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Abstract Restricting the covariant gravitational phase
spaces to the manifold of parametrized families of solutions,
the mass, angular momenta, entropies, and electric charges
can be calculated by a single and simple method. In this
method, which has been called the “solution phase space
method,” conserved charges are unambiguous and regular.
Moreover, assuming the generators of the charges to be exact
symmetries, entropies and other conserved charges can be
calculated on almost arbitrary surfaces, not necessarily hori-
zons or asymptotics. Hence, the first law of thermodynam-
ics would be a local identity relating the exact symmetries
to which the mass, angular momentum, electric charge, and
entropy are attributed. In this paper, we apply this powerful
method to the f (R) gravitational theories accompanied by
the terms quadratic in the Riemann and Ricci tensors. Fur-
thermore, conserved charges and the first law of thermody-
namics for some of their black hole solutions are exemplified.
The examples include warped AdS3, charged static BTZ, and
3-dimensional z = 3 Lifshitz black holes.
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1 Introduction

Since the realization of general relativity and Noether’s theo-
rems in 1915, there have been numerous attempts to attribute
local (and later quasi-local) conserved charges to the sym-
metries in the presence of gravity. Nowadays, a century after
that, the literature on this subject is rich and well established,
but still in progress: local conserved charges have not been
consistently formulated, while there are different success-
ful formulations for quasi-local conserved charges (see Refs.
[1,2] as reviews). Among the different approaches, two main
lines of formulation can be distinguished: one is the Hamilto-
nian formulation which is based on space + time decompo-
sition, and the other one is the Lagrangian formulation which
is based on spacetime covariance. Reviewing the timeline of
the major progress in these two formulations (which for sure
might miss some interesting contributions) can give us an
overview, in addition to clarify the motivations of the analy-
sis in this paper.

Precursor of the Hamiltonian formulation was the intro-
duction of quasi-local charges by Komar [3]. In the Komar’s
method, quasi-local mass and angular momentum for asymp-
totic flat solutions could be found by an integration over a
codimension-2 surface at constant time asymptotics. Soon
after, the Hamiltonian formulation of the gravitational the-
ories was elaborated in a series of works in 1959–1962 by
Arnowitt–Deser–Misner [4–6], known as the ADM formu-
lation. Hence, in addition to introducing a sophisticated for-
mulation for gravitational dynamics, the calculation of the
mass and angular momentum at the constant time asymp-
totics was put on a firm basis (reviewed e.g. in Ref. [7]).
After that, a similar formulation for the null asymptotics was
proposed by Bondi et al. [8,9]. The Hamiltonian formulation
for the asymptotic flat spacetimes reached its mature presen-
tation by Regge–Teitelboim [10], emphasizing the role of the
surface terms in the Hamiltonian. Nonetheless, there was a
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shortcoming of the formulation, when the asymptotic flatness
was relaxed to include asymptotic (anti) de Sitter solutions,
mainly because of the appearance of divergent conserved
charges. Later progress in this line of formulation has been
mainly in the direction of ameliorating this problem (see the
review [11]). Transferring to the Hamilton–Jacobi formula-
tion by Brown–York [12], ensued by addition of a surface
counterterm to the Lagrangian [13], has been one of them.
Reformulation of conserved charges based on covariantly
defined conserved currents, and subtracting the contributions
from a reference solution, has been another method proposed
by Abbott–Deser [14], and this was completed and extended
to higher curvature theories by Deser–Tekin [15,16]. This
method is known as the ADT method in the literature. Last
but not least a contribution has been presented by Kim et
al. [17], and it is known as the quasi-local method. It is based
on the ADT off-shell conserved current, while two major
changes are considered: (1) instead of considering the dif-
ference between the solution and a reference solution, a one-
parameter integration from the reference solution to the solu-
tion under consideration is performed (advocated in Refs.
[18,19]), (2) the surface of integration is relaxed to be in
the interior of the geometry. Hence, it provides a powerful
method for calculating conserved charges, specifically for
black hole solutions.

The second line of formulating conserved charges is based
on the Lagrangian, which is covariant from the beginning.
It was initiated by Ashtekar et al. [20,21] and Crnkovic–
Witten [22], and was consistently formulated in a series of
works by Wald et al. [18,23–25]. In this formulation, which
is called covariant phase space formulation (see Refs. [26–
28] for reviews), a covariant phase space was built without a
space + time decomposition. The phase space manifold was
constructed from dynamical fields all over the spacetime,
without recruiting their momentum conjugates. The sym-
plectic form was read from the Lagrangian, which entailed a
concrete formulation for conserved charges associated with
diffeomorphisms and gauge transformations. Besides, in this
progress, the entropy of the non-extermal [24,25] (and later,
of the extremal [29]) black holes was introduced as a con-
served charge calculated on black hole horizons. Later in
2002, Barnich–Brandt reformulated the formalism in the lan-
guage of variational bicomplex, in addition to proposing a
version directly from the equation of motion (EoM) instead
of the Lagrangian [30]. The conceptually strong point (but
pragmatically weak point) of the covariant phase space for-
mulation is that the phase space manifold and its tangent
space, which are crucial for explicit calculation of conserved
charges, are determined by some fall-off conditions. The
usual fall-off conditions, although restrict the manifold, do
not usually determine it such that calculation of the charges
could be performed explicitly. To put the formulation into its
full power of calculability, in Ref. [31] the manifold and its

tangent space are constructed explicitly and directly from the
beginning. The elaboration of the phase space and its tangent
space, accompanied by relaxing the calculation of the entropy
over horizons, has made the formulation a universal tool in
the context of conserved charge calculations. This method
can be dubbed a solution phase space method, because the
phase space is constructed by some family of parametrized
solutions. Interestingly, the recent independent progress, the
one by Kim et al. [17] in the Hamiltonian formulation, and
the solution phase space method [31] in the Lagrangian for-
mulation, has brought about the two lines of formulations to
converge.

In this paper, we apply the solution phase space method
to the higher curvature theories. For clarity, we will focus
on f (R) gravity accompanied by quadratic terms in the Rie-
mann and Ricci tensors (see Lagrangian (3.1)), although the
generalization is straightforward. One of the motivations for
this work is examining the method for gravitational theories
beyond the Einstein–Hilbert gravity. Another motivation is
providing detailed materials needed to perform calculations
for general enough higher curvature theories. The analysis
can be considered in parallel with higher curvature analy-
sis in other methods, specifically the ADT and quasi-local
methods studied e.g. in Refs. [15,16,32–43]. In the follow-
ing sections, first a review on the solution phase space method
is presented. Then it is applied to the higher curvature the-
ories. Finally, some interesting examples are provided and
compared with the results of other methods.

2 Solution phase space method

Solution phase space method (SPSM) is a method for calcu-
lating conserved charges in gravitational theories. The SPSM
is based on a powerful but not yet fully appreciated covari-
ant formulation of gravitational phase spaces, which we are
going to review in the next subsection. It is applicable to the
solutions which are parametrized by some parameters p j .
Specifically, it is a convenient method for calculating mass,
angular momenta, entropies, and electric charges associated
with the black hole solutions, although it is not exclusive to
them [26,31].

Before delving into the details, it can be helpful to have a
look at the big picture and the bottom line: calculation of vari-
ation of a conserved charge needs three pieces of information
as inputs: (1) the theory in d-dimensional spacetime, (2) the
solution and some perturbation around it for which charge
is calculated, and (3) the symmetry to which the charge is
attributed. At the end of the day, integrating a d − 2-form
kη(δ̂�, �̂) over any codimension-2 surface yields the vari-
ation of the charge. Concerning the three inputs mentioned
above, k is unambiguously determined by the theory. Its argu-
ments �̂ and δ̂� denote some elaborated solutions and per-
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turbations. η carries information as regards the symmetry. If
the result would be integrable, then an integration over δ̂�

produces the finite charge.

2.1 Covariant phase space formulation

Covariant phase space formulation is an appropriate and
well-established construction of the gravitational phase
spaces [20–25]. To have a self-contained document, we will
review the basics of the formulation here, which might have
some overlaps with the reviews in Refs. [31,44]. At the outset,
it would be useful recalling some relevant elementary prop-
erties of a phase space. Phase space F(M,�) is a manifold
M equipped with a closed non-degenerate symplectic form
�. In order to introduce a physical phase space, one usually
begins with a given Lagrangian. For example, dynamics of a
particle in one dimension can be described by the Lagrangian

L = mq̇2

2 − V (q). M would be built by the position and
its momentum conjugate (q, p), equipped with the canonical
symplectic 2-form � = δp ∧ δq. A simple way to derive this
symplectic form is to vary the Lagrangian

δL =
(

∂L

∂q
− d

dt

∂L

∂ q̇

)
δq + d

dt
(p δq). (2.1)

Then, by recognizing the first term as the EoM, and the
second term as a total derivative, d

dt in the latter has to be
dropped, and its exterior derivative on the phase space should
be taken:

d

dt
(p δq) → p δq → δ(p δq) = δp ∧ δq. (2.2)

Equipped with �, and for a given vector field v on the M,
a charge variation δHv can be defined by

δHv ≡ v · �. (2.3)

For instance, in our simple example, choosingv = ∂q, then
δHv = ∂q ·� = δp. Hence, Hv = p, which is the mathemat-
ical manifestation of “momentum is the charge attributed to
the translation in space”. Notice that in order for a charge to
be conserved, one needs extra conditions. In the case of the
simple example mentioned above, p would be conserved if
only V (q) would be a constant.

Covariantphase space:Let us begin with a given Lagrangian
in d-dimensional spacetime, with some classical dynami-
cal fields, collectively denoted by �(xμ). The fields might
include the metric gαβ , some Abelian gauge fields Aa

μ, some
scalars φ I , etc. It is usual to build the phase space canonically,
i.e. to build the M from a subset of field configurations �(�x)
and their momentum conjugates defined on some privileged
time foliation of spacetime. In this construction, solutions to

the equation of motion are some curves on M parametrized
by the time. Interestingly, in the context of generally covari-
ant gravitational theories, there is a more suitable construc-
tion which does not break general covariance by specify-
ing a time foliation. In this construction, M is composed of
dynamical field configurations all over the spacetime �(xμ).
On the other hand, the field conjugates would not be needed
to construct the manifold. As a result, any solution to the
equation of motion in the phase space would be a point on
M, instead of a curve. The tangent space of the manifold is
also constituted from a subset of perturbations δ�(xμ).

Symplectic structure: The manifold M which is con-
structed is a phase space. The symplectic 2-form is con-
structed from the Lagrangian d-formL. To this end, using the
same method as in Eqs. (2.1) and (2.2), first the Lee–Wald
(d−1)-form 
 is picked up from the surface term appearing
in the variation of Lagrangian:

δL = E�δ� + d
LW(δ�,�). (2.4)

In the equation above, E� denotes equations of motion
for the fields �, on which the summation convention should
be understood. δ and d are exterior derivatives on M and on
spacetime, respectively. Then the pre-symplectic form can
be defined as [23–25]

�LW(δ1�, δ2�,�) ≡
∫

�

ωLW(δ1�, δ2�,�) (2.5)

where

ωLW(δ1�, δ2�,�) = δ1
LW(δ2�,�) − δ2
LW(δ1�,�).

(2.6)

The � is some codimension-1 (Cauchy) surface and δ1,2�

are some members of the tangent space. The ωLW, which is a
2-form over the phase space and a d−1-form over the space-
time, is called a pre-symplectic current. By construction, �

in Eq. (2.5) is antisymmetric in δ1� ↔ δ2�, and is a closed
form δ� = 0. If it would be a non-degenerate form, it could
be used to construct a symplectic structure. In this case, one
drops the prefix in “pre-symplectic,” and calls it a symplectic
form.

Conservation: Apparently, �LW in Eq. (2.5) depends on a
non-covariantly chosen surface �. In order to make �LW

independent of �, which in this context is called “conserva-
tion of symplectic form,” one needs dωLW = 0. Moreover, the
flow of ωLW passing throughout the boundaries ∂� should
vanish. The former is achieved if � and δ� satisfy the EoM
and the linearized EoM, respectively. So, it is standard to
restrict the phase space to the solutions, as we will do in the
rest of the paper. On the other hand, achievement of the latter
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needs extra conditions, usually some boundary conditions on
the perturbations.

Ambiguities: There are two kinds of ambiguities present in
the covariant phase space formulation; one an irrelevant and
another one a relevant. The irrelevant one originates from the
fact that the formulation is based on Lagrangian formulation,
which is itself ambiguous up to a surface term L → L +
dK. Nonetheless, although it results to 
 → 
 + δK, but
ω remains intact because of δ2K = 0. Another ambiguity,
which is the relevant one, is an ambiguity originating from
the definition of 
 in Eq. (2.4); one can add an exact (d−1)-
form dY(δ�,�) to 
LW(δ�,�), i.e.


LW(δ�,�) → 
(δ�,�) = 
LW(δ�,�) + dY(δ�,�).

(2.7)

This ambiguity entails corresponding ambiguities in �

defined above, through

ω(δ1�, δ2�,�) → ω(δ1�, δ2�,�) + d
(
δ2Y(δ1�,�)

−δ1Y(δ2�,�)
)
. (2.8)

Conserved charges:Let us consider a vector field ξ = ξμ∂μ

defined over the spacetime, which generates the diffeomor-
phism xμ → xμ − ξμ. In addition, we might have some
scalars on the spacetime λa , generating the gauge transfor-
mations Aa

μ → Aa
μ + ∂μλa . We can denote the generator of

the combination diffeomorphism+gauge transformations by
ε = {ξ, λa} such that δε� ≡ Lξ�+ δλa Aa . Being equipped
with the symplectic form, and motivated by the definition of
charge Eq. (2.3), we might be able to associate a conserved
charge (interchangeably called Hamiltonian generator) to the
ε. To this end, variation of the charge is defined as [23–25,45]

δHε(�) ≡
∫

�

(
δ[�]
(δε�,�) − δε
(δ�,�)

)

=
∫

�

dkε(δ�,�) =
∮

∂�

kε(δ�,�), (2.9)

where the last equation follows from Stokes’ theorem. The
δ[�] emphasizes that δ acts on dynamical fields, not ε. In the
equation above, the integrand in the first integration has been
replaced by an exact (d−1)-form dkε . This is the fundamental
theorem of the covariant phase space formalism, which can
be proved using the on-shell conditions [24,25]. The (d−2)-
form kε can be shown to be explicitly (see e.g. Appendix A
in Ref. [31] for the detailed derivation)

kε(δ�,�) = δQε − ξ · 
(δ�,�), (2.10)

in which Qε is the Noether–Wald charge density [24,25],
defined by the relation

dQε ≡ 
(δε�,�) − ξ ·L. (2.11)

Hence, by Eq. (2.10), kε can be found for a given the-
ory straightforwardly. Putting it into Eq. (2.9), the charge
variation δHε(�) can be calculated for an arbitrary gener-
ator ε. Concerning the conservation, by dω(δ�, δε�,�) =
d2kε(δ�,�) = 0 there would not be any source or sink in
�. But vanishing of the flux/leakage through ∂� needs to be
investigated.

Integrability: δHε(�), which is calculated by the last inte-
gral in Eq. (2.9), might corresponds to the variation of a finite
conserved charge Hε . In order to investigate this finite con-
served charge, integrability over the phase space is needed.
This condition is basically (δ1δ2−δ2δ1)Hε(�) = 0, in which
�s are any field configuration in the presumed phase space
F , and δ1,2� are any arbitrary chosen member of its tan-
gent space. It follows that this condition can be explained as
[18,23,45]
∮

∂�

(
ξ · ω(δ1�, δ2�,�) + kδ1ε(δ2�,�)

−kδ2ε(δ1�,�)
)

= 0,∀�, δ1,2�. (2.12)

Symplectic symmetries: As far as conserved charges are
concerned, conservation of δHε can be guaranteed if ε is
chosen such that

ω(δ�, δε�,�) = 0 (2.13)

on-shell. It is because there would not be any flow out of the
boundaries locally, and hence globally. The family of ε’s with
this property, which has been dubbed “symplectic symmetry
generators” [46], can be divided into two sets [31]:

1. Non-exact symplectic symmetriesThe ε for which δε� �=
0 at least on one point of the phase space. They constitute
a closed algebraic structure, and have been proposed to be
responsible for generating the phase space of a solution at
some given constant thermodynamical variables [45–47].
Hence, by studying them and the phase space generated
via exponentiating them, one might hope to understand
the microstates of the system.

2. Exact symplectic symmetries The ones for which δε� =
0 all over the phase space. For clarity, let us denote
such generators by η = {ζ, λa}. They are considered as
generators which by their conserved charges, the set of
solutions in different thermodynamical variables can be
labeled [31]. The phase space constructed by such field
configurations has been called “solution phase space,”
[31] which will be described in a moment.

It has been conjectured that the phase space associated with
the geometries without propagating degrees of freedom are
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direct product of these two families of phase spaces: the sta-
tistical phase space ⊗ the solution phase space [31,48].

2.2 Solution phase space method; conserved charges and
the first law(s)

In the covariant phase space formulation reviewed above,
it is standard to identify the phase space manifold by some
asymptotic behaviors, usually through requiring some fall-
off conditions. Fall-off conditions, although they delimit the
phase space manifold, usually do not determine it completely.
“Solution phase space method” is an alternative method for
determining the phase space manifold. Restricting the covari-
ant phase space formulation to some explicitly identified
manifolds, empowers the calculability of this formulation.
The specification is in three aspects, which will be described
immediately:

1. Identifying the phase space manifold explicitly,
2. Crystallizing the tangent space of the specified manifolds,
3. Concentrating on the exact sympltectic symmetries of the

proposed phase space.

Consider a family of (black hole) solutions to a generally
covariant gravitational theory. Usually, such a family is iden-
tified by some isometries and some parameters p j . The field
configuration of such a family can be denoted collectively by
�̂(xμ, p j ). The parameters are some arbitrary (but maybe in
some restricted domain of) real numbers appearing in the
field configuration of the mentioned solutions. The p j can
be reparametrized, but they cannot be removed by coordi-
nate transformations. The manifold M̂ can be chosen to be
composed of the members of the family, up to unphysical
coordinate/gauge transformations. As an example, the set of
all Schwarzschild black holes

ds2 = −
(

1−2Gm

r

)
dt2+ dr2

1 − 2Gm
r

+r2dθ2+r2 sin2 θdϕ2,

(2.14)

parametrized by one free parameter p1 = m ≥ 0, construct
a manifold M̂.

The symplectic 2-form �̂ would be simply the Lee-Wald
symplectic form (2.5), which is confined to M̂. Therefore,
the F̂ = (M̂, �̂) would constitute a phase space, the “solu-
tion phase space”. Hence, any point of the manifold can be
identified by �̂(xμ, p j ). The tangent space of M̂ is spanned
(up to infinitesimal pure gauge transformations) by “para-
metric variations,” which can be found simply by [49]

δ̂� = ∂�̂

∂p j
δp j . (2.15)

These variations, which are infinitesimal difference of two
solutions, satisfy linearized equation of motion. As a result,
they respect dωLW(δ̂1�, δ̂2�, �̂) = 0.

In SPSM, the diff+gauge transformations, for which
charges are calculated, should be restricted to the symplectic
symmetries. However, our main focus would be on the set of
exact symmetries. Denoting the generator of the exact sym-
metries by η = {ζ, λa} such that δη�̂ = 0, the ζ would be a
Killing vector of all points of the phase space M̂. Besides,
its action on the gauge fields has to be canceled by the action
of λa’s, i.e. Lζ Aa

μ + ∂μλa = 0. As it was advertised in

Sect. 2.2, conservation of δ̂Hη is guaranteed. This is because
of the relation ωLW(δ̂�, δη�̂, �̂) = 0, which itself is a result
of linearity of ωLW in δη�̂ = 0. Hence, there would not be
any local and, therefore, any global flow of ωLW out of the
boundaries ∂�.

Along with guaranteeing the conservation, focusing on the
exact symmetries provides us some other nice features:

• Independence of δ̂Hη from the choice of ∂�: The relation
ωLW(δ̂�, δη�̂, �̂) = 0 yields an interesting result: δ̂Hη

would be independent of the chosen ∂�. It is because
of vanishing of ωLW all over the �, and hence, vanish-
ing of ωLW in the region enclosed between two different
integrating surfaces ∂�1 and ∂�2. Then, by the Stokes
theorem, and taking the result of Eq. (2.9) into account,
the claim is proved. Explaining this result in another
way, although the integration in calculating δ̂Hη is over a
codimension-2 surface ∂�, but the result would be inde-
pendent of all coordinates, including the two coordinates
which are not integrated over.

• Discarding the ambiguity Y: This is because of
δY(δη�,�) − δηY(δ�,�) = 0, which is a result of
the linearity of the left hand side in δη� = 0. Using this
identity together with Eq. (2.8) in the definition of charge
variations Eq. (2.9), then there would not be any ambi-
guity in the calculated conserved charges as far as exact
symmetries are considered.

Summarizing the last two paragraphs, the charges associ-
ated with exact symmetries are conserved, unambiguous,
and independent of the chosen closed surfaces of integration
∂�.

So far, the SPSM has provided all materials needed to cal-
culate conserved charge variations. The final tasks would be
checking integrability overM̂, and (if integrable) performing
the integration. The integrability can be assessed by replac-
ing �, δ�, and ε in the integrability condition Eq. (2.12) by
�̂, δ̂�, and η, respectively. If integrable, then the integration
over arbitrary path on M̂ connecting a reference field con-
figuration �̂( p̄ j ) to the solution under consideration �̂(p0

j )

yields the final result
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Hη[�̂(p0)] −Hη[�̂( p̄)] =
∫ p0

p̄
δ̂Hη. (2.16)

Hη[�̂( p̄)] is the reference point (i.e. constant of integration)
for Hη defined on some specific reference field configuration
�̂(xμ; p̄ j ).

It is worth mentioning that in order to perform the
final tasks mentioned above, there is a shortcut: by the
conservation+independence from ∂�, δ̂Hη would only be a
function of p j and δp j , not any coordinate of the spacetime.
Hence, one can simply check whether it is a total derivative
or not. Then, in the case of a total derivative, the integration
can be done by an appropriate choice of a reference field. For
instance, if M̂ is parametrized by two parameters {p1, p2},
and one has found δ̂Hη = p1δp2 + p2δp1 , then it is a total
derivative δ̂Hη = δ̂(p1 p2). So, the integrated charge would
be simply Hη = p1 p2 + const., where the constant would be
fixed by the choice of a reference field configuration.

Before moving on to the next sections, which will provide
us explicit examples, it can be useful recalling some remarks
in the context of SPSM.

• Not all exact symmetries have integrable conserved
charges. Hence, integrability puts constraint on the choice
of exact symmetries to which mass, angular momenta etc.
are attributed.

• Electric charge associated to the gauge field Aa , denoted
by Qa , is the conserved charge of the global gauge trans-
formation ηQa

= {0, 1a} in which 1a means λa = 1 and
λb = 0 for b �= a.

• Similar to the electric charge, mass and angular momenta
are conserved charges which are attributed to the geome-
try as a whole. For the stationary solutions with some
number of axial U (1) isometries (labeled by i), one
can choose the coordinates such that the correspond-
ing Killing vectors would be ∂t and ∂ϕi , respectively.
Then, up to a conventional normalization, the exact sym-
metries to which the mass M and angular momenta Ji
are attributed would be ηM = {∂t + �i

∞∂ϕi ,−�a
∞} and

ηJi
= {−∂ϕi , 0}. �i

∞ and �a
∞ are asymptotic angu-

lar velocities and electric potentials, which are usually
adopted to be zero.

• In contrast with the charges mentioned above, to each
one of the horizons in a geometry, one can associate an
entropy. Hence, there might be more than one entropy
in a single geometry, e.g. the entropy of inner, outer
or cosmological horizons. Entropies are considered to
be conserved charges for the exact symmetries ηH =
2π
κH

{ζH ,−�a
H
}, in which κH , ζH , �a

H
are surface grav-

ity, Killing vector, and electric potential of the horizon,
respectively. Notice that the ζH should be accompanied
by the rigid gauge transformations λa = −�a

H
, and be

normalized by the surface gravity, in order to have an
integrable charge.

• It is worth emphasizing again that assuming the gener-
ators of mass, angular momenta, electric charges and
entropies to be exact symmetries, these charges can
be calculated by integrations over almost arbitrary ∂�,
and not necessarily the horizons or asymptotics. In this
respect, the entropies are on equal footing with other con-
served charges.

First law(s) of thermodynamics: To each one of the hori-
zons denoted by “H”, an entropy SH , temperature TH = κH

2π
,

and some chemical potentials �i
H
,�a

H
etc. can be attributed

[50–52]. The first law of thermodynamics for the chosen hori-
zon relates δSH to the variations of other conserved charges
attributed to the whole geometry. In the SPSM, derivation
of the first law(s) is very simple, and originates from a local
identity; ηH is a linear combination of the generators of mass,
angular momenta, and electric charges. From this identity,
the first law follows by the linearity of the generic charge
variations δHε in terms of the generator ε (see Eq. (2.9)).
Mathematically [24,25,31],

ηH = 1

TH

(
ηM − (�i

H
− �i

∞)ηJi
− (�a

H
− �a

∞)ηQa

)

⇒ δSH = 1

TH

(
δM−(�i

H
−�i

∞)δ Ji−(�a
H
−�a

∞)δQa

)

(2.17)

where δSH ≡ δHηH
, δM ≡ δHηM

, δ Ji ≡ δHηJi
and δQa ≡

δHηQa
. Notice that the δ in the proof is a generic perturbation

which satisfies linearized EoM. So, it is not restricted to the
parametric variations. Moreover, integration over horizons
or asymptotics does not play any role in this proof.

3 Applying the method to higher curvature theories

SPSM has reproduced successfully conserved charges and
first law(s) for the standard (black hole) solutions to Einstein–
Hilbert gravitational theories. Explicit examples can be found
in Refs. [26,31,44]. The goal of this section is utilizing the
SPSM for the gravitational theories with higher curvature
terms. Explicitly, the Lagrangian which we will focus on,
has the metric gαβ , some gauge fields Aa

μ, and some scalar
fields φ I , in arbitrary dimension d:

L = 1

16πG

(
f (R, φ)+ a(φ)RμνR

μν + b(φ)Rμναβ R
μναβ

−cab(φ)Fa
μνF

bμν −2dI J (φ)∇μφ I∇μφ J
)
. (3.1)

Rμ
ναβ , Rμν , and R are Riemann tensor, Ricci tensor, and Ricci

scalar, respectively. The Fa = dAa are the field strengths.
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The coefficients a(φ), b(φ), cab(φ), and dI J (φ) are some
functions of φ I . Notice that f (R, φ) covers the Einstein–
Hilbert gravity with a cosmological constant. Besides, the
Gauss–Bonnet theory of gravity is also covered by the
Lagrangian (3.1), hence the simplest Lanczos–Lovelock the-
ories are also included [53–56]. Generalization to higher
Lanczos–Lovelock theories is straightforward, and we will
not consider in this paper. The Lagrangian d-form is the
Hodge dual of (3.1), L = �L,

L =
√−g

d! εμ1μ2···μd L dxμ1 ∧ dxμ2 ∧ · · · ∧ dxμd . (3.2)

εμ1μ2···μd is the Levi-Civita symbol, i.e. ε012···d−1 = +1 and
its sign changes with the odd permutations of the indices. We
will use the conventions

hμν ≡ δgμν = gμαgνβδgαβ,

δFμν ≡ gμαgνβ(δdA)αβ = gμαgνβ(dδA)αβ . (3.3)

Hence, the indices for the perturbed fields can be raised
and lowered similar to other tensors. Let us label the terms
in the Lagrangian (3.1) by f , a, b, c, and d, respectively.
The EoM for the chosen Lagrangian, considering variations
with respect to the metric, gauge fields, and scalar fields, are,
respectively [57],

E f μν + Ea μν + Ebμν + Ecμν + Ed μν = 0,

E f μν = 1

2
f gμν − f ′Rμν + ∇μ∇ν f

′ − � f ′gμν

Ea μν = a

(
1

2
Rαβ R

αβgμν + ∇α(∇μRαν

+∇νRαμ) − ∇α∇β R
αβgμν − �Rμν − 2RμαR

α
ν

)

Eb μν = b

(
1

2
Rρσαβ R

ρσαβgμν

−2Rμγαβ R
γαβ

ν − 2∇α∇β(Rμανβ + Rναμβ)

)

Ec μν = 2cab
(
Fa

μαF
b α
ν − 1

4
Fa

αβF
b αβgμν

)

Ed μν = 2dI J

(∇μφ I∇νφ
J − 1

2
∇αφ I∇αφ J gμν

)
, (3.4)

∇ν

(
cabF

bμν
) = 0, (3.5)

4∇α

(
dI J ∇αφ J ) + ∂ f

∂φ I
+ ∂a

∂φ I
RμνR

μν + ∂b

∂φ I
Rμναβ R

μναβ

−∂cab
∂φ I

Fa
μνF

bμν −2
∂dJ K

∂φ I
∇μφ J∇μφK = 0, (3.6)

where the notation f ′ ≡ ∂ f
∂R is used. We need to find 
LW ,Qε ,

and most importantly, the kε for this theory. Their derivation
and final results are standard practices in the literature. Hence
we only report the final results here. Detailed analysis are

similar to the simple Einstein–Hilbert Lagrangian, which can
be found e.g. in Appendix A of Ref. [44].

By variation of Lagrangian δL and imposing the EoM, the
surface d−1-form 
LW can be read through Eq. (2.4) to be

LW = �
, i.e.


LW =
√−g

(d − 1)! εμμ1···μd−1 (

μ
f + 
μ

a +

μ
b + 
μ

c +

μ
d )

× dxμ1 ∧ · · · ∧ dxμd−1 , (3.7)

in which



μ
f (δ�,�) = 1

16πG

(
f ′(∇αh

μα−∇μh)−∇α f ′hμα+∇μ f ′h
)
,


μ
a (δ�,�) = a

16πG

(
2Rαβ∇αhβμ

−2∇αR
μ
βh

αβ −Rμ
α∇αh + ∇αRμ

αh − Rαβ∇μhαβ +∇μRαβh
αβ

)
,



μ
b (δ�,�) = b

4πG
(∇νRμ

ανβh
αβ − Rμ

ανβ∇νhαβ),


μ
c (δ�,�) = −1

4πG
cab F

a μν δAb
ν,



μ
d (δ�,�) = −1

4πG
dI J ∇μφ I δφ J , (3.8)

where h ≡ hα
α . Having the 
 in our hand, for a generic

ε = {ξ, λa}, the Noether–Wald d−2-form Qε can be read
through Eq. (2.11) and imposing the EoM, Eq. (3.4), as

Qε =
√−g

(d − 2)! 2! εμνμ1···μd−2 (Qμν
f ε

+Qμν
a ε + Qμν

b ε + Qμν
c ε + Qμν

d ε )

dxμ1 ∧ · · · ∧ dxμd−2 , (3.9)

in which

Qμν
f ε = 1

16πG

(
2∇μ f ′ξν − f ′∇μξν

) − [μ ↔ ν],
Qμν

a ε = a

8πG

(∇μRν
αξα+Rν

α∇αξμ−∇αRν
αξμ

)−[μ ↔ ν],

Qμν
b ε = b

4πG

(∇αRμν
αβ ξβ − Rμανβ∇αξβ

) − [μ ↔ ν],

Qμν
c ε = −1

4πG
cabF

a μν(Ab
ρξρ + λb),

Qμν
d ε = 0. (3.10)

After varying Qε with respect to all dynamical fields and
utilizing the textbook relations

δ
√−g =

√−g

2
hα

α,

δ�λ
μν = 1

2
gλσ (∇μhσν+∇νhσμ−∇σ hμν), δεμνμ1···μd−2 = 0,

δRμναβ = 1

2

(
2Rμναγ hγ

β − ∇μ∇αhβν +∇μ∇βhαν

−∇μ∇νhαβ +∇ν∇αhβμ−∇ν∇βhαμ+∇ν∇μhαβ

)
,

δRμν = 1

2

(∇α∇μh
α
ν + ∇α∇νh

α
μ − �hμν − ∇μ∇νh

)
,

δR = ∇μ∇νh
μν − �h − Rμνh

μν, (3.11)
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one can find kε by Eq. (2.10), to calculate variations of the
conserved charges. The result, the final applicable tensor for
calculation of the conserved charges turns out to be

kε(δ�,�) =
√−g

(d − 2)! 2! εμνμ1···μd−2 (kμν
f ε + kμν

a ε + kμν
b ε

+ kμν
c ε + kμν

d ε ) dxμ1 ∧ · · · ∧ dxμd−2 (3.12)

where, using the notation f ′ ≡ ∂ f
∂R ,

kμν
f ε(δ�, �) = 1

16πG

[(
hμα∇αξν − ∇μhναξα

− 1

2
h∇μξν

)
f ′ + 2

(
Rμα∇αh − ∇αRh

μα − Rμ
α∇βh

αβ

− �∇μh + ∇α∇μ∇βh
αβ − ∇μ(Rαβh

αβ) + 1

2
∇μR h

)
ξν f ′′

+ 2(∇μδφ I −hμ
α∇αφ I + 1

2
h∇uφ I )ξν ∂ f ′

∂φ I
− δφ I∇μξν ∂ f ′

∂φ I

+
(
Rαβh

αβ − ∇α∇βh
αβ + �h

)
(∇μξν f ′′ − 2∇μR ξν f ′′′

− 2∇μφ I ξν ∂ f ′′

∂φ I
) + 2δφ I∇μφ J ξν ∂2 f ′

∂φ I ∂φ J

+ 2δφ I∇μR ξν ∂ f ′′

∂φ I

]
− 


μ
f ξ

ν − [μ ↔ ν],
(3.13)

kμν
a ε (δ�, �) = a

16πG

[(
∇αR μ

α h − ∇αRh
μα−∇μ(Rαβh

αβ)

+ ∇μ∇α∇βh
αβ − ∇μ�h

)
ξν +

(
2∇β R

μ
αh

βν

− 2Rμβ∇βh
ν
α − 2∇μRαβh

νβ − ∇μ(∇α∇νh − ∇β∇αh
νβ

+ �hν
α − ∇β∇νhαβ) + ∇μRν

αh + 2Rμβ∇νhαβ

)
ξα

+
(
∇α∇μh − ∇β∇αh

μβ − ∇β∇μhαβ + �hμ
α

+ 2(Rαβh
μβ + Rμβhαβ) − Rμ

αh
)
∇αξν

]

+ Qμν
a ε

2a

∂a

∂φ I
δφ I −
μ

a ξν −[μ ↔ ν], (3.14)

kμν
b ε (δ�, �) = b

8πG

[(
2(Rμ

αβγ−Rμ
βαγ )hνγ+Rμ ν

α βh

− Rμ ν
α γ h

γ
β −Rμ ν

β γ h
γ

α −∇μ∇αh
ν
β +∇μ∇βh

ν
α

)
∇βξα

+
(
Rμβ(∇βh

ν
α − ∇αh

ν
β) + Rμ ν

β γ ∇γ h β
α

+ 1

2
Rμν

αγ (∇βh
βγ − ∇γ h)

+ 2(∇β R
μ
α − ∇μRαβ)hνβ + ∇μ∇β∇αh

νβ

− ∇μ�hν
α + ∇μRν

αh + ∇μRν
βh

β
α

− ∇μ(Rν
βαγ h

βγ )
)

2ξα
]
+Qμν

b ε

2b

∂b

∂φ I
δφ I−


μ
b ξν − [μ ↔ ν],

(3.15)

kμν
c ε (δ�,�) = 1

8πG

[(−h

2
cab F

a μν +2 cab F
a μσ h ν

σ

− cab δFa μν − ∂ cab
∂φ I

Fa μνδφ I
)

(ξαAb
α + λb)

− cab F
a μνξαδAb

α − 2 cab F
a αμξνδAb

α

]
− [μ ↔ ν],

(3.16)

kμν
d ε (δ�,�) = 1

4πG

[
ξν dI J ∇μφ I δφ J

]
−[μ ↔ ν].

(3.17)

Having kε , and equipped with the parametric variations δ̂�,
calculation of the conserved charges associated with the
exact symmetries η = {ζ, λa} of the (black hole) solutions
�̂(xμ; p j ) to the Lagrangian (3.1) can be performed.

4 Some examples

To exemplify, in this section we will work out conserved
charges and first law(s) of thermodynamics for some black
hole solutions to the Lagrangian (3.1).

Example 1 z = 3 Lifshitz black hole in d = 3
Consider

f = R + 13

l2
− 3l2

4
R2, a = 2l2, b = c = d = 0,

(4.1)

i.e. the new massive gravity (NMG) Lagrangian [58]

L = 1

16πG

(
R − 2� + 1

m2 (RμνR
μν − 3

8
R2)

)
, (4.2)

in which � = − 13
2l2

and m2 = 1
2l2

. We can have a family
of black holes ĝαβ(xμ;m) as solution to this theory in the
3-dimensional case [59,60],

ds2 = −
(r
l

)2z
(

1 − ml2

r2

)
dt2 + dr2

r2

l2

(
1 − ml2

r2

) + r2dϕ2

(4.3)

for z = 3. Let us analyze the thermodynamics of this fam-
ily of black holes using SPSM. Putting Eq. (4.1) into the
general result Eq. (3.12), kμν

ε can be read for our specific
theory. Then, choosing ∂� to be surfaces of constant (t, r)
for simplicity, the conserved charge variations for an exact
symmetry η can be simply read through

δ̂Hη =
∮

∂�

kη(δ̂gαβ, ĝαβ) =
∫ 2π

0

√
−ĝ ktrη (δ̂gαβ, ĝαβ) dϕ,

(4.4)
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in which ktrη is the tr component of the kμν
η . Inserting para-

metric variations δ̂gαβ = ∂ ĝαβ

∂m δm in it, conserved charges can
be calculated, irrespective of the asymptotic Lifshitz behav-
ior.

Mass: We can choose the stationarity Killing −∂t as the
generator to which the mass is associated. The minus sign has
been adopted to make the mass and entropy positive. Hence,
by ηM = {−∂t , 0} the result of calculating Eq. (4.4) is

δ̂M ≡ δ̂HηM
= m

2G
δm = δ̂

(
m2

4G

)
⇒ M = m2

4G
.

(4.5)

The reference point (constant of integration) was chosen M=
0 for the geometry with m = 0.

Angular momentum: Choosing ηJ = {−∂ϕ, 0}, and by a
similar analysis as the mass, angular momentum turns out to
be

δ̂ J ≡ δ̂HηJ
= 0 × δm ⇒ J = 0. (4.6)

Entropy: The surface gravity on the horizon of this solution

is κH = r3
H
l4

in which rH = √
ml2. The entropy of the hori-

zon is defined to be the conserved charge associated with
the horizon Killing vector ζH normalized by the Hawking
temperature TH = κH

2π
. Therefore, by ηH = 2π

κH
{ζH , 0} and

the identity ζH = −∂t , the entropy attributed to the horizon,
via a similar integration to the other conserved charges, is
calculated to be

δ̂SH ≡ δ̂HηH
= πl

G
√
m

δm = δ̂

(
2πrH

G

)
⇒ SH = 2πrH

G
.

(4.7)

The reference point is chosen to be SH =0 for the geometry
identified by m = 0. Notice that the entropy is proportional
to the area (here the length) of the horizon, but without the
usual factor of 1

4 . The results above are in agreement with
the results reported in Refs. [35,61].

First law: Having made the entropy free of being calculated
on the horizons, the first law of thermodynamics would fol-
low:

ηH = 1

TH

ηM

linearity ofδHε inε−−−−−−−−−−→ δSH = 1

TH

δM. (4.8)

Although δ in the equation above is a generic perturbation
which satisfies linearized EoM, but it can be cross-checked
for the parametric variations using the explicit results for δ̂M
and δ̂SH in Eqs. (4.5) and (4.7).

Example 2 Warped AdS3

A warped AdS3 is a 3-dimensional black hole identified by
two parameters p1 = m and p2 = j :

ds2 =
(−r2

l2
+ 8

(
m − j

l

))
dt2 + dr2

16 j2

r2 + r2

l2
− 8(m − j

l )

+r2dϕ2 − (ωtdt − ωϕdϕ)2

ωt ≡ H(−r2 + 8l2m − 4l j)

2l2
√
m

, ωϕ ≡ H(r2 + 4l j)

2l
√
m

.

(4.9)

It is a solution [62,63] to the NMG theory, described by the
Lagrangian in Eq. (4.2) with

� = 84 H4 + 60 H2 − 35

2 l2(17 − 42 H2)
,

1

m2 = 2 l2

42 H2 − 17
. (4.10)

After extracting kμν
ε for this theory from the general result

in Eq. (3.12), and equipped with the parametric variations

δ̂gαβ = ∂ ĝαβ

∂m
δm + ∂ ĝαβ

∂ j
δ j, (4.11)

one can find the conserved charges by an integration simi-
lar to the Eq. (4.4). Notice that because of the linearity of
δHη(δ�,�) in δ�, the parametric variations can be inserted
term by term into the calculations. This makes the calcula-
tions to be performed easier.

Mass: By ηM = {∂t + �∞∂ϕ, 0} in which �∞ = −1
l , it

turns out that

δ̂M ≡ δ̂HηM
= 16(1 − 2H2)

3
2

G(17 − 42 H2)
δm + 0 × δ j

⇒ M = 16(1 − 2H2)
3
2 m

G(17 − 42 H2)
. (4.12)

Angular momentum: Choosing ηJ = {−∂ϕ, 0},

δ̂ J ≡ δ̂HηJ
= 0 × δm + 16(1 − 2H2)

3
2

G(17 − 42 H2)
δ j

⇒ J = 16(1 − 2H2)
3
2 j

G(17 − 42 H2)
. (4.13)

Entropies: There are two horizons in the warped AdS3 geom-
etry (4.9). So, we would find two entropies attributed to them.

The horizons are situated at r2± = 4l2(m− j
l ±

√
m(m − 2 j

l ),
collectively denoted by rH . The surface gravities, angular
velocities, and the Killing vectors of the horizons are

κH = r4
H

− 16 l2 j2

l2r3
H

, �H = 4 j

r2
H

, ζH = ∂t + �H∂ϕ,

(4.14)

respectively. Integrating over arbitrary surfaces of constant
time and radius, the entropies as conserved charges associ-
ated with the exact symmetriesηH = 2π

κH
{ζH , 0} are calculated

to be
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δ̂SH =
∂(

8π(1−2H2)
3
2 rH

G(17−42 H2)
)

∂m
δm +

∂(
8π(1−2H2)

3
2 rH

G(17−42 H2)
)

∂ j
δ j

⇒ SH = 8π(1 − 2H2)
3
2 rH

G(17 − 42 H2)
. (4.15)

The reference point for all of the charges above have been
chosen to vanish on the geometry identified by m = j = 0.
Our results would match exactly with the results reported in
Refs. [64,65] if one replaces the parameter m → m − j

l .
The difference originates from considering the asymptotic
angular velocity �∞ in the definition of mass. Hence, the
mass calculated here is different from the mass reported in
[64,65] by a term, which is �∞ J .

First laws: For any generic perturbation which satisfies the
linearized EoM, the first laws follow:

ηH = 1

TH

(ηM − (�H − �∞)ηJ )
linearity of δHε in ε−−−−−−−−−−−−−−→

δSH = 1

TH

(δM − (�H − �∞)δ J ), (4.16)

which can be checked for the parametric variations in (4.12),
(4.13), and (4.15).

Example 3 Schwarzschild–AdS black holes in d dimensions
The family of black holes

ds2 = −
(

1 − 2Gm

rd−3 + r2

l2

)
dt2+ dr2

1 − 2Gm
rd−3 + r2

l2

+r2d�2
d−2

(4.17)

are solutions to the theories

L = 1

16πG

(
R − 2� + αR2 + aRμνR

μν
)
, (4.18)

where α and a are arbitrary constants, and

� = −l2(d2−3d+2)+(αd+a)(d−4)(d−1)2

2l4
. For these theories, kμν

ε

can be read through the general result (3.12) by putting
f = R−2�+αR2, the arbitrary constant factor a, and van-
ishing b = cab = dI J = 0. Similar to the previous examples,
one can choose ∂� to be surfaces of constant (t, r) for sim-
plicity. Hence, the conserved charge variations for an exact
symmetry η would be

δ̂Hη =
∫

Sd−2

√
−ĝ ktrη (δ̂gαβ, ĝαβ). (4.19)

The integration is taken over the d − 2-dimensional spheres,
e.g. in four dimensions it is

∫ π

0

∫ 2π

0 dθdϕ. By parametric

variations δ̂gαβ = ∂ ĝαβ

∂m δm, the conserved charges can be
calculated.

Mass: For the exact symmetry ηM = {∂t , 0}, the result of
calculating Eq. (4.19) is

δ̂M = X× (d − 2)�d−2

8π
δm ⇒ M = X× (d−2)�d−2

8π
m,

(4.20)

where

X = l2 − 2d(d − 1)α − 2(d − 1)a

l2
, �d−2 = 2π

d−1
2

�( d−1
2 )

.

(4.21)

The reference point has been chosen to be M = 0 for the
geometry which is identified by m = 0.

Angular momentum: By ηJ = {−∂ϕ, 0}, angular momentum
is calculated to be

δ̂ J = 0 × δm ⇒ J = 0. (4.22)

Entropy: Surface gravity is a property of solutions, and it
is independent of the theory. For the event horizon of the
solutions (4.17), it is

κH = (d − 1)rd−2
H

+ (d − 3)l2 rd−4
H

2l2 rd−3
H

, (4.23)

in which rH solves the equation rd−1
H

+l2rd−3
H

−2Gml2 = 0.
By ηH = 2π

κH
{ζH , 0} in which ζH = ∂t , the entropy variation

attributed to the event horizon, which is calculated on arbi-
trary surfaces of integration, would be

δ̂SH = X × (d − 2)�d−2

4κH

δm. (4.24)

Noticing the linearity of δHε (2.9) in ε, this result can
also be found by multiplication of δ̂M , which is calcu-

lated in Eq. (4.20), by the factor 2π
κH

. Hence, using
∂rH
∂m =

2Gl2

(d−1)rd−2
H

+(d−3)l2rd−4
H

δ̂SH = ∂(
X�d−2 r

d−2
H

4G )

∂rH

∂rH

∂m
δm = δ̂(X × �d−2 r

d−2
H

4G
)

⇒ SH = X × �d−2 r
d−2
H

4G
. (4.25)

First law: It is simply

ηH = 1

TH

ηM

linearity of δHε in ε−−−−−−−−−−−−−−→ δSH = 1

TH

δM,

(4.26)
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which can be checked for the parametric variations by the
results in Eqs. (4.20) and (4.24). We finish this example by
mentioning two remarks:

– One can add any factor of Gauss–Bonnet Lagrangian
LGB ∝ R2 − 4RμνRμν + Rμναβ Rμναβ in d = 3, 4 to
the Lagrangian (4.18), without affecting the EoM and
conserved charges.

– The family of black holes in this example has the property
Rμν = R

d gμν . The geometries with such a property are
called Einstein geometries. The following theorem (see
Ref. [66] and references therein) sheds light on the results
of the calculations above.
Theorem:Any theory which is described by a Lagrangian
L = L(gαβ, Rμν), with an Einstein geometry gαβ as a
solution, can be mapped to the Einstein–Hilbert theory
with the solution

ḡαβ = X 2
d−2 gαβ, X =

[ d

2R
× L

]
on-shell

. (4.27)

This theorem clarifies the observation that the mass and
entropy calculated above are the mass and entropy in the
Einstein–Hilbert theory multiplied by the factor X .

Example 4 Charged static BTZ black hole Our last example,
although it is in the context of the Lagrangian (3.1), but does
not have higher curvature terms. It would be a pedagogical
example in the presence of the gauge fields. Moreover, it
remedies the divergent results appearing in the literature. This
last example is the electrically charged static BTZ black hole
[67,68]

ds2 = −
(

−Gm + r2

l2
− q2

2
log

r

l

)
dt2

+ dr2

−Gm + r2

l2
− q2

2 log r
l

+ r2dϕ2

Â = −q

2
log

(r
l

)
dt (4.28)

as a solution to the theory described by

L = 1

16πG
(R − 2� − FμνF

μν) (4.29)

for� = −1
l2

. kμν
ε for this theory can be read through Eq. (3.12)

by putting f = R − 2�, a = b = dI J = 0, and cab = δab.
Making the simplifying choice of taking ∂� to be the lines
of constant (t, r), conserved charge variations for an exact
symmetry η would be

δ̂Hη =
∫ 2π

0

√
−ĝ ktrη (δ̂�, �̂) dϕ. (4.30)

The dynamical fields �̂ are the metric ĝαβ and gauge field
Â in Eq. (4.28), parametrized by p j = {m, q}. So, the para-
metric variations would be

δ̂gαβ = ∂ ĝαβ

∂m
δm+ ∂ ĝαβ

∂q
δq, δ̂Aμ = ∂ Âμ

∂m
δm+ ∂ Âμ

∂q
δq.

(4.31)

Mass: In the specific chosen gauge for Â in Eq. (4.28),
�∞ = 0. By ηM = {∂t ,−�∞}, the Eq. (4.30) yields

δ̂M = 1

8
× δm + 0 × δq ⇒ M = m

8
. (4.32)

Angular momentum: For ηJ = {−∂ϕ, 0},

δ̂ J = 0 × δm + 0 × δq ⇒ J = 0. (4.33)

Electric charge: For the exact symmetry ηQ = {0, 1},

δ̂Q = 0 × δm + 1

4G
× δq ⇒ Q = q

4G
. (4.34)

Entropies: For any horizon present in this geometry, one
can associate an entropy. Surface gravities, electric poten-
tials, and horizon Killing vectors for different horizons would
be collectively

κH = rH

l2
− q2

4rH

, �H = −q

2
log

(rH

l

)
, ζH = ∂t ,

(4.35)

where rH denotes the radius of any one of the horizons. By
the choice of ηH = 2π

κH
{ζH ,−�H},

δ̂SH = 2π

κH

(
1

8
δm − �H

4G
δq

)
. (4.36)

Now, by inserting the relations

∂rH

∂m
= G

2rH
l2

− q2

2rH

,
∂rH

∂q
= q log(

rH
l )

2rH
l2

− q2

2rH

, (4.37)

we find

δ̂SH = 2π

4G

(
∂rH

∂m
δm + ∂rH

∂q
δq

)
= δ̂

(
2πrH

4G

)

⇒ SH = 2πrH

4G
. (4.38)

Reference points for the charges above are chosen to vanish
for the pure AdS3 geometry, i.e. the geometry identified by
m = q = 0. In comparison with the calculations done in the
literature (see e.g. Ref.[68]), the charges above are finite, and
one does not need to regularize any divergent result. Notice
that by replacing log( rl ) → log( r

r0
) for some r0, the solution

would remain a solution, but M → M + q2

16G log( l
r0

).
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First laws: For any one of the horizons, the first law would
be

ηH = 1

TH

(ηM − (�H − �∞)ηQ )
linearity of δHε in ε−−−−−−−−−−−−−−→

δSH = 1

TH

(δM − (�H − �∞)δQ), (4.39)

which can be checked for the parametric variations via Eqs.
(4.32), (4.34), and (4.36).

At the end, it is worth mentioning that in the definition of
ηH in the examples above, we tacitly assumed κH �= 0. For
κH = 0 cases, which are called extremal black holes, one
can find an infinite number of exact symmetries in their near
horizon regions, as generators of the entropy [29,49]. Using
any one of these generators, the SPSM would reproduce the
entropy for the extremal black holes too. An explicit example
for such an analysis can be found in Ref. [31], where the near
horizon of the extremal Kerr–Newman black hole is studied.

5 Conclusion

In this work, after reviewing the solution phase space method,
we applied it to a family of higher curvature gravitational the-
ories. The family which we focused on, contained f (R) grav-
ity, quadratic Riemann and Ricci terms, an arbitrary number
of Abelian gauge fields, and arbitrary scalar fields. After elab-
orating the kε , which is pragmatically the most important
differential form for the calculations, four families of black
hole solutions were analyzed. Specifically, their conserved
charges were calculated, confirming the results formerly cal-
culated by the other methods. By the way, the results amelio-
rated the divergence appearing in the calculation of mass for
the charged static BTZ black hole. The main advantages of
the method are: (1) it works for any higher curvature theory
in any dimension, (2) asymptotics and horizons are unim-
portant in the charge calculations, (3) conserved charges are
automatically regular, (4) conserved charges are unambigu-
ous, (5) all the charges, including the entropy and electric
charge, are calculated by a single machinery, (6) the proof of
the first law(s) is very simple.
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