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Abstract We investigate the newly observed X (4500) and
X (4700) based on the diquark–antidiquark configuration
within the framework of QCD sum rules. Both of them
may be interpreted as the D-wave csc̄s̄ tetraquark states
of J P = 0+, but with opposite color structures, which is
remarkably similar to the result obtained in Chen and Zhu
(Phys Rev D 83:034010, 2011) that X (4140) and X (4274)

can be both interpreted as the S-wave csc̄s̄ tetraquark states of
J P = 1+, also with opposite color structures. However, the
extracted masses and these suggested assignments to these
X states do depend on these running quark masses where
ms(2 GeV) = 95 ± 5 MeV and mc(mc) = 1.23 ± 0.09 GeV.
As a byproduct, the masses of the hidden-bottom partner
states of X (4500) and X (4700) are extracted to be both
around 10.64 GeV, which can be searched for in the ϒφ

invariant mass distribution.

1 Introduction

It is well known that our world is made from nucleons and
electrons while nucleons are made from quarks and glu-
ons. However, we still know little (not enough) on how
quarks and gluons compose nucleons, which can be better
understood by exploring exotic matter beyond the conven-
tional quark model, such as glueballs, hybrids and multiquark
states, etc. [2–5]. With significant experimental progress over
the past decade, lots of multiquark candidates have been
observed, including dozens of charmonium/bottomonium-
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like XY Z states [2] and the hidden-charm pentaquark states
Pc(4380) and Pc(4450) [6]. They are new blocks of QCD
matter, and provide important hints to deepen our under-
standing of the non-perturbative quantum chromodynamics
(QCD).

Very recently the LHCb Collaboration confirmed X (4140)

and X (4274) in the J/ψφ invariant mass distribution and
determined their spin-parity quantum numbers to be both
J P = 1++ [7–10]. At the same time they investigated
the high J/ψφ mass region for the first time, where the
results can be described as a nonresonant term plus two new
J P = 0++ resonances, named X (4500) and X (4700). Their
masses and widths were measured to be

X (4140) : M = 4146.5 ± 4.5+4.6
−2.8 MeV,

� = 83 ± 21+21
−14 MeV,

X (4274) : M = 4273.3 ± 8.3+17.2
−3.6 MeV,

� = 56 ± 11+8
−11 MeV,

X (4500) : M = 4506 ± 11+12
−15 MeV,

� = 92 ± 21+21
−20 MeV,

X (4700) : M = 4704 ± 10+14
−24 MeV,

� = 120 ± 31+42
−33 MeV.

The X (4140) [11] and the X (4274) [12] were first
reported by the CDF Collaboration in 2009 and 2011, respec-
tively. Many theoretical explanations were proposed such as
the D∗

s D̄
∗
s and Ds D̄s0(2317) molecular states [13–22], com-

pact tetraquark states (diquark–antidiquark states) [23,24],
dynamically generated resonances [25,26], and coupled-
channel effects [27,28], etc.
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Among these studies, the results obtained within the
framework of QCD sum rules are significant [1,29–32],
which method has been applied to studied many other mul-
tiquark candidates [33–35]. In 2010, Chen et al. studied the
vector and axial-vector charmonium-like states systemati-
cally in Ref. [1], where they used the following two J P = 1+
currents to perform QCD sum rule analyses (a and b are color
indices):

J3μ = sTa Cγ5cb(s̄aγμCc̄Tb + s̄bγμCc̄Ta )

+ sTa Cγμcb(s̄aγ5Cc̄Tb + s̄bγ5Cc̄Ta ), (1)

J4μ = sTa Cγ5cb(s̄aγμCc̄Tb − s̄bγμCc̄Ta )

+ sTa Cγμcb(s̄aγ5Cc̄Tb − s̄bγ5Cc̄Ta ), (2)

which are constructed using diquark and antidiquark fields.
There are altogether five diquark fields: qTa Cqb, qTa Cγ5qb,
qTa Cγμqb, qTa Cγμγ5qb and qTa Cσμνqb [36,37]. Among
them, the S-wave diquark fields qTa Cγ5qb and qTa Cγμqb
are favored [3,38,39], which can be used to further con-
struct the “good” and “bad” diquarks by demanding their
color structure to be antisymmetric [3̄c]qq (by simply adding
a totally antisymmetric tensor εabc) [3]. The other three
“worse” diquarks all contain P-wave components [3].

The current J4μ defined in Eq. (2) has the antisymmet-
ric color structure [3̄c]cs ⊗ [3c]c̄s̄ . Hence, this interpolating
current consists of one “good” diquark and one “bad” antidi-
quark, and is the most favored one among all the J P = 1+
currents. Its extracted mass is 4.07±0.10 GeV [1], consistent
with the experimental mass of the X (4140) [2]. The current
J3μ defined in Eq. (1) consists of one similar diquark and one
similar antidiquark, but having the symmetric color structure
[6c]cs ⊗ [6̄c]c̄s̄ . Hence, it is less favored but still better than
other currents containing “worse ”diquarks [3]. Its extracted
mass is 4.22±0.10 GeV [1], consistent with the experimental
mass of X (4274) [2].

The P-wave vector tetraquark states were discussed exten-
sively in Ref. [40]. There also exist investigations of the scalar
tetraquark states. In Refs. [29–32] three groups studied the
scalar D∗

s D̄
∗
s molecular state through the current composed

of two vector meson fields

JD∗
s D̄

∗
s
(x) = c̄a(x)γμsa(x)s̄b(x)γ

μcb(x). (3)

Two of the three groups obtained similar results using JD∗
s D̄

∗
s
,

4.14 ± 0.09 GeV [29] and 4.13 ± 0.10 GeV [30]. The
extracted mass is 3.91 ± 0.10 GeV with the Ds D̄s current
[30]

JDs D̄s
(x) = c̄a(x)γ5sa(x)s̄b(x)γ5cb(x). (4)

The third group extracted a significantly larger mass 4.43 ±
0.16 GeV [31,32], which is significantly larger than the
D∗
s D̄

∗
s threshold, 4.22 GeV.

The X (4500) and X (4700) have masses significantly
larger than X (4140) and X (4274) of J P = 1+. They can

be good candidates of the D-wave tetraquark states of J P =
0+, whose possible angular momenta are {[cs]s=1[c̄s̄]s=1;
L = S = 2, J = 0}. Hence, the “good” diquark of S = 0
cannot be used, but they can still be composed by the “bad”
diquark of S = 1, εabcqTa Cγμqb. We also need the P-
wave “bad” diquark field εabcqTa Cγμ1 Dμ2qb and the D-wave
“bad” diquark field εabcqTa Cγμ1 Dμ2 Dμ3qb, as well as their
partners having the symmetric color structure [6c]qq .

In this work we will show that X (4500) and X (4700)

can be both interpreted as D-wave tetraquark states with the
quark content csc̄s̄ and J P = 0+: X (4500) consists of one
D-wave “bad” diquark and one S-wave “bad” antidiquark,
having the antisymmetric color structure [3̄c]cs ⊗ [3c]c̄s̄ ; the
X (4700) consists of one similar D-wave diquark and one
similar S-wave antidiquark, but having the symmetric color
structure [6c]cs ⊗ [6̄c]c̄s̄ .

These two interpretations are remarkably similar to those
obtained in Ref. [1] that X (4140) and X (4274) can be both
interpreted as S-wave tetraquark states with the quark con-
tent csc̄s̄ and J P = 0+: X (4140) consists of one S-wave
“good” diquark and one S-wave “bad” antidiquark, having
the antisymmetric color structure [3̄c]cs⊗[3c]c̄s̄ ; the X (4274)

consists of two similar S-wave diquarks, but having the sym-
metric color structure [6c]cs ⊗ [6̄c]c̄s̄ .

To examine these interpretations, we investigate the bot-
tom partner states of X (4500) and X (4700), and we extract
their masses to find them to be both around 10.64 GeV. We
propose to search for them in the ϒφ invariant mass distribu-
tion with the running of LHC at 13 TeV and the forthcoming
BelleII experiment. If the above interpretations of X (4140),
X (4274), X (4500) and X (4700) are correct, their dual part-
ner would be quite interesting, such as the S-wave scalar and
the D-wave axial-vector csc̄s̄ tetraquark states, consisting of
two “bad” diquarks with both symmetric and antisymmetric
color structures. All their related studies, both experimen-
tally and theoretically, can deepen our understanding of the
non-perturbative QCD. Especially, our present study can be
helpful to improve our understanding of the internal struc-
tures of exotic hadrons.

Interpretation of X (4500) and X (4700).—As the first
step, we use the S/P/D-waves “axial-vector” diquarks of
S = 1 to construct the D-wave csc̄s̄ tetraquark currents of
J P = 0+. There are two possible ways. One way is to use
the combination of one P-wave diquark and one P-wave
antidiquark:

J1± = cTa Cγμ1 [Dμ3sb](c̄aγμ2C[D†
μ4
s̄Tb ] ± c̄bγμ2C[D†

μ4
s̄Ta ])

× (
gμ1μ3gμ2μ4 + gμ1μ4gμ2μ3 − gμ1μ2gμ3μ4/2

)
,

(5)

where J1+ has the symmetric color structure [6c]cs ⊗ [6̄c]c̄s̄ ,
and J1− has the antisymmetric color structure [3̄c]cs⊗[3c]c̄s̄ ;
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they both have lcs = lc̄s̄ = 1 and scs = sc̄s̄ = 1, and their
total momenta are L = S = 2 and J = 0.

The other way is to use the combination of one D-wave
diquark and one S-wave antidiquark:

J2± = cTa Cγμ1 [Dμ3 Dμ4sb](c̄aγμ2Cs̄Tb ± c̄bγμ2Cs̄Ta )

× (
gμ1μ3gμ2μ4 + gμ1μ4gμ2μ3 − gμ1μ2gμ3μ4/2

)
,

(6)

where J2+ has the symmetric color structure [6c]cs ⊗ [6̄c]c̄s̄ ,
and J2− has the antisymmetric color structure [3̄c]cs⊗[3c]c̄s̄ ;
they both have lcs = 2, lc̄s̄ = 0 and scs = sc̄s̄ = 1, and their
total momenta are also L = S = 2 and J = 0.

The D-wave tetraquark currents can also be constructed
by using the S/P/D-waves mesonic fields,

J ′
1 = c̄aγμ1[Dμ3sa][D†

μ4
s̄b]γμ2cb

× (
gμ1μ3gμ2μ4 + gμ1μ4gμ2μ3 − gμ1μ2gμ3μ4/2

)
, (7)

J ′
2 = c̄aγμ1[Dμ3 Dμ4sa]s̄bγμ2cb

× (
gμ1μ3gμ2μ4 + gμ1μ4gμ2μ3 − gμ1μ2gμ3μ4/2

)
. (8)

These currents have the color structure [1c]c̄s ⊗[1c]s̄c. More-
over, the color-octet quark–antiquark pairs can also be used
to construct the tetraquark currents having the hidden-color
structure [8c]c̄s⊗[8c]s̄c. We will not investigate such currents
in the present study, but note that we can use the Fierz and
color rearrangements to relate the local diquark–antiquark
and dimeson currents (see Refs. [5,36,37] for detailed dis-
cussions).

In the following we use the currents Ji± (i = 1, 2) to study
the D-wave csc̄s̄ tetraquark states of J P = 0+, denoted as X ,
using the method of QCD sum rules, which provides a model-
independent method to study non-perturbative problems in
strong interaction physics [41–45]. We need to deal with the
two derivative operators inside Ji±, which has been applied
to study the D and F-wave heavy-light mesons [46–48]. Ji±
couples to X through

〈0|J |X〉 = fX . (9)

Then the two-point correlation function can be written as


(p2) = i
∫

d4xeip·x 〈0|T [J (x)J †(0)]|0〉, (10)

which can be calculated in the QCD operator product expan-
sion (OPE) up to certain order in the expansion, and then
matched with a hadronic parametrization to extract informa-
tion as regards X .

At the hadron level, Eq. (10) can be written as


(p2) = 1

π

∫ ∞

s<

Im
(s)

s − p2 − iε
ds, (11)

where s< is the physical threshold. We define its imaginary
part as the spectral function ρ(s), and evaluate it by inserting
intermediate hadron states

∑
n |n〉〈n|

ρ(s) ≡ 1

π
Im
(s) =

∑

n

δ(s − M2
n )〈0|η|n〉〈n|η†|0〉

= f 2
Xδ(s − m2

X ) + continuum, (12)

where we only take into account the lowest-lying resonance
|X〉, and mX and fX are its mass and coupling constant,
respectively.

We can also evaluate the spectral density ρ(s) at the quark
and gluon level via the QCD operator product expansion.
In this work we evaluate it up to dimension ten, including
the perturbative term, the quark condensate 〈s̄s〉, the gluon
condensate 〈g2

s GG〉, the quark–gluon mixed condensates
〈gs s̄σGs〉 and 〈gs s̄σGs〉2. The full expressions are lengthy
and will not be shown here. We have also calculated the con-
densates 〈s̄s〉2 and 〈s̄s〉〈gs s̄σGs〉, which can be important in
sum rule studies [1]. However, both of them vanish when the
currents Ji± (i = 1 · · · 2) are used.

After performing the Borel transform at both the hadron
and the QCD levels, we can express the two-point correlation
function by


(all)(M2
B) ≡ BM2

B

(p2) =

∫ ∞

s<
e−s/M2

Bρ(s)ds. (13)

Then assuming the contribution from continuum states can
be approximated well by the OPE spectral density above a
threshold value s0 (duality)


(s0, M
2
B) =

∫ s0

s<
e−s/M2

Bρ(s)ds, (14)

we finally arrive at the sum rule relation:

M2
X (s0, MB) =

∫ s0
s<

e−s/M2
Bρ(s)sds

∫ s0
s<

e−s/M2
Bρ(s)ds

. (15)

To perform numerical analysis, we use the following QCD
parameters of quark masses and various QCD condensates [2,
44,45,49–54]:

〈q̄q〉 = −(0.24 ± 0.01)3 GeV3,

〈s̄s〉 = (0.8 ± 0.1) × 〈q̄q〉,
〈g2

s GG〉 = (0.48 ± 0.14) GeV4,

〈gs s̄σGs〉 = −M2
0 × 〈s̄s〉,

M2
0 = 0.8 GeV2,

ms(2 GeV) = 95 ± 5 MeV,

mc(mc) = 1.23 ± 0.09 GeV, (16)

in which ms and mc are the “running masses” of the strange
and charm quarks in the MS scheme. We note that there is
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Fig. 1 Variations of MX with respect to the threshold value s0, when the Borel mass MB is fixed to be M2
B = 2.0 GeV2, obtained using the currents

J1− (left) and J1+ (right)

an additional minus sign in mixed condensates due to the
different definition of the coupling constant gs compared to
that in Ref. [42].

There are two free parameters in Eq. (15): the threshold
value s0 and the Borel mass MB . The QCD sum rule predic-
tion of the hadron mass MX is only significant and reliable
in suitable regions of the parameter space (s0, M2

B).
First we fix M2

B = 2.0 GeV2 and investigate the s0 depen-
dence. The mass curves obtained using J1− and J1+ (con-
sisting of one P-wave diquark and one P-wave antidiquark)
are shown in Fig. 1. We find that their results are similar to
each other, i.e., the evaluated masses MX,1± monotonically
increase with s0. We do not want conclude that this is “bad”
sum rule results, but it seems difficult to extract the hadron
mass MX using these two currents. Hence, we shall not dis-
cuss J1− and J1+ any more.

The results obtained using J2− and J2+ (consisting of one
D-wave diquark and one S-wave antidiquark) are also similar
to each other but different from J1±, i.e., the obtained masses
MX,2± both have a mass plateau, where the s0 dependence
is weakest [1,55]. We use the current J2− as an example and
show the mass curves in the left panel of Fig. 2 as a function
of the threshold value s0. We notice that the s0 dependence is
the weakest around s0 ∼ 20 GeV2, and the MB dependence is
the weakest around s0 ∼ 24 GeV2. Accordingly, we choose
the region 20 GeV2 ≤ s0 ≤ 24 GeV2 as our working region,
where the s0 and MB dependence is both acceptable. This is
our first criterion to determine s0, i.e., the s0 and MB stability.

After fixing s0, we use two extra criteria to constrain the
Borel mass MB : (a) to ensure the convergence of the OPE
series, we require that the mixed condensate 〈gs s̄σGs〉be less
than 30% to determine its lower limit Mmin

B (the contribution
from the highest condensate 〈gs s̄σGs〉2 is negligible, so we
do not use it in this criterion):

Convergence (CVG) ≡
∣
∣
∣
∣

〈gs s̄σGs〉(∞, MB)


(∞, MB)

∣
∣
∣
∣ ≤ 30%;

(17)

(b) to ensure that the one-pole parametrization in Eq. (12)
is valid, we require that the pole contribution (PC) be larger
than 20% to determine the upper limit on M2

B :

PC ≡ 
(s0, MB)


(∞, MB)
≥ 20%. (18)

The small pole contribution is due to the large powers of
s in the spectral function (see other sum rule analyses for
the six-quark state d∗(2380) [56] and the F-wave heavy
mesons [47]).

Using these two criteria we obtain the working region of
the Borel mass to be 1.95 GeV2 < M2

B < 2.15 GeV2 for the
current J2− with s0 = 22 GeV2 (there exist Borel windows
only when s0 ≥ 22 GeV2). The variation of MX with respect
to the Borel mass MB is shown in the right panel of Fig. 2,
where the mass curves are very stable not only inside this
Borel window but also in a larger nearby area.

Taking this together we obtain the working regions for
the current J2− to be 20 GeV2 ≤ s0 ≤ 24 GeV2 and
1.95 GeV2 < M2

B < 2.15 GeV2, where MX can be extracted
to be

MX,2− = 4.55+0.19
−0.13 GeV, (19)

Here the central value corresponds to M2
B = 2.05 GeV2 and

s0 = 22 GeV2, and the uncertainty comes from the Borel
mass MB , the threshold value s0, the strange and charm quark
masses, and the various condensates. This value is consistent
with the experimental mass of the X (4500) [7–10], support-
ing it to be a D-wave csc̄s̄ tetraquark state of J P = 0+.
It consists of one D-wave “bad” diquark and one S-wave
“bad” antidiquark, having the antisymmetric color structure
[3̄c]cs ⊗ [3c]c̄s̄ .

The partner of X (4500) having the symmetric color struc-
ture, [6c]cs ⊗ [6̄c]c̄s̄ , can be investigated using the current
J2+. We use this current to perform sum rule analyses, and
show the obtained mass MX,2+ in Fig. 3 as a function of

123



Eur. Phys. J. C (2017) 77 :160 Page 5 of 7 160

18 20 22 24 27
4.0

4.2

4.4

4.6

4.8

5.0

5.2

4.0

4.2

4.4

4.6

4.8

5.0

5.2

s   [GeV  ]0
2

M
   

   
 [G

eV
]

X
,2

-

1.8 1.95 2.05 2.15 2.4
4.0

4.2

4.4

4.6

4.8

5.0

5.2

4.0

4.2

4.4

4.6

4.8

5.0

5.2

Borel Mass    [GeV  ]2

M
   

   
 [G

eV
]

X
,2

-

2

Fig. 2 The variation of MX with respect to the threshold value s0 (left)
and the Borel mass MB (right), calculated using the current J2− of
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curves are obtained by fixing M2
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Fig. 3 The variation of MX with respect to the threshold value s0 (left)
and the Borel mass MB (right), calculated using the current J2+ of
J P = 0+. In the left figure, the long-dashed, solid and short-dashed

curves are obtained by fixing M2
B = 1.95, 2.15 and 2.35 GeV2, respec-

tively. In the rightfigure, the long-dashed, solid and short-dashed curves
are obtained for s0 = 22, 23 and 24 GeV2, respectively

s0 and MB . We find that the s0 dependence is the weakest
around s0 ∼ 21 GeV2, and the MB dependence is the weak-
est around s0 ∼ 25 GeV2. Accordingly, we fix our work-
ing regions to be 21 GeV2 ≤ s0 ≤ 25 GeV2 and 1.99 GeV2

≤ M2
B ≤ 2.31 GeV2, where the s0 and MB dependence is in

both cases acceptable. The mass can be extracted to be

MX,2+ = 4.66+0.20
−0.14 GeV, (20)

where the central value corresponds to M2
B = 2.15 GeV2

and s0 = 23 GeV2. We find that there exist Borel windows
only when s0 ≥ 22 GeV2, which threshold value is the same
as that for J2−. However, if we choose s0 = 22 GeV2, the
Borel window would be quite narrow (1.99 GeV2 ≤ M2

B ≤
2.03 GeV2), but the mass extracted would not change much
(MX,2+ = 4.66+0.36

−0.19 GeV). The value listed in Eq. (20) is
consistent with the experimental mass of the X (4700) [7–
10], suggesting that it can also be interpreted as a D-wave

csc̄s̄ tetraquark state of J P = 0+. It consists of one D-wave
diquark and one S-wave antidiquark, having the symmetric
color structure [6c]cs ⊗ [6̄c]c̄s̄ .

2 Conclusion and discussions

To summarize, we have used the method of QCD sum rule to
investigate X (4500) and X (4700) of J P = 0+ based on the
diquark–antidiquark configuration within the framework of
QCD sum rules. We find that X (4500) and X (4700) can both
be interpreted as D-wave tetraquark states with the quark
content csc̄s̄ and J P = 0+: X (4500) consists of one D-wave
“bad” diquark and one S-wave “bad” antidiquark, with the
antisymmetric color structure [3̄c]cs ⊗ [3c]c̄s̄ ; X (4700) con-
sists of similar diquarks, but with the symmetric color struc-
ture [6c]cs ⊗ [6̄c]c̄s̄ . These two interpretations are remark-
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(left) and the Borel mass MB (right), calculated using the current
J2−(bsb̄s̄) of J P = 0+. In the left figure, the Borel mass MB is

fixed to be M2
B = 5.0 GeV2. In the right figure, the threshold value

s0 is fixed to be s0 = 112 GeV2, and the Borel window is 4.49 GeV2

≤ M2
B ≤ 6.43 GeV2

ably similar to those obtained in Ref. [1] that X (4140) and
X (4274) can be both interpreted as S-wave csc̄s̄ tetraquark
states of J P = 0+, but with opposite color structures.

The possible decay channels of X (4500) and X (4700) can
be investigated by performing the Fierz and color rearrange-
ments on the currents J2± and changing them to mesonic–
mesonic structures [5,36,37]:

J2± →
([

s̄aγμ1cb
][
c̄aγμ2 Dμ3 Dμ4sb ± {a ↔ b}]

⊕ [
s̄aγμ1γ5cb

][
c̄aγμ2γ5Dμ3 Dμ4sb ± {a ↔ b}]

⊕ [
s̄aσμ1ρcb

][
c̄aσμ2ρDμ3 Dμ4sb ± {a ↔ b}]

)

× (
gμ1μ3gμ2μ4 + gμ1μ4gμ2μ3 − gμ1μ2gμ3μ4/2

)
.

(21)

Besides these structures, their similar/relevant [s̄s][c̄c] struc-
tures are also possible. Accordingly, we obtain the pos-
sible decay channels of X (4500) and X (4700) to be S-
wave D∗+

s D∗−
s , D∗+

s D∗−
s1 (2860), D∗+

s D∗−
s3 (2860), J/ψφ,

J/ψφ3(1850), P-wave D∗+
s D∗−

s0 , D∗+
s D−

s1, D∗+
s D∗−

s2 , and
D-wave D∗+

s D∗−
s and J/ψφ, etc. The X (4500) and X (4700)

were observed by LHCb in the J/ψφ channel, which prob-
ably contain both S-wave and D-wave components. How-
ever, the overlap of the S-wave J/ψφ channel (as well as
the S-wave D∗+

s D∗−
s channel) and the J2± (containing the

D-wave antidiquark) is quite small, which makes the widths
of X (4500) and X (4700) not very large.

To examine these interpretations, we have also studied
the bottom partners of X (4500) and X (4700) by simply
replacing charm quarks to be bottom quarks. We evalu-
ate their masses using the bottom quark mass mb(mb) =
4.20 ± 0.07 GeV in the MS scheme [1,2]. We show the
mass obtained using J2−(bsb̄s̄) in Fig. 4 as a function of

the threshold values s0 and the Borel mass MB . There is
a mass plateau around s0 ∼ 102 GeV2, but it depends on
the bottom quark mass, which has large uncertainty [2].
We choose s0 = 112 GeV2 [1] (there exist Borel win-
dows when s0 ≥ 10.52 GeV2), and the mass obtained is
around 10.64 GeV. The mass obtained using J2+(bsb̄s̄) is
also around 10.64 GeV. We propose to search for them in the
ϒφ invariant mass distribution with the running of LHC at
13 TeV and the forthcoming BelleII experiment.

Besides the above dependence on the bottom quark mass,
the extracted masses of X (4500) and X (4700) in the present
work also depend on the running strange and charm quark
masses, which further depend on the energy scale. There-
fore, our results still have some extra theoretical uncertainties
not included in Eqs. (20) and (20), and more theoretical and
experimental studies are necessary to understand their inter-
nal structures. Especially, the determination/confirmation of
their spin-parity quantum numbers in experiments can be
essential. We also note that X (4140), X (4274), X (4500)

and X (4700) can have many partner states. If their inter-
pretations in this letter are correct, their dual partner states
would be quite interesting, such as the S-wave scalar and the
D-wave axial-vector tetraquark states with the quark con-
tent csc̄s̄. Especially in the diquark–antidiquark configura-
tion, the S-wave scalar csc̄s̄ tetraquark state consisting of
two “bad” diquarks is the dual partner state of both X (4140)

(by replacing one “good” diquark by one “bad” diquark) and
X (4500) (as its ground state), which may also exist.

To end this paper, we note that we can also use the S/P/D-
waves diquarks and antidiquarks to construct many other
states, and we plan to use QCD sum rules to systematically
study them. Although QCD sum rule studies cannot predict
their existence, our studies can still be helpful to experimental
searching of new exotic hadrons.
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