joint analysis �α/α + SNIa + BAO. The
cross marks the best-fit value

Table 2 Summary of the best-fit values of the parameter b of the
f1CDM power-law model of (12), for three different observational data
sets with reduced χ2: χ2

min/d.o.f. (d.o.f. stands for the “degrees of free-
dom”)

Data b χ2
min/d.o.f.

�α/α 0.35 ± 0.40 1.1

�α/α + SNIa 0.25 ± 0.70 0.96

�α/α + SNIa + BAO −0.10 ± 0.18 0.97

Finally, in Fig. 1 we present the 68.27 and 95.45% confi-
dence regions in the plane �m0 −b, considering the observa-
tional data �α/α + SNIa + BAO. Note that these results are
in qualitative agreement with those of different observational
fittings [38–40], and show that �CDM cosmology (which is
obtained for b = 0) is inside the obtained region. In fact,
one may notice from Table 2 that the reduced χ2 for �α/α

+ SNIa and �α/α + SNIa + BAO data are very close to 1,
while for single data from �α/α its value slightly exceeds 1
although not significantly.

Additionally, in order to examine the late-time asymptotic
behavior of the scenario at hand, in Fig. 2 we depict the
evolution of the equation-of-state parameter given in (11),
applying a reconstruction at 1σ confidence level via error
propagation using the joint analysis �α/α + SNIa + BAO.
As we can see, w at late times acquires values very close
to ‘−1’, as expected. For a more detailed investigation of
the late-time asymptotics up to the far future one must apply
the method of dynamical system analysis as it was done in

0.0 0.5 1.0 1.5 2.0 2.5

–1.008

–1.006

–1.004

–1.002

–1.000

z

w
(z
)

Fig. 2 The evolution of the equation-of-state parameter given in (11),
for the f1CDM power-law model of (12), applying a reconstruction at
1σ confidence level via error propagation using the joint analysis �α/α

+ SNIa + BAO

[91–93], where it was thoroughly shown that the universe
will end in a de Sitter phase.

In summary, it is clear that f1CDM model, under all the
above three different combinations of statistical data sets,
remains close to �CDM cosmology as expected. Lastly, note
that this is a self-consistent verification for the validity of our
assumption that f (T ) = T + const. + corrections, which
allowed us to work in the Einstein frame.

3.2 Model f2CDM: f (T ) = T + βT0(1 − e−p
√
T/T0)

For the square-root-exponential f2CDM model of (15), we
easily obtain

fT (z) = 1 + p

2

[
1 − �m0

1 − (1 + p) e−p

] [
H0

H(z)

]
e
− pH(z)

H0 .

(28)

Inserting (28) into (25) we can derive the evolution of �α/α

as

�α

α
(z) ≈

{
1 + p

2

[
1−�m0

1−(1+p)e−p

]
e−p

}
{

1 + p
2

[
1−�m0

1−(1+p) e−p

] [
H0
H(z)

]
e
− pH(z)

H0

} − 1,

(29)

where the ratio H2(z)/H2
0 is given by (17).

We mention that while analyzing the model for the data
set of �α/α of Table 1, we have marginalized over �m0, and
thus the statistical information focuses only on the parameter
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0.22 0.24 0.26 0.28 0.30 0.32 0.34
0.0
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0.2

0.3

0.4

m0

b

Fig. 3 1σ and 2σ confidence regions for the f2CDM square-root-
exponential model of (15), obtained from the joint analysis �α/α +
SNIa + BAO. The cross marks the best-fit value

Table 3 Summary of the best-fit values of the parameter b ≡ 1/p of
the f2CDM square-root-exponential model of (15), for three different
observational data sets with reduced χ2: χ2

min/d.o.f. (d.o.f. stands for
“degrees of freedom”)

Data b χ2
min/d.o.f.

�α/α 0.94 ± 1.98 1.1

�α/α + SNIa 0.038 ± 0.161 0.97

�α/α + SNIa + BAO 0.031 ± 0.246 0.97

b. For the fittings �α/α+ SNIa and �α/α+SNIa+BAO we
have taken �m as a free parameter, and we note that �m0 =
0.277±0.019 (for �α/α + SNIa) and �m0 = 0.283±0.016
(for �α/α + SNIa + BAO) at 1σ confidence level.

Finally, in Fig. 3 we present the 68.27% and 95.45% confi-
dence regions in the plane �m0 −b, considering the observa-
tional data �α/α + SNIa + BAO (we have taken b � 0.001
in order to avoid divergences in the function H(z) at high red-
shifts). Note that these results are in qualitative agreement
with those of different observational fittings [38–40], and
show that�CDM cosmology (which is obtained forb → 0+)
is inside the obtained region. Furthermore, and similarly to
the f1CDM model, from Table 3 we deduce that although
the data from �α/α alone show a slightly deviating nature
(reduced χ2 = 1.1) from �CDM scenario, but for �α/α

+ SNIa and �α/α + SNIa + BAO data it is implied that
the model is very close to �CDM cosmology. This is also a
self-consistent verification for the validity of our assumption
that f (T ) = T + const. + corrections, which allowed us to
work in the Einstein frame.

0.5 1.0 1.5 2.0 2.5

1.005

1.004

1.003

1.002

1.001

1.000

z

w
(z
)

Fig. 4 The evolution of the equation-of-state parameter given in (11),
for the f2CDM square-root-exponential model of (15), applying a
reconstruction at 1σ confidence level via error propagation using the
joint analysis �α/α + SNIa + BAO

Lastly, in order to examine the late-time asymptotic behav-
ior of f2CDM model, in Fig. 4 we depict the evolution of the
equation-of-state parameter given in (11), applying a recon-
struction at 1σ confidence level via error propagation using
the joint analysis �α/α + SNIa + BAO, where one can
see that w at late times acquires values very close to ‘−1’, as
expected. Similarly to the previous model, for a more detailed
investigation of the late-time asymptotics one must apply the
method of dynamical system analysis [91–93], where it can
thoroughly be shown that the universe will end in a de Sitter
phase.

4 Observational constraints from the Newton constant
variation

In this section we will directly use the observational con-
straints imposed on f (T )models in order to examine the vari-
ation of the gravitational constant GN. Let us first quantify
the GN-variation in the framework of f (T ) cosmology. As is
well known, a varying effective gravitational constant is one
of the common features in many modified gravity theories
[1]. In case of f (T ) gravity, the effective Newton constant
Geff can be straightforwardly extracted as [40,94]

Geff = GN

fT
. (30)

Hence, for the f1CDM power-law model of (12), and using
(26), we obtain
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z

0.984
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0.996

1

1,004

G ef
f/ G
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z

0.995

1

1.005

1.01

Fig. 5 Results for the f1CDM power-law model of (12). Left graph estimation of Geff/GN as a function of the redshift, from 37 Hubble data
points. Right graph reconstruction of Geff/GN as a function of the redshift, from the observational Hubble parameter data, for b ∈ [−0.01, 0.01]

Geff(z) = GN

1 − b
(

1−�m0
2b−1

) [
H2(z)
H2

0

](b−1)
, (31)

where the ratio H2(z)/H2
0 is given by (14) (clearly, for b = 0

we have Geff(z) = GN = const.). Similarly, for the f2CDM
square-root-exponential model of (15), and using (28), we
acquire

Geff(z) = GN

1 + p
2

[
1−�m0

1−(1+p) e−p

] [
H0
H(z)

]
e
− pH(z)

H0

, (32)

where the ratio H2(z)/H2
0 is given by (17) (clearly, for b =

1/p → 0+ we have Geff(z) = GN = const.).
Let us now use the above expressions for Geff(z) and con-

front them with the observational bounds of the Newton con-
stant variation. We use observational Hubble parameter data
in order to investigate the temporal evolution of the function
Geff(z), since such a compilation is usually used to constrain
cosmological parameters, due to the fact that it is obtained
from model-independent direct observations. We adopt 37
observational Hubble parameter data in the redshift range
0 < z ≤ 2.36, compiled in [95], out of which 27 data points
are deduced from the differential age method, whereas 10
correspond to measures obtained from the radial baryonic
acoustic oscillation method.

We apply the following methodology: Firstly, we estimate
the error in the measurements associated with the function
Geff/GN, for both models of (31) and (32), via the standard
method of error propagation theory, namely

σ 2
Geff/GN

=
∣∣∣∣
∂Geff/GN

∂H

∣∣∣∣
2

σ 2
H +

∣∣∣∣
∂Geff/GN

∂b

∣∣∣∣
2

σ 2
b

+
∣∣∣∣
∂Geff/GN

∂�m

∣∣∣∣
2

σ 2
�m

, (33)

and we fix the free parameters of the two models within the
values obtained in the joint analysis of [41] and of Sect. 3
of the current work. Then the measurements of Geff/GN are
calculated directly for each redshift defined in the adopted
compilation.

In the left graph of Fig. 5 we depict the 1σ confidence-level
estimation of the function Geff(z)/GN from 37 Hubble data
points, in the case of the f1CDM power-law model of (12).
Additionally, in the right graph of Fig. 5 we present the corre-
sponding 1σ confidence-level reconstruction of Geff(z)/GN

for b ∈ [−0.01, 0.01] from the observational Hubble param-
eter data. When we perform the analysis within the known
range of the parameter b for this model (from [41] as well
as from Fig. 1 above), we find that Geff/GN ≈ 1. Never-
theless, a minor deviation is observed for the fixed value of
b = 0.01 (see the left graph of Fig. 5). For instance, note
that Geff(z = 0.07)/GN = 0.992 ± 0.004 and Geff(z =
2.36)/GN = 0.99923 ± 0.00005, for the first and the last
data points of the redshift interval [0, 2.36], respectively.

In Fig. 6 we present the corresponding graphs for the
f2CDM square-root-exponential model of (15). When we
perform the analysis within the known range of the parame-
ter b ≡ 1/p for this model (from [41] as well as from Fig.
3 above), we find that Geff/GN ≈ 1, similarly to the case of
f1CDM model.

In summary, from the analysis of this section, we verify the
results of the previous section, namely that the parameter b,
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Fig. 6 Results for the f2CDM square-root-exponential model of (15). Left graph estimation of Geff/GN as a function of the redshift, from 37
Hubble data points. Right graph reconstruction of Geff/GN as a function of the redshift, from the observational Hubble parameter data, for b ≡ 1/p
∈ [0, 0.5]

which quantifies the deviation of both f1CDM and f2CDM
models from �CDM cosmology, is very close to zero. These
results are in qualitative agreement with previous observa-
tional constraints on f (T ) gravity, according to which only
small deviations are allowed, with �CDM paradigm being
inside the allowed region [34–41].

5 Conclusions

In the present work we have used observations related to the
variation of fundamental constants, in order to impose con-
straints on the viable and most used f (T ) gravity models. In
particular, since f (T ) gravity predicts a variation of the fine-
structure constant, we used the recent observational bounds
of this variation, from direct measurements obtained by dif-
ferent spectrographic methods, along with standard probes
such as Supernovae type Ia and baryonic acoustic oscilla-
tions, in order to constrain the involved model parameters of
two viable and well-used f (T ) models.

For both the f1CDM power-law model and the f2CDM
square-root-exponential model, we found that the parameter
that quantifies the deviation from �CDM cosmology can
be slightly different from its �CDM value, nevertheless the
best-fit value is very close to the �CDM one. Additionally,
since f (T ) gravity predicts a varying effective gravitational
constant, we quantified its temporal evolution with the use
of the previously constrained model parameters. For both the
f1CDM and the f2CDM models, we found that the deviation
from �CDM cosmology is very close to zero.

These results are in qualitative agreement with previous
observational constraints on f (T ) gravity [38–41], however,

they have been obtained through completely independent
analysis. In summary, f (T ) gravity is consistent with obser-
vations, and thus it can serve as a candidate for modified grav-
ity, although, as every modified gravity, it may have only a
small deviation from �CDM cosmology, a feature that must
be taken into account in any f (T ) model-building.
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