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Abstract We investigate modified theories of gravity in
the context of teleparallel geometries with possible Gauss—
Bonnet contributions. The possible coupling of gravity with
the trace of the energy-momentum tensor is also taken into
account. This is motivated by the various different theo-
ries formulated in the teleparallel approach and the metric
approach without discussing the exact relationship between
them. Our formulation clarifies the connections between dif-
ferent well-known theories. For instance, we are able to for-
mulate the correct teleparallel equivalent of Gauss—Bonnet
modified general relativity, amongst other results. Finally, we
are able to identify modified gravity models which have not
been studied in the past. These appear naturally within our
setup and would make a interesting starting point for further
studies.

1 Introduction

One possible approach to motivating a geometrical theory of
gravity is to compare the geodesic equation of differential
geometry with Newton’s force law. This suggests the iden-
tification of the gravitational forces with the components of
the Christoffel symbols which in turn yields the identifica-
tion of the gravitational potentials with the metric. Assuming
a geometrical framework with a metric compatible covariant
derivative without torsion gives the building block of Ein-
stein’s theory of general relativity, one can speak of the metric
approach.

Soon after the original formulation of this geometrical
theory of gravity, it was noted that there exists an alterna-
tive geometrical formulation which is based on a globally
flat geometry with torsion. The key mathematical result to
this approach goes back to Weitzenbdck who noted that it is
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indeed possible to choose a connection such that the curva-
ture vanishes everywhere. This formulation gives equivalent
field equations to those of general relativity and we refer to
this as the teleparallel formulation. This naming convention
stems from the fact that the notion of parallelism is global
instead of local on flat manifolds; see for instance [1,2] and
the references therein.

One of the basic equations of general relativity and its
teleparallel equivalent is R = —7 4 B where R is the Ricci
scalar, T is the torsion scalar and B is a total derivative term
which only depends on torsion. Clearly, the Einstein—Hilbert
action can now be represented in two distinct ways, either
using the Ricci scalar or the torsion scalar, and consequently
giving identical equations of motion. A popular modifica-
tion of general relativity is based on the Lagrangian f(R)
and can be viewed as a natural non-linear extension that
results in fourth order field equations [3,4]. On the other
and, one could consider the Lagrangian f(7) which gives
second order field equations [5]. However, this theory is no
longer invariant under local Lorentz transformations because
the torsion scalar 7 itself is not invariant [6,7]. Neither is the
total derivative term B but the particular combination —7 4 B
is the unique locally Lorentz invariant choice, see also [8].
Hence, f (R) gravity and f (T') gravity and not equivalent and
correspond to physically different theories. Now, consider-
ing the more general family of theories based on f (T, B)
one can establish the precise relationship between these the-
ories and it turns out that f (R) gravity is the unique locally
Lorentz invariant theory while f(7T) gravity is the unique
second order theory.

The principal aim of this paper is to extend these results to
take into account the Gauss—Bonnet term and its teleparallel
equivalent. The Gauss—Bonnet scalar is one of the so-called
Lovelock scalars [9] which only yields second order field
equations in the metric, hence in more than four dimensions
the study of the Gauss—Bonnet term is quite natural. In four
dimensions, on the other hand, the Gauss—Bonnet term can
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be written as total derivative and its integral over the manifold
is related to the topological Euler number. However, it should
be emphasised that topological issues in teleparallel theories
are not well understood yet. The only known torsional topo-
logical invariant is the Nieh—Yan term; see [10,11], and in
particular [12] in the context of teleparallel theories.

The teleparallel equivalent of the Gauss—Bonnet term was
first considered in [13,14] who studied a theory based on
the function f (T, Tg). As is somewhat expected, the Gauss—
Bonnet term differs from its teleparallel equivalent by a diver-
gence term. Hence, as in modified general relativity, it is
possible to formulate modified theories based on the Gauss—
Bonnet terms or its teleparallel equivalent in such a way
that both theories are physically distinct. The link between
these theories comes from the divergence term which needs
to be taken into account when establishing the relation-
ship between the different possible theories. We also allow
our action functional to depend on the trace of the energy-
momentum tensor since this is a popular modification that
has been investigated in recent years [15].

There exists a large body of literature dealing with the var-
ious modified theories of gravity that have been investigated;
see for instance the reviews [3,4,16-18].

Our conventions Greek indices denote spacetime coordi-
nates, Latin indices are frame or tangent space indices. e},
stands for the tetrad (1-form), while EX denotes the inverse
tetrad (vector field). The Minkowski metric is 1,5, with signa-
ture (—, +, +, +). Where possible we follow the conventions
of [2].

2 Teleparallel gravity and the Gauss-Bonnet term
2.1 Teleparallel geometries

The teleparallel formulation of general relativity is well
known and provides some interesting insight into this the-
ory. The fundamental objects of this formulation are the
tetrad fields ¢, and inverse tetrad fields E!' which satisfy
the orthogonality relations

Elte =g, )
ELel = 8. )

The standard (metric) formulation of general relativity is
based on the metric tensor which is uniquely defined by given
tetrad fields. The metric g, the inverse metric g"¥, and the
tetrads and inverse tetrads are related by

guv = €selnap, 3)
g = ELEpn™. @)

@ Springer

The determinant of the tetrad eﬁ is denoted by e = det(el’i)
and corresponds to the volume element of the metric which
means we have e = ,/—g where g = det(g,,,) is the deter-
minant of the metric tensor.

The starting point of the teleparallel formulation of general

relativity is the object

W, =96, &)
from which we can define the torsion tensor

T, =W, — W4, = el — Bvez. 6)

We note that this is the skew-symmetric part of W,¢,. In
terms of spacetime indices the torsion tensor is

T*,, = E*T%,,. )

In geometries with torsion the connection can be decomposed
into a Levi-Civita part and an additional part due to the pres-
ence of torsion. The complete connection which we call the
Weitzenbock connection decomposes as follows:

Wkﬂp = Orﬁfp + K)Lup, (8)

where °T" denotes the Levi-Civita connection and K is the
contortion tensor. The contortion tensor can be expressed
using the torsion tensor as follows:

2K, My =T — To + T )
We note that the contortion tensor K;#, is antisymmetric in
its last two indices, this follows from the skew-symmetry of
the torsion tensor in its last two indices; see (6). Contracting

the torsion tensor over the first and second index gives the
so-called torsion vector

T, =T",. (10)

Considering a globally flat manifold means that the Rie-
mann tensor vanishes identically Rgpcs (W) = 0, which is
always possible by choosing the Weitzenbock connection.
Next, we can decompose the Riemann tensor into a Levi-
Civita part and another part due to torsion. The Levi-Civita
part of this tensor can then be expressed in terms of the con-
torsion tensor as follows:

OR)» Lo — OVUKUAM _ OVO"KUAM
A A
+Ko’ K" p — Ko" p Ko’ i, (1D
where °V stands for the covariant derivative with respect to
the Leci-Civita connection. If we contract the first and third

index of the Riemann tensor, we obtain the decomposition
of the Ricci tensor
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R W=V, K;*, —"Vi K"+ Ko K ) — KX K
(12)

Finally, by using (9) and contracting once more, one arrives
at the well-known formula

1 1 2
R(e)+ (ZT”b”Tabc+§T“bchac—T“Ta> —;au(erﬂ)zo.
(13)

Here R(e) stands for the metric or Levi-Civita Ricci scalar;
see also [2].

2.2 Teleparallel gravity
The main implication of the previous rewriting is that it is

hence possible to express the metric Ricci scalar entirely in
terms of torsion

1 1. 2
R(e)= — (—T“bcTabc—i—ET”b‘ TbaC—T“Ta) +;8M(6T“).

4
(14)
This result can also be written in the following way:
abc 2
R(e) = =S Type + _ap,(eTu)a (15)
e
where the tensor $°%¢ is defined as follows:
1 1
Sahc i Tahc _ Tbac _ Tcab - ach _ ach )
2¢ )+ 50 nTe)
(16)
Its form in spacetime coordinates can be written as
28,1 = KoM — SHTY + 82 TH. (17

Frequently the specific combination S%°¢ T, is referred to
simply as the torsion scalar 7" so that Eq. (15) can be written
very nicely as

2
R(e) = =T + =8 (eT"). (18)

Recalling that the Einstein—Hilbert action of General Relativ-
ity is based on the Ricci scalar, we are now able to formulate
a theory equivalent to this based on torsion by simply using
the right-hand side of (18) as our Lagrangian instead of the
left-hand side. In either case one considers variations with
respect to the tetrad fields. Since we will study the boundary
term in some detail we introduce the notation

2
B = Z0,(eT") =2V, TH, (19)
e

so that (18) can simply be written as R = —T + B.

An important consideration is the behaviour of the above
quantities under local Lorentz transformations. It is clear
from (6) that the local Lorentz transformation ef‘t — A“bez
will change the torsion tensor as the Lorentz transformations
A% are local and hence functions of space and time so that
derivatives of A%, appear. Therefore the torsion tensor does
not transform covariantly under local Lorentz transforma-
tions; see also [6,7]. Note that this is a direct consequence
of the teleparallel approach and the combination —7 + B is
the only combination of 7 and B which is locally Lorentz
invariant.

In contrast to the standard teleparallel approach, complete
Lorentz invariance is preserved when considering metric-
affine theories [19] in which the metric and torsion and are
treated independently; see also [20]. Consequently, the tor-
sion scalar T and the boundary term B are both Lorentz
scalars in this approach. The metric-affine framework has
inspired the recent covariant formulation of f(7") gravity
[21] which is based on the idea of allowing the spin connec-
tion to be a dynamical variable in addition to the tetrad fields.
This is an interesting alternative treatment to teleparallel the-
ories of gravity which could in also be applied to investigate
Gauss—Bonnet extensions.

2.3 Gauss—Bonnet term

Teleparallel geometries have been well understood for many
decades. Perhaps more surprising is the fact that the Gauss—
Bonnet term was not studied in this context until quite
recently [13]. The Gauss—Bonnet term is a quadratic com-
bination of the Riemann tensor and its contractions given by

G = R* — 4R, R™ + Ry RM, (20)

which plays an important role of connecting geometry to
topology. It is well known that the addition of the Gauss—
Bonnet to the Einstein—Hilbert action does not affect the field
equations of general relativity, provided one works in a four
dimensional setting. This fact implies that the topology of
the solutions is unconstrained. In more than four dimensions
the addition of the Gauss—Bonnet term affects the resulting
gravitational field equations.

Following the procedure outlined in the above, we can
again compute the (complete) Gauss—Bonnet term using the
connection (8) and decompose this result into a Levi-Civita
part and an additional part depending on torsion only. Under-
standably, this process is quite involved. It can be shown,
see [13,22], that the Gauss—Bonnet term can be expressed in
a fashion similar form to (18) which simply reads

G = —Tg + Be. 1)

The teleparallel Gauss—Bonnet term 7 is given by

@ Springer
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To = (Ka' Ko K pKal' = 2K TR K S K

+ 2Kaij therelefC + 2Kaij KbkeKc,dd) Slqﬁccla"
(22)
bed
st

where is the generalised Kronecker delta which in four

dimensions is equivalent to S?f;fﬂ = gabedg, jki- This term
depends on the contortion tensor and its first partial deriva-
tives, and it is quartic in contortion. This is expected as cur-
vature in general is quadratic in contortion, and the Gauss—
Bonnet term is itself quadratic in curvature.
On the other hand, the Gauss—Bonnet boundary term Bg

reads
B = Ly [11{ YR + Ky KN Kﬂ] 23

G = ~0ijk da | 5 Kp ed b/ K pKag' . (23)
This expression can be deduced from [13] who do not state
this explicitly in four dimensions but provide a general for-
mula using the calculus of forms which can be converted
straightforwardly into this form. Equivalently, by using (11),
this term can be rewritten depending only on the contorsion
tensor as follows:

Bo = —sgla K (KM + Kkt
When discussing the teleparallel equivalent of general rela-
tivity we briefly touched upon the issue of Lorentz invariance.
As before, it is clear that for instance T cannot be a Lorentz
scalar. To see this, one notes that the final term in defini-
tion (22) contains a partial derivative. Therefore this term
will contribute second partial derivatives of the local Lorentz
transformations which cannot be cancelled by any other term
in 7. Since the Gauss—Bonnet term G is a Lorentz scalar,
these second derivative terms must be cancelled by terms
coming from Bg. Consequently the combination —7g + Bg
is the unique Lorentz invariant combination which can be
constructed. This fact becomes important when considering
modified theories of gravity based on the teleparallel equiv-
alent of the Gauss—Bonnet scalar.

In the following we will show some simple examples of
the Gauss—Bonnet term and its teleparallel equivalent.

2.4 Example: FLRW spacetime with diagonal tetrad

Let us begin with the FLRW metric and the diagonal tetrad
given by

P a(r)
€ = diag (1’ 1+ k/HG2+y2+22)
a(r) a(r)
14+ (k /) (x24y2 +22)" 14 (k/H)(x2 + y2 + 22)

) . 5)

@ Springer

using spatial Cartesian coordinates. It is straightforward to
verify that

k a ia?
G=24——+4+24——, (26)
a’a aa?
.. .2 .
aa kady/, ) )
Tc;:—24——2+2k—2—(x +y? 422, 27)
aa a’la

e
Bo =242 4ok 51
ac a

= <x2 +y? + 12> . (28)
a- a

These three quantities display some of the key properties
important in this context. Firstly, we note that 7 and Bg
depend on the Euclidean distance from the origin while the
Gauss—Bonnet term G is independent of the Cartesian coor-
dinates. The unique linear combination — T + B¢ is inde-
pendent of position. Secondly, we have the case of a spa-
tially flat universe; then these terms are absent and the term
B¢ identically vanishes. The terms depending on the spa-
tial coordinates can be changed be working with a different
tetrad, or in other words, these terms are affected by local
Lorentz transformations. Finding a tetrad for which 7 and
B are both independent of the spatial coordinates is a rather
involved tasks, however, following the approach outline in
[23,24] we will show that a tetrad with this property can be
constructed. Before doing so, we discuss another example
with different symmetry properties.

2.5 Example: static spherically symmetric
spacetime—isotropic coordinates

In this example we consider static and spherically symmetric
spacetimes and work with isotropic coordinates (, x, y, z)
to avoid coordinate issues with the tetrads. Including time
dependence is straightforward, however, the resulting equa-
tions are too involved. We choose

et, = diag(A(), B0), B, B()), (29)

where r = /x2 + y2 + z2 is the Euclidean distance from
the origin. The metric takes the isotropic form

ds* = —A(r)2dt> + B(r)*(dx® + dy* + d2°). (30)

The first three quantities of interest R, 7' and B are given by

1 4A 8B A’ B’ B/2 A B
= (=442 2= 42T 4 ),
Bz(rA+rB A B 32+ A+ B)
(€29)
1 A’ B’ B/Z
T=—[4— 2— 32
B2< AB " BZ)’ (32)
1 (4A" 8B A" B " B”
B=— (- 4+20 46—— +2° +4— 33
B2 (r A rB A tat B> (33)
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A direct calculation verifies that indeed R = —T + B as we
expected.

Next, we will state the explicit forms of G, T and Bg,
which are

G 8 (2AB 2 A" B? A’B/3+2A”B’
" B*\r2AB rAB? ABY rAB
A// B/2 2 A/ B// A/ B/B//
+t— -t -0 - (34)
A B rA B A B
8 2 A/ B/2 A/ B/3 A// B/2 A/ B/B//
Tp=—— (23— 4 —_ -
¢ B4(rAB2 AB3+AB2+A32)
(35)
8 (2A B 4AB? 2A"B 2A' B
Bo=— (S22 2202 22 2 L2202 36
B r* A B r A B r A B rA B
which indeed satisfies the required identity
G =—-T + Bg. 37)

We note that the expressions are considerably more compli-
cated than in the previous case.

The tetrads used in (25) and (29) serve as simple examples
which are useful to compute the relevant quantities. However,
in the context of extended or modified teleparallel theories
of gravity, such tetrads should be avoided. The construction
of a suitable static and spherically symmetric tetrad in f(7)
gravity, for instance, is rather involved, see [25]. In general
the choice of a suitable parallelisation is a subtle and non-
trivial issue, the interested reader is referred to [26].

2.6 Example: FLRW spacetime—good tetrad

Let us next consider FLRW metric in spherical coordinates
given by

1
1 —kr?

ds? = —di® + a(t)z[ dr? + dsz2], (38)

where a(t) is the scale factor of the universe and k£ = {0, +1}
is the spatial curvature which corresponds to flat, close and
open cosmologies, respectively.

The simplest tetrad field which yields the above metric is
the diagonal

e = diag(l, a@®) /N1 = kr2, a(t)r, a(t)r sin 9). (39)

However, when this tetrad is used in f(7") gravity it implies
an off-diagonal field equation which is highly restrictive,
namely the condition fr7 = 0. Such a theory is equiva-
lent to general relativity and hence it is not a modification.
In order to avoid this issue, one can follow the procedure
outlined [23,24] which allows for the construction of tetrads
which result in more favourable field equations. Consider the

tetrad (39) and perform a general 3-dimensional rotation R
in the tangent space parametrised by three Euler angles «, 8,
y so that

. (1 0
A ”‘(0 R, B, y))' 0

We reduce this transformation considering the following val-
ues for the three Euler angles:

b1
a=0—-—,

> B=¢, v=vy(), (41

where y is taken to be a general function of both ¢ and r.
Doing this means we will work with the rotated tetrad

& = Apeh. (42)
Next, we focus on the non-flat case k # 0, since the Gauss—
Bonnet boundary term Bg = 0 and hence directly G = —T¢

when k = 0. By using the rotated tetrad for k # 0, the torsion
scalar T and the boundary term B becomes

4 (V1 —kr2p _ 1
Ir=-— —z[ry cosy—l—51n)/]+—2
a r r
a? k
+65 25, 43)

4 (VTR . I
— —z[ry cosy—l—smy]—i——2
a r r

B =—

d a  k
+6-+12— +8—. (44)
a a a
Here, primes and dots denote derivation with respect to r and
t, respectively. In order to have 7" and B position independent
we must choose our function y to satisfy

Vi1-— krz[ry/cosy + sin y] +1=0. 45)

Let us first study the open universe k = —1, which from
the above equation, give us the following function:

y(r) = — arcsin [arcsinh(r) /7], (46)

where we set the constant of integration to zero. Using this
choice of y ensures that the first terms in (43) and (44) dis-
appear thereby making 7 and B time dependent only. There-
fore, the rotated tetrad (42) with k = —1 and the function
y given by (46) is a ‘good’ tetrad in the sense of [24]. Inde-
pendently of the choice of tetrad we always obtain the usual
Ricci scalar

ar ok

R=-T+B=6%+6% +6=. 47)
a a a

@ Springer
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Moreover, by using this rotated tetrad we find that the Gauss—
Bonnet terms are also independent of r, one can verify that

_ g% (2 _ 1
To = 8= (317 - ). (48)
B = —16-%, (49)
a

and hence the Gauss—Bonnet term in an open universe
becomes

G=—Tg+ Bg = 24—(H — —2). (50)
a a

On the other hand, for the closed FLRW universe
(k = +1), we find that the function y has to be of the form

y (r) = — arcsinh (m) (51

This yields

.. 1
To = —24%(H? - ), (52)
a a
P
Bg =485, (53)
a
with the Gauss—Bonnet term given by
a/r o, 1
G =T+ Bg =245 (H? + ). (54)
a a

3 Modified theories of gravity and their teleparallel
equivalents

We are now ready to discuss the general framework of modi-
fied theories of gravity and their teleparallel counterparts. In
principle our approach could be applied to any metric theory
of gravity whose action is based on objects derived from the
Riemann curvature tensor. Any such theory can in principle
be rewritten using the torsion tensor thereby allowing for a
teleparallel representation of that same theory.

3.1 Equations of motion
We will now consider the framework which includes the
teleparallel Gauss—Bonnet and the classical Gauss—Bonnet

modified theories of gravity. Inspired by the above discus-
sion, we define the action

S = / [zif(T, B, TG, Bg) + Lm] ed'x, (53
K

where f is a smooth function of the scalar torsion 7', the
boundary term B, the Gauss—Bonnet scalar torsion 7 and
the boundary Gauss—Bonnet term Bg.

@ Springer

Variations of the action (55) with respect to the tetrad gives

1
58 = / [—(fae tefgSB + efrST
2K
+ ef168Tg + efsd B ) + 8(eLm) | d'x, (56)
where

efrST = —4[e(@, f1)Sa " + 0 (e ") fr
—efrT? 1uSs ﬂ“]ae;;, (57)
efpSB = [ZeE;’VﬁVMfB —2¢EPOf5
— BefyEf — 4¢3, f5)S " |scj. (58)
efr. 8T = [%(E};:Ef(yhah _yh b4 ya[bh])>
I TiabEf(Ybih _yhb 4 y,lbh
= 2efr 8 B Kl Kyt Ba (K [oes,
(59
efs,0BG = —[au ((Pbah —phb oy Pa[bh])E;l‘Ef)
+ TiwEp (PP — P14 poM)
— 81 B0 (f56) K" (0K M) +e8, (fi)
x (EfBY — ELBY) + efsg BGES |8¢f, (60)
f8e=efEfses. 61)

Here, we introduced the following tensors:

T
0K i’
Yl = efrg X — 235,“,(173# (efr EL KK ), (62)

Xaij =

and also
PPy = eE;ﬁi(aufBg)[(Kc"’,d + Kd”cKp’d)sgg,’g;d
dpb . y
_ aacbd o i l
kij 9o\ €EqEq (0ufBc)Ke™ ). (63)

Equations (57) and (58) were previously derived in [8] and
therefore additional details are suppressed here. On the other
hand, the computations of (59) and (60) are rather involved
and detailed derivations are given in Appendices Al and A2,
respectively. In addition, the explicit form of X¢;; is showed
in Eq. (A24) as our Definition (62) hides many of the com-
plications.

The field equations are very complicated, however, when
considering a homogeneous and isotropic spacetime, they
simplify substantially and can be presented in closed form.
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Comparison of these equations with previous results serves
as a good consistency check of our calculations.

3.2 FLRW equations with k = 0

For a flat FLRW, the field equations for the f (7T, B, T, B:)
theory are given by

6afs 12fra®> 2443 fr,  6fp (ad +24%)
U a  a & a?
24 .2..
+ BIedh g, 64
a
4afr  8a’fr, 6fp(ad+2a%) Afr (ad+2a?)
/= a - a2 - a2 - a2
16 oo A 24 . 2.. .
B aaszG " fTG3a & ok 2ep ©5)
a a

Here we assumed for simplicity that the matter is a standard
perfect fluid with energy density p and isotropic pressure
p. One should make explicit that fz = fggB + ferT +
fBTS Te + fBBg Bg using the chain rule, so that dot denotes
differentiation with respect to cosmic time. It is clear that
by setting (T, B, Tg, Bg) = f(R, G) the equations for the
flat FRWL in f(R, G) theory are recovered and are explicitly
given by

64 12fra2 2443 6fr (ai + 24>
(R, G)+ 20k | 2ird” 2o fi ( 5 )
a a a a
24 .2..
- 268 e, (66)
a
4 842fc  2fr (ad +24%)  16aif
iR, G) + fr azfc 26 ( - ) azfc
2A4§ga%d -
- % +2fr = —2 p. (67)

These equations match those reported in [14,27] which
serves as a good consistency check of our field equations in
the teleparallel formulation.

3.3 FRWL equations with k£ = 41

If we consider the rotated tetrad in a closed universe given
by Eq. (42) with y given by (51), the field equations become

N 6afs  6fp (ad+2a%)

f a a?
126 fr  48fp.d  48afp,
B a2 N 613 613
24 (a®> = 1)af 24 a—1)a
_ ( 2) fTG + fTG( - ) =2K,0, (68)
a- a-

_ 48fpgd  4afr L 80— i®) fr, 613 (aii +24%)

f a3 a a? a?
fr (4ai +8a*> —4) 164 fr,
B (12 B 612
Ufrg (@ = 1)d 165,
+ p + =t 25 =~2%p. (69

By setting f(T, B, Tg, Bg) = f(—T + B, —Tg + Bg) =
f(R, G) we formally have fG = fp; = —f1; and fg = fp =
—fr and then we recover the usual Gauss—Bonnet equations
f(R, G) with k = 1 which are given by

244 (a* + 1) o
3

6afr  12§ra®
KR, G) + 2R f’éa
a a a
6fr (ad +2a%) 245G (a*>+1)d
_ . _

=2k p, (70)

a a3

.t .0 . .
f(R, G) + 462R + 8(a*+1)fc  2fr (ad +24° +2)

a? a?

16...' 24 L‘l2+1 & .
aczlfc: B fG(a3 ) +2fr=—2kp. (71

a

Finally let us consider the Einstein static universe where all
dynamical variables are assumed to be constants, which gives

4
f=2kp0, f-— fRa—z = —2« po. (72)
0

For the choice (R, G) = R+« g(G), wenote that R = 6/a(2)
and G = 0 in this case. The field equations reduce simply to

6 3 K
— +x9(0)=2cp, & — =kpo— 5090,
ag ag 2
(73)

6 4 1 K
ag ag ag 2
(74)

which are exactly the k = +1 equations reported in [28],
providing us with a second consistency check. It should be
noted that the rotated tetrad used for this calculation proves
computationally very challenging.

3.4 Theories with energy-momentum trace

We will now consider the above framework and include the

trace of the energy-momentum tensor to the action (55). This
gives the extended action

1
ST=/[_2 f(T, B, TG,Bg,T)+Lm:|ed4x, (75)
K

where additionally f is a function of the trace of the energy-
momentum tensor 7 = Ef Tﬂ” As before L., denotes

@ Springer
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an arbitrary matter Lagrangian density. We can define the
energy-momentum tensor as

a_ 18(eLm)
m e SEF

(76)

and assume that the matter Lagrangian only depends explic-
itly on the tetrads and its derivatives and does not depend on
the connection independently. The energy-momentum tensor
is then given by

dLm
T8 = —2¢% Ly — 2 (aE,‘;) . (77)

Variations of the action (75) with respect to the tetrad gives
one additional term, namely

ef 78T = efr (428 + T)s¢, (78)
1, (8T
4 56%
3 1 3°L
=TP +ZEFL, — =& . 79
a talatm =3 defdel (7)

This completes the statement of the field equations.

4 Conclusions

Let us begin these conclusions with a discussion of the rela-
tionship between the various modified theories of gravity
which are governed by the function f(7T, B, Tg, Bg). In
general these are fourth order theories which violate local
Lorentz invariance. Therefore, these theories are quite dif-
ferent from general relativity in many ways. However, for a
particular choice of this function, one is able recover general
relativity or its teleparallel equivalent. Therein lies the power
of this approach, namely one can recover the two equiva-
lent formulations of general relativity using a single unified
approach. This in particular clarifies the roles of the total
derivative terms present in our framework. As was shown in
[8], by considering the function f(7, B) one can formulate
the teleparallel equivalent of f (R) gravity and identify those
parts of the field equations which are part of f(7T) gravity,
the second order part of the equations which is not locally
Lorentz invariant. In analogy to this one can also make the
relationships between various modified theories of gravity
clear which are based on the Gauss—Bonnet term.

The top left corner of Fig. 1 refers to f(7T, B, TG, Bg)
gravity, the most general theory one can formulate based
on the four variables. One can think of the top entries as the
teleparallel row and the bottom as the metric row. The arrows

@ Springer
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Fig. 1 Relationship between different modified gravity models with
Gauss-Bonnet extensions and general relativity

indicate the specific choices that have to be made in order to
move from one theory to the other.

If we now include the trace of the energy-momentum ten-
sor to our approach, things get slightly more complicated as
the number of possible theories increases quite dramatically.
We tried to visualise the entire set of possible theories in
Fig. 2.

Now, the left half of the figure corresponds to the metric
approach while the right half corresponds to the teleparallel
framework. The four main theories of the previous discus-
sions are highlighted by boxes. Many of these theories were
considered in isolation in the past and their relationship with
other similarly looking theories was only made implicitly.
We should also point out that our representation of these
theories is only one of the many possibilities and moreover,
Fig. 2 is incomplete. There are many more theories one could
potentially construct which we have not mentioned so far.
The diagram was constructed having in mind those theories
which have been studied in the past.

In constructing the diagram we also made the interesting
observation that the theory based on the function f(R,T)
should be viewed as a special case of the teleparallel grav-
ity theory f(T, B). To see this, simply recall the principal
identity R = —T + B which shows that the special choice
f(—=T + B, T) is the teleparallel equivalent of f (R, T) the-
ory and also that the teleparallel framework should be viewed
as the slightly more natural choice for this theory.

We provide a short list of theories in Table 1 with accom-
panying references for the interested reader, mainly focusing
on the primary sources or reviews where such theories were
considered.

Of the many possible theories one could potentially con-
struct from f (T, B, Tg, Bg, 7 ), we identified some which
might of interest for future studies. Clearly, there are many
theories which do not have a general relativistic counter part
like f (B, Tg, Bp, T) since no theory in this class can reduce
to general relativity. However, it is always possible to con-
sider such a theory in addition to general relativity by consid-
ering for instance a theory basedon —7 + f (B, TG, Bg, 7).
For a function linear in its arguments this yields the telepar-
allel equivalent of general relativity.
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f(T,B,Tg,Ba,T)

f=f(-T+B,~T¢ + Bg)
F(R,G) (T, Tg)
f=f-T+BT)
F=5(R) JRT) )
f
7R [ZIeT ) )
=R f=T
GR & TEGR

Fig. 2 Relationship between different modified gravity models with Gauss-Bonnet and trace extensions and general relativity

Table 1 Short list of previously

studied theories covered by the Theory

Some key references

function f(7, B, Tg, BG,7T) £(R)

S

ST, B)
S(R,T)
(R, G)
f(T,Tg)
f(R,T)
F(T.7T)

Reviews by Sotiriou and Faraoni [3] and De Felice and Tsujikawa [4]
Ferraro and Fiorini [5], and review by Cai et al. [18]

Bahamonde et al. [8]

Myrzakulov [29]

Nojiri et al. [30]

Kofinas and Saridakis [13] and Kofinas et al. [14]

Harko et al. [15]

Harko et al. [31]

It is also useful to make explicit the limitations of the cur-
rent approach put forward by us. In essence, we are dealing
with modified theories of gravity which are based on scalars
derived from tensorial quantities of interest, for instance the
Ricci scalar or the trace of the energy-momentum tensor.
However, theories containing the square of the Ricci tensor
or theories containing the term R, 7*" are not currently cov-
ered. In principle, it is straightforward though to extend our
formalism to such theories. In case of the quantity R, 7",
we would have to recall Eq. (12) so that this term can be
expressed in the teleparallel setting, something that also has
not been done yet. Likewise, we could also address quadratic
gravity models [32] which contain squares of the Riemann
tensor and again use Eq. (11). Theories depending on higher
order derivative terms [33] also require a separate treatment.

The current approach is entirely based on the torsion scalar
T which is motivated by its close relation to the Ricci tensor.

However, in principle one could follow the work of [34] and
decompose the torsion tensor into its three irreducible pieces
and construct their respective scalars. This would allow us to
study a larger class of models based on those three scalars and
the boundary term. To the best of our knowledge this has not
been considered in the past and would make an interesting
further development.

For many years now, an ever increasing number of mod-
ifications of general relativity has been considered. In this
work we focussed only on theories where the gravitational
field can either be modelled using the metric of the tetrad.
Hence, we excluded all types of metric-affine theories where
the metric and the torsion tensor are treated as two inde-
pendent dynamical variables. It would be almost impos-
sible to present a visualisation that encompasses all those
theories as well. Even this would represent only a fraction
of what is referred to as modified gravity. It would still
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exclude higher dimensional models, Einstein—Aether mod-
els, Hotava—Lifshitz theory and many others. It is also inter-
esting to note that f(R) gravity for instance can be formu-
lated as a theory based on a non-minimally coupled scalar
field. Hence, many of the theories in Fig. 2 might also have
various other representations which in turn might be con-
nected in different manners.

This discussion motivates the process of classifying the
different families of modifications of general relativity and
their possible interrelations, followed by a broad inves-
tigation of which theories should not be studied further
due to incompatibilities with well-established observational
bounds. It appears that we are reaching the point where we
possibly do not need more theories but rather an improved
sense of direction for future developments.
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Appendix A: Derivation of the field equations
Variation of Bg

The Gauss—Bonnet boundary term is given by

1 1 N
Bg = ;Gijkledeaaal:EKh” RM .y + Kb”chdeﬂ],
(A1)

or equivalently

1
Bg = -0, (eE!B,), (A2)

e
where we introduced the vector Bg; by

. y

BG = eiue” ™ (3K RYca + Ky KK (Ko TT). (A3)
Using the relationship between the contortion tensor and the
Riemann tensor, this means Eq. (11), and recalling that in

four dimensions ¢;jx e’ = 8;’;,3”, the above term (A3)
can be rewritten as

@ Springer

B = 8005 Ko (KM a + K" K. (A4)

We are now considering variations of the function f (7', B,
T, Bg) with respect to the tetrad fields, beginning with the
quantity Bg, which yields

/86886 = |0, (fao) (Bl BY—EL Bl —ef5s B EL [oef
- €Eg3lt(f35)532;, (A5)

where fp, = 0f(T, B, T, BG)/0Bg. We used §E;, =
—E7 E,’ZBeZ and e = eEgée“, and boundary terms were
neglected. The final term in the above equation reads

eE 8, (fpy)8BE = PY;;8Kp"

— o1 e £ 0 (f5e) Kb (0a K H)bef, (A6)
where again we neglected boundary terms and for simplicity
we introduced the following tensor:

Pbij = eErI:lau(fBG){<(KCkl)’d + KdPCkal>8;7llzlcd

mdpb

. d
+ npjaqckl qucKikl +81’:Z’JC kalebc}

— 80, (e EG ELL 0, (o) KM). (A7)
We take note of 8K, in Eq. (A6) which needs to be
expressed as a variation with respect to the tetrad Se‘é. There-

fore, we firstly compute how an arbitrary tensor D?; 0K i
changes its form in this context. This formula will be useful
for computing P?;;8 K"/ and s also needed when computing
the variations of 7¢ in the second part of this appendix.
Recall the contortion and torsion tensors, respectively,

Ky = 2 (1)~ 9+ 1), (A8)
iy, = EVEY (aﬂei _ a,,e;;). (A9)
Beginning with (A8) we have
D%:;8K," = Dby K]

_ %( bh _ phb Di[bh]>8Tibh

— %Cibh(STibh, (A10)
where for simplicity we have introduced the tensor
¢ = pbh — phb 4 p;IPM = ;M. (All)

This tensor needs to be skew-symmetric in its last two indices
since 8T py, is skew-symmetric in this pair.
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Next, by using (A9) and neglecting boundary terms we
find

Dbij(SKbij = [8M<Ca”hE;l‘Ef> + TiabE;?Cibh](Seg,
(A12)

Equivalently, by using (A11) we find explicitly that for any
specific tensor D;%" the transformation from D?; jéK;,ij to
terms with 86% will be

Db 6K, = [au<(D”,/l _php 4 Da“’h])E;jEf)
+ T'a (D" = D"i® 4 DM |sef.
(A13)

Now, if we change D?;; — P?;; we find the useful equa-
tion

Pk = [0, (PP = PR+ P L E)
+ T Ef (PP = PP+ P |ses.
(Al4)

Finally, if we replace (A14) in (A6) and then replace
that expression in (A5) we find the variations of the Gauss—
Bonnet boundary term with respect to the tetrad. This is given
by
efp;8BG = — [au (PP = Pt 4 P ELE] )

+ T'apEf (PP — P! 4 P11
- ﬁz;dEEg Om (fB(;)Khij chl,a
+ edu(f50) (E] B,

— E“BP) + efBGBgEf}Se%, (A15)

where P?; ; is explicitly given by Eq. (A7).
Variation of T
For simplicity, we will split 7 in four parts as follows:
To = (KafeK,,fchkadfl — 2K T KK K K !
TR KK K e+ 2K TRy K ) 880G
=T61 + T2 + Tgs + Taa, (A16)

where TG1, T2, T3 and T4 are the first, second, third and
fourth term of the right-hand sides, respectively. Variations
of the TGy, i = 1,2, 3, 4 contributions with respect to the
tetrad can be expressed as

efr;8TG = efr;(8Tg1 + 8Tgo + 8Tg3 + 8Tga). (A7)

Here, f7,; stands for the partial derivative of (T, B, T, TB)
with respect to T. The first, second and third term can be
computed without difficulty, yielding

6Tgr = [ Ko K rKal 5556 + Ko i KX Ko 800!
KK Koy S+ Kal Ko KF s e 8K,
(A18)
8762 = _Z[KbkeKcedeﬂSfﬁ(id + Ky K ejrKal o0

+ KT Ko Ko S+ KaT Kok K8 hes [0 K1,
(A19)

+ Kfel Kbkinaca;ZZ;d + Kd.fm KbkeKielﬂjcts_‘;‘?,f/?]ilaKaij'
(A20)

For the final term ef7;67G4 we need to be careful since we
need to integrate by parts and hence need to change 9, to
g = E 5 0, Therefore, we need to compute the following
term:

efr;6Tg4 = 2€fTG5[Kaij KbkeKcel,d]tSfﬂ?d
=Zeng(S[Ef;Ka"jKbkeZ),t(K,:el)](Sfj’jfld. (A21)

By ignoring boundary terms, these terms become

efrcéTG4

k el sabed ke | sbacd
=2[€fTGKb K adli" + efro Kb Kej' adiei)

— 8l (el fro K. Kb",-)]aka"f
— efy. 8md EPER K KK (K )8l (A22)
G"ijkl d*aBm b eOn c B
Now, by adding (A18)—-(A20) and (A22) we find
efr; 681G
= [efTG Xaij — 2321}7]3-618“ (engTG KCEIKbki)](SKaij
— 2efrg 800 Ef KoV Kp¥ o Ko a8, (A23)
where we have introduced the following tensor:
Xa,‘j = ijechdeﬂSl‘-lebkCld + Kheichdeﬂ(Sﬁ;lkcld
+ KoKy Kaj S{701 + Ka” Kb KKi847¢
— 2Ky Ko pKa 8050 — 2K K oj Ko 8705
— 2K Kyt i Kai' 85— 2KaT Kyt oK Ci87S
+ 2Kbkerelefc3?j};fld + 2Kbkerledfc8]}{’gﬁd
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+ 2K ¢ Kbk,-Kd"c(S'e’;Z;d

k el abcd ke I bacd
+ 2Ky e K™ adijr + 2Kp Kej' abeir -

+2Ka7 Kyt o Ki 0G0
(A24)

It can be shown easily that this long expression is also equiv-
alent to

yo _ 0Tc _ 0T 0Tgy | 8Tgy
YTTAKL T 0K, 0K, 9K,
fbed g ot 9 k
+ 28K a e KKk (A25)

Next, for simplicity we will introduce the tensor
Yi; = efrg XPiy — 265040, (e fro ELK Kaki), (A26)
to rewrite Eq. (A23) as

efr; 61 = Ybij(SK},ij

- 2efTGagideldSKminbkeKcel,afse%- (A27)

Finally, by using Eq. (A13), we can change 8K,/ to defs
by changing ij to Yi‘;.. Doing that, we finally find that the
variations with respect to the T part is

efr;81g = |:8M<(Ybah _ Yhab + Ya[bh])EﬁElf)
F T B EL (P — vt 4y PRy
— 2efr, 80 BN K 'l Kb"eKce’,a]aeg, (A28)

where Y?; ; is explicitly given by Eq. (A26).
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