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Abstract In this article, we propose different background
models of extended theories of gravity, which are minimally
coupled to the SM fields, to explain the possibility of genesis
of dark matter without affecting the SM particle sector. We
modify the gravity sector by allowing quantum corrections
motivated from (1) local f (R) gravity and (2) non-minimally
coupled gravity with SM sector and dilaton field. Next we
apply a conformal transformation on the metric to transform
the action back to the Einstein frame. We also show that an
effective theory constructed from these extended theories of
gravity and SM sector looks exactly the same. Using the relic
constraint observed by Planck 2015, we constrain the scale
of the effective field theory (�UV) as well as the dark mat-
ter mass (M). We consider two cases: (1) light dark matter
(LDM) and (2) heavy dark matter (HDM), and we deduce
upper bounds on thermally averaged cross section of dark
matter annihilating to SM particles. Further we show that our
model naturally incorporates self-interactions of dark matter.
Using these self-interactions, we derive the constraints on the
parameters of (1) local f (R) gravity and (2) non-minimally
coupled gravity from a dark matter self-interaction. Finally,
we propose some different UV complete models from a par-
ticle physics point of view, which can give rise to the same
effective theory that we have deduced from extended theories
of gravity.
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1 Introduction

Different cosmological measurements have confirmed that
majority of the matter in this universe occurs in the form of
a non-luminous “dark matter” (DM). In fact DM accounts
for almost 30 % of the energy budget of the universe [1].
Experimentally the measured relic density of DM gives us
some insights into the particle nature of DM. It is a very well-
known fact that the Standard model (SM) of particle physics
cannot provide any dark matter candidate. It is believed that
to search for the existence of a dark matter candidate, physics
Beyond the Standard Model (BSM) is necessary [2–4]. These
extensions of the SM are strongly motivated from observa-
tions of the galactic rotation curves, motion of galaxy clus-
ters, two colliding clusters of galaxies in the Bullet Cluster,
and cosmological observations [5]. In such a scenario, the
matter sector is modified without affecting the gravity sec-
tor. But more precisely this type of approach is mostly ad hoc,
as it does not always provide any theoretical origin of such
extensions in the matter sector (with the exceptions of a few
DM models like neutralino WIMP, axion, etc.). Alternatively
these observations have also been explained through modi-
fication of the gravity sector without the need of any dark
matter candidate, for example: modified Newtonian dynam-
ics (MOND) paradigm [6] and tensor-vector-scalar gravity
(TeVeS) [7]. But such proposals are not consistent with all
the observational constraints.1 To avoid the ambiguity of ad
hoc extensions of the SM, in this paper we propose an alter-
native framework based on the principles of effective field
theory (EFT) [9–23]. In this EFT approach, we represent the
interactions between DM and SM through a set of higher
dimensional effective non-renormalizable Wilsonian opera-
tors, which are generated by integrating out the heavy media-
tor degrees of freedom at higher scales. This approach works
best when there is a clear separation of energy scales between
the ultraviolet physics, and the relevant energy scales. This
is clearly the case here, because when we consider indirect
detection of DM, where two DM particles annihilate to two
SM particles, the momentum transferred in the process is
of the order of the DM mass, which is clearly less than the
energy scales considered. Even in the case of direct detec-
tion, the momentum transferred in a collision with a nucleus
is of the order of a few keV. This justifies the use of an EFT.

We start with the extended version of gravity sector keep-
ing the SM matter sector unchanged. Such modifications in
the gravity sector usually originate from quantum corrections
in the gravity sector and are motivated from various back-

1 For example, MOND cannot completely eliminate the need for dark
matter in astrophysical systems, since galaxy clusters show a residual
mass discrepancy even when analyzed using MOND [8].

ground higher dimensional field theoretic setups.2 One can
also consider a modification in the gravity sector by allowing
a non-minimal interaction between the matter field and grav-
ity.3 In the present context we use a conformal transforma-
tion on the metric to explain the genesis of scalar dark matter
from various types of extended theories of gravity, i.e., local
f (R) gravity [30,31],4 non-local theories of gravity [33–41]5

and finally we also allow a non-minimal interaction between
Einstein gravity with the scalar matter field [42–51] as men-
tioned earlier. Thus in our prescribed methodology, although
we start with an unchanged matter sector, it gets modified
because of modifications in the gravity sector. This is where
we differ from the contemporary ideas. Further to implement
the constraint from observational probes6 on the relic den-
sity of the dark matter we use the tools and techniques of
effective field theory in the present setup. Schematic repre-
sentation of the setup which shows the complete algorithm of
the described methodology in this paper is shown in Fig. 1.

Throughout the analysis of the paper we use the following
sets of crucial assumptions:

1. We use the tools and techniques of the effective field
theory in the present context while applying the con-
straints from observational probes and indirect detection
experiments. Instead of introducing a Planckian cut-off
at Mp ∼ 1019 GeV here, we introduce a new UV cut-
off scale, �UV << Mp of the effective field theory. In
principle, more precisely this can be treated as the tuning
parameter of the theoretical setup and we have shown
explicitly from our prescribed analysis that this serves a
very crucial role to satisfy the constraint for dark matter
relic abundance as obtained from Planck 2015 [52] data.

2. We are implementing our prescribed methodology by tak-
ing some of the few well-known examples of extended
theories of gravity, i.e., local f (R) gravity and non-
minimally coupled gravity with scalar matter, in which,
by applying a conformal transformation on the metric
one is able to construct a reduced and easier version of

2 String theory and its low energy versions provide such corrections
in the gravity sector [24–27]. Alternatively in Ref. [28], the author had
shown that similar modifications in the gravity sector can be obtained
form a geometrical perspective.
3 In our case, the matter field is the scalar field which is similar to the
dilaton field appearing in scattering amplitudes of closed string theory
[24–27]. It is also important to note that, in the context of modified
gravity, usually the dilaton can be identified to be the scalaron field [29]
originating from the higher curvature gravity sector.
4 For, e.g., f (R) gravity theory can explain the galaxy rotation curves
[32].
5 In this work we do not discuss this possibility. We will report on this
issue in our future work in this direction.
6 Here we use Planck 2015 [52] data to constrain the relic density of
dark matter.
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Fig. 1 Schematic representation of the setup which shows the complete algorithm of the described methodology in this paper

the theory in Einstein frame in terms of Einstein grav-
ity, a new scalar matter field (dilaton) and an interaction
between SM sector and dilaton matter field. In our pre-
scription, we identify such a dilaton field to be the dark
matter candidate.

3. To validate the perturbative approximation appropriately
in the present context we also assume that the interaction
between SM sector and dilaton matter field is weak. Con-
sequently, we expand the exponential dilaton coupling
and, due to a large suppression by the cut-off scale �UV,
we only take the first three terms in the expansion series.

4. Next we additionally impose a Z2 symmetry on the dila-
ton, and we drop the odd term under this symmetry. As a
result here we have only the first term LSM and the third

term φ2

�2
UV

LSM. In our paper, the third term φ2

�2
UV

LSM plays

a significant role to describe the genesis of dilaton dark
matter. One-loop corrections to the dilaton mass put an
upper limit of M ≤ 4π�UV [53,54].

5. During our analysis we also assume that annihilation
of DM at the galactic center proceeds with a velocity
v ≈ 10−3. Consequently the thermally averaged cross
section 〈σv〉 is expanded in terms of s-wave and p-wave
contributions. We neglect all other higher order contri-
butions in 〈σv〉.

6. Most importantly, in our prescribed methodology we
assume the non-relativistic (NR) limit to compute and
also expand the expression for the thermally averaged
cross section 〈σv〉.

7. In our analysis, we consider the maximum mass of the
dilaton dark matter to be O(1 TeV). But our conclusions
will remain unchanged for higher masses, as long as they
satisfy the relic density constraint. The higher the mass
we consider, the larger will be the scale of our effective
theory.

The plan of the paper is as follows.

• In Sect. 2, we propose background models of extended
theories of gravity, which are minimally coupled to SM
fields. Initially we start with a model where the usual
Einstein gravity is minimally coupled with the SM sector.
But such a theory is not able to explain the genesis of dark
matter at all. To explain this possibility without affecting
the SM particle sector, we modify the gravity sector by
allowing quantum corrections motivated from (1) local
f (R) gravity and (2) a non-minimally coupled dilaton
with gravity and SM sector.

• In Sect. 3, we construct our theory in the Einstein frame
by applying a conformal transformation on the metric.
We explicitly discuss the rules and detailed techniques
of conformal transformation in the gravity sector as well
as in the matter sector. For completeness, we present the
results for arbitrary D spacetime dimensions. We use
D = 4 in the rest of our analysis. Then we also show
that the effective theory constructed from (1) local f (R)

gravity and (2) the non-minimally coupled dilaton with
gravity and SM sector looks exactly same. Through a
conformal transformation, we derive the explicit form of
the dilaton effective potentials, which will be helpful to
study the self-interaction properties of the dark matter
as well as the signatures of the inflationary paradigm. In
this paper, we have not explored this possibility. Detailed
calculations are shown in Appendix A.

• In Sect. 4, we use the relic constraint as observed by
Planck 2015 to constrain the scale of the effective field
theory �UV as well as the dark matter mass M . We con-
sider two cases: (1) light dark matter (LDM) and (2)
heavy dark matter (HDM), and we deduce the upper
bounds on the thermally averaged cross section of dark
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matter annihilating to SM particles, in the non-relativistic
limit. This classification of DM into HDM and LDM is
purely on the basis of the scale of the EFT considered.
For LDM, the maximum mass of the DM candidate con-
sidered is less than O(350GeV). For HDM, DM masses
between 350 GeV and 1 TeV are considered. We shall
find that for masses of DM greater than 350 GeV, the
scale of the EFT increases by an order of magnitude,
thereby leading to extra suppression.

• In Sect. 5, we explicitly discuss the constraints on the
parameters of the background models of extended theo-
ries of gravity: (1) local f (R) gravity and (2) the non-
minimally coupled dilaton with gravity, by applying the
constraints from dark matter self-interaction. To describe
this fact we consider the process φφ → φφ, where φ is
the scalar dark matter candidate in the Einstein frame as
introduced earlier by applying a conformal transforma-
tion to the metric. Here φφ → φφ represents the dark
matter self-interaction and is characterized by the coeffi-
cient of φ4 term in the effective potential V

′′′′
0 .

• In Sect. 6, we propose different UV complete models
from a particle physics point of view, which can give rise
to the same effective theory as we have deduced from
extended theories of gravity. We mainly consider two
models: (1) an inert Higgs doublet model for LDM and
(2) an inert Higgs doublet model with a new heavy scalar
for HDM. Thus, we have shown that the UV completion
of this effective theory does not need to come from mod-
ifications to the matter sector, but rather from extensions
of the gravity sector.

• In Sect. 7, we conclude with future prospects from the
present work.

2 The background model

In this section we start with the situation, where the well-
known standard model (SM) of particle physics in the matter
sector is minimally coupled with the Einstein gravity sector
and is described by the following effective action [31]:

S =
∫

d4x
√−g

[
�2

UV

2
R + LSM

]
, (2.1)

where R is the Ricci scalar, LSM is the SM Lagrangian den-
sity, and �UV is the UV cut-off of the effective field the-
ory as mentioned in the introduction of the paper.7 But it
is important to mention here that the effective action stated
in Eq. (2.1) cannot explain the generation of a dark matter
candidate without modifying the SM sector.

7 The upper bound of the UV cut-off �UV is Planck scale Mp .

To solve this problem, one needs to allow extensions in
the standard Einstein gravity sector:

1. By adding higher derivative and curvature terms in the
effective action. For example, within the framework of
effective field theory, one can incorporate local correc-
tions in general relativity (GR) in the gravity sector and
write the action as8

Slocal =
∫

d4x
√−g

⎡
⎣ ∞∑

n=1

an Rn +
∞∑

m=1

bm
(
RμνR

μν
)m

+
∞∑
p=1

cp
(
RαβδηR

αβδη
)p
⎤
⎦ . (2.2)

The coefficients an,bm, cp of the correction factors affect
the ultraviolet behavior of the gravity theory. But any
arbitrary local modification of the renormalizable the-
ory of GR typically contains massive ghosts which can-
not be regularized using any standard field theoretic pre-
scriptions. f (R) gravity is one of the simplest versions
of the extended theory of gravity in which one fixes
an �= 0,bm = 0 and cp = 0. Consequently, the effective
action assumes the following simplified form:

Slocal =
∫

d4x
√−g f (R), (2.3)

where in general f (R) is given by the following expres-
sion:

f (R) =
∞∑
n=1

an Rn, (2.4)

which contains the full expansion in the gravity sector in
terms of the Ricci scalar R. In principle, one can allow any
combination of f (R), but to maintain renormalizability
in the gravity sector, it is necessary to truncate the above
infinite series in finite way. String theory is one of the
major sources through which it is possible to generate
these types of corrections to the Einstein gravity sector
by allowing quantum gravity effects.

2. Considering a non-minimal coupling between the Ein-
stein gravity and additional scalar field, one can serve a
similar purpose. First of all, in the matter sector we incor-
porate the effects of a quantum correction through the
interaction between heavy and light sectors and then inte-
grate out the heavy degrees of freedom from the effective

8 Gauss–Bonnet gravity acts as a topological surface term in D ≤ 4.
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field theory picture. This finally allows for an expansion
within the light sector, which can be written as

SM [φ,�] =
∫

d4x
√

−(4)g
[L[φ] + LHeavy[�] + LInt[φ,�]]

Integrate out �−−−−−−−−−−−→ ei SM [φ] =
∫

[D�]ei SM [φ,�]

SM [φ] =
∫

d4x
√

−(4)g

[
L[φ] +

∑
α

Jα (g)
Oα[φ]
�

α−4
UV

]

(2.5)

where Jα(g)∀α are the Wilson coefficients which depend
on the couplings g of the full theory, and Oα[φ] are local
operators having dimension α . All possible effective
operators Oα[φ], which respect the symmetries of the
full theory, can be generated by this method. L[φ] and
LHeavy[�] describe the section which involves the light

and heavy degrees of freedom, andLint[φ,�] consists of
all interactions amongst both sets of fields within Effec-
tive Field Theory prescription. After integrating out the
heavy fields, the effective action has a renormalizable
part:

L[φ] = −gμν

2
(∂μφ)(∂νφ) − Vren(φ) (2.6)

and a sum of non-renormalizable corrections denoted by
Oα[φ], as given in Eq. (2.5). Operators having dimen-
sions less than four are called “relevant operators” while
those with dimensions greater than four are called “irrel-
evant operators”. Theories having higher dimensional
operators are dimensionally reduced to a four dimen-
sional effective field theory via various compactifications
in the string theory sector. However, corrections coming
from graviton loops will be suppressed by the cut-off
scale �UV, which is fixed at the Planck scale Mp, while
those arising from the heavy sector will be suppressed
by the background scale relevant for fields whose mass
Ms < �UV ≈ Mp. The present observational status lim-
its this scale around the GUT scale (1016 GeV). In this
context, we assume that the UV scale suppressed opera-
tors will only modify the structure of the effective poten-
tial, without affecting the kinetic terms in the effective
action. Consequently, these corrections will add to the

renormalizable part of the potential Vren and give rise to
the total potential V (φ) given by

V (φ) = Vren(φ) +
∞∑

α=5

Jα(g)
φα

�
α−4
UV

=
∞∑

α=0

Cα(g)
φα

�
α−4
UV

, (2.7)

where Cα s are the Wilson coefficients. Thus the effec-
tive Lagrangian for the φ field is modified as

L[φ] = −gμν

2
(∂μφ)(∂νφ) − V (φ). (2.8)

Taking all these into account, the effective action for the
background model can be expressed as

S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
d4x

√−g

[
�2

UV

2
f (R) + LSM

]
, for Case I

∫
d4x

√−g

[
�2

UV

2

(
1 + ξ

φ2

�2
UV

)
R + L[φ] + LSM

]
for Case II

(2.9)

where for Case I, f (R) represents any function of R in gen-
eral9 and for Case II, φ is the additional scalar field coupled to
R via non-minimal coupling ξ .10 Here for all three cases �UV

represents the ultraviolet (UV) cut-off scale for the effective
field theory. In this article, we will follow all possibilities
with which we can study the effective theory of dark matter
in detail. It is important to mention here that all the effective
actions are constructed in the Jordan frame of gravity. To
explain the genesis of dark matter from the effective action,
we have to apply a conformal transformation to the metric,
which transforms the Jordan frame gravity to the Einstein
frame. In the next section we discuss the technical details
of the conformal transformation in the extended gravity
sector.

3 Construction of effective models from extended
theories of gravity in the Einstein frame

A conformal transformation of the metric is an appealing
characteristic of the scalar-tensor theory of gravity [55],

9 Technically only those functions of R are allowed which give rise to
a renormalizable and ghost-free gravity theory.
10 To avoid confusion, it is important to mention here that this possibil-
ity is completely different from the situation where the SM Higgs field
is coupled with the gravity sector via a non-minimal coupling.
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which originates from superstring theory. Using this trans-
formation, one can express the theory in two conformally
related frames: the Jordan and Einstein frames. In this paper,
we use the Einstein frame to explain the scalar dark mat-
ter generation in the context of effective field theory. In the
Einstein frame the new scalar field is coupled with the SM
degrees of freedom via a conformal coupling factor. This new
scalar field, a.k.a. “scalaron” or “dilaton”, has a geometrical
origin and is generated from the extended version of the grav-
ity sector through a conformal transformation in the Einstein
frame. In this section, we quote the results for dimension
D = 4, which will be used for further computation in the
present context. The details of a conformal transformation in
arbitrary D dimensions are explicitly computed in Appendix
A.

3.1 Case I: From f (R) gravity

In the case of f (R) gravity, the conformal factor is given by

�(x) = eω(x) = e
1√
6

φ(x)
�UV =

√
f ′

(R), (3.1)

where φ is known as the “scalaron” or “dilaton”. Here we
start with the following action in a Jordan frame:

S =
∫

d4x
√−g

[
�2

UV

2
f (R) + LSM

]
, (3.2)

which can be recast into the following form:

S =
∫

d4x
√−g

[
�2

UV

2
f

′
(R)R −U + LSM

]
, (3.3)

where U is defined by

U = �2
UV

2

[
f

′
(R)R − f (R)

]
. (3.4)

Now transforming the Jordan frame action into the Einstein
frame we get finally

S ⇒ S̃ =
∫

d4x
√−g̃

[
�2

UV

2
R̃ − 1

2
g̃μν∂μφ∂νφ − V (φ)

+e
− 2

√
2√

3
φ

�UV LSM

]
, (3.5)

where the effective potential in the Einstein frame is given
by

V (φ) = U

( f ′
(R))2

= �2
UV

2

f
′
(R)R − f (R)

( f ′
(R))2

. (3.6)

For the further computation we will take the following struc-
tures of the function f (R):11

f (R) = aR + bRn

=

⎧⎪⎨
⎪⎩
aR + bR2, with Case A1: a �= 0, b �= 0, n = 2

bR2, with Case B1: a = 0, b �= 0, n = 2,

aR + bRn with Case C1:, a �= 0, b �= 0, n > 2.

(3.7)

Now using Eqs. (3.7) in (3.1) we get

�(x) = eω(x) = e
1√
6

φ(x)
�UV

=

⎧⎪⎪⎨
⎪⎪⎩

√
(a + 2bR), with Case A1: a �= 0, b �= 0, n = 2√
2bR, with Case B1: a = 0, b �= 0, n = 2,√
a + nbRn−1, with Case C1: a �= 0, b �= 0, n > 2,

(3.8)

where R is the Ricci scalar in the Jordan frame.
Further reverting Eq. (3.8),

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2b

(
e

2√
6

φ(x)
�UV − a

)
, with Case A1: a �= 0, b �= 0, n = 2,

1

2b
e

2√
6

φ(x)
�UV , with Case B1: a = 0, b �= 0, n = 2

{
1

nb

(
e

2√
6

φ(x)
�UV − a

)} 1
n−1

, with Case C1: a �= 0, b �= 0, n > 2,

(3.9)

and also using Eq. (3.9) in (3.6), the effective potential can
be expressed as

11 Here Case A1 and Case B1 represent the Starobinsky model and the
scale free theory of gravity, respectively.
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V (φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�2
UV

4b
e
− 4√

6
φ(x)
�UV

(
e

2√
6

φ(x)
�UV − a

)2

, with Case A1: a �= 0, b �= 0, n = 2,

�2
UV

4b
, with Case B1: a = 0, b �= 0, n = 2

�2
UVb(n − 1)

(nb)
n

n−1
e
− 4√

6
φ(x)
�UV

(
e

2√
6

φ(x)
�UV − a

) n
n−1

. with Case C1: a �= 0, b �= 0, n > 2,

(3.10)

Here for Case A1 and Case C1, the effective potential takes
part in the dark matter self-interaction and for Case B1, it
mimics the role of a cosmological constant at late times.12 It
is important to note that, from Case A1 and Case C1, infla-
tionary consequences can also be studied in the present con-
text. But in this article, we do not explore this possibility.
In Appendix C we discuss the effective potential which can
be used to model the dark matter self-interaction. Using the
results of this section derived from f (R) gravity theory, we
further constrain the parameters a, b, and n.

3.2 Case II: from non-minimally coupled gravity

In the case of non-minimally coupled gravity the conformal
factor is

�(x) = eω(x) = e
1√
6

φ(x)
�UV =

√√√√
(

1 + ξ
φ2

�2
UV

)
. (3.11)

Here we start with the following action in the Jordan frame:

S =
∫

d4x
√−g

[
�2

UV

2

(
1 + ξ

φ2

�2
UV

)
R − 1

2
gμν∂μφ∂νφ

−V (φ) + LSM] . (3.12)

12 This possibility is not important for our present discussion as it has
no minimum, which is necessarily required to stabilize the dark matter.
In the context of dark energy this plays a significant role at late times.

Now transforming the Jordan frame action into the Ein-
stein frame we get finally

S ⇒ S̃ =
∫

d4x
√−g̃

⎡
⎢⎢⎢⎣

�2
UV

2
R̃ − 1

2
g̃μν∂μφ̃∂νφ̃

−V (φ̃) + LSM(
1 + ξ

φ2

�2
UV

)2

⎤
⎥⎥⎥⎦ , (3.13)

where one can introduce a redefined field φ̃, which can be
written in terms of the scalar field φ as

dφ̃ =

√(
1 + ξ(1 − 6ξ)

φ2

�2
UV

)

(
1 + ξ

φ2

�2
UV

) dφ, (3.14)

or equivalently one can write

φ̃ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
6�UV

⎧⎪⎪⎨
⎪⎪⎩

tan−1

⎡
⎢⎢⎣

√
6ξ

φ
�UV(

1 + ξ(1 − 6ξ)
φ2

�2
UV

)
⎤
⎥⎥⎦−

√
1 − 1

6ξ
sin−1

[√
ξ(6ξ − 1)

φ

�UV

]
⎫⎪⎪⎬
⎪⎪⎭

, with Case A3 : ξ �= 1/6,

�UV√
6

sin−1
[√

6
φ

�UV

]
. with Case B3 : ξ = 1/6.

(3.15)

For the sake of simplicity the situation with ξ �= 1/6 can
also be studied in the two limiting physical situations as given
by
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φ̃ ≈

⎧⎪⎨
⎪⎩

φ, with Case A3a : ξ �= 1/6,
φ

�UV
<< 1

ξ√
6

2
�UV ln

(
1 + ξ

φ2

�2
UV

)
with Case A3b : ξ �= 1/6,

φ
�UV

>> 1
ξ
.

(3.16)

Now using Eq. (3.16) in (3.11) we get

�(x) =
√√√√
(

1 + ξ
φ2(φ̃)

�2
UV

)
≈
⎧⎨
⎩

1, with Case A3a : ξ �= 1/6,
φ

�UV
<< 1

ξ

e
φ̃√

6�UV . with Case A3b : ξ �= 1/6,
φ

�UV
>> 1

ξ
.

(3.17)

Consequently the most generalized version of the effective
potential in the Einstein frame can be expressed as

V (φ̃) = V (φ(φ̃))(
1 + ξ

φ2(φ̃)

�2
UV

)2 = 1(
1 + ξ

φ2(φ̃)

�2
UV

)2

∞∑
α=0

Cα(g)
φα (φ̃)

�
α−4
UV

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
α=0

Cα(g)
φ̃α

�
α−4
UV

, with Case A3a : ξ �= 1/6,
φ

�UV
<< 1

ξ
,

e
− 4φ̃√

6�UV

∞∑
α=0

Cα(g)
�4

UV

ξ
α
2

(
e

2φ̃√
6�UV − 1

)α
2

, with Case A3b : ξ �= 1/6,
φ

�UV
>> 1

ξ
.

(3.18)

Here for Case A3a and Case A3b both effective potentials
take part in the self-interaction. Inflationary consequences
can be studied from Case A3a and Case A3b. It is important
to mention here that for Case A3a as the conformal factor
�(x) ∼ 1, the dark matter does not couple to the SM con-
stituents. So for our discussion only Case A3b is important.
In Appendix C we discuss the effective potential construc-
tion necessarily required for the dark matter self-interaction.
Using the results of this section derived from non-minimally
coupled gravity theory we further constrain the non-minimal
coupling parameter ξ .

4 Construction of effective field theory of dark matter

In this section, we explicitly argue that the dilaton field, which
is generated via a conformal transformation on the metric,
can act as a viable dark matter candidate. To start with, we
consider the effective action which we have derived in the
Einstein frame through a conformal transformation. We use
an effective field theory approach to generate constraints on
the scale of extended theories of gravity (as discussed in the
previous section) from dark matter relic density constraints.13

13 In our discussion the scale of the extended theories of gravity sets
the cut-off scale of the effective theory.

We also compare the results obtained from annihilation of
the dark matter (to SM particles) in our effective field theory
model with the current observational bound set by FermiLAT
[56]. Later on, we shall cite some well-known UV complete
theories which can also give rise to the proposed effective
theory.

4.1 Construction of the model

To start with, we consider the following general action
obtained from transforming the Jordan frame action into the
Einstein frame:

S =
∫

d4x
√−g

[
�2

UV

2
R − 1

2
gμν∂μφ∂νφ

−V (φ) + e
− 2

√
2√
3

φ
�UV LSM

]
. (4.1)

For the rest of the paper, for the sake of simplicity, we rescale
the UV cut-off as

�UV →
√

3√
2
�UV. (4.2)

The effective field theory action in the Einstein frame consists
of the following three components:
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1. Einstein gravity sector (R),
2. dynamics for the dilaton (φ),14

3. modified matter sector which incorporates the interaction
between SM fields and the dilaton (φ).

Here our prime objective is to interpret this scalar field dilaton
as a dark matter candidate. To show this explicitly, we impose
a Z2 symmetry on top of our additional SM symmetries.
Under this symmetry, all SM fields are even and φ is odd.
This prevents terms involving the decay of φ. Now assuming
that this scale of new physics is large enough, we can perform
an expansion of the interaction term between dilaton and SM

field contents, i.e. e
− φ

�UV LSM, as

e
− φ

�UV LSM
Z2−→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + φ2

2�2
UV

+ O
(

φ4

�4
UV

)
+ · · ·

︸ ︷︷ ︸
All suppressed contributions

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

×LSM ≈
{

1 + φ2

2�2
UV

}
LSM. (4.3)

In Eq. (4.3), the odd terms vanish in the series expansion of

e
− φ

�UV because of the imposed Z2 symmetry.
In our computation we only focus on the second term of the

expansion as all higher order contributions are suppressed.
This tells us that in the zeroth order of the expansion, we
have the SM. However, because of the modification to the
gravity sector, we get a higher order contribution in the next
to leading order, which will produce all required interactions
between dilaton and SM field contents.

At this point, it is important to mention that the origin
of the scalaron is purely geometric. It is a manifestation of
the modified nature of gravity. To use the well-known results
associated with Einstein gravity, we apply a conformal trans-
formation on the metric and generate the scalaron in the Ein-
stein frame. However, once we have transformed to the Ein-
stein frame and expanded the terms in the Lagrangian, we get
an effective theory of scalar dark matter, where DM couples
universally to all SM particles. While an effective theory of
scalar dark matter has been widely studied in the literature,
most of these theories involve a non-universal coupling of
DM to SM, i.e, each higher dimensional term comes with a
different coupling constant. The novelty in our work is in UV
completing the well-known scalar DM effective field theory
from a modified gravity perspective, and at the same time
considering a universal coupling DM.

14 In our discussion the effect of the dilaton effective potential (V (φ))
is not studied explicitly.

4.2 Constraints from dark matter observation

From the nature of the interaction terms, we see that in this
effective theory, dark matter couples to all Standard Model
particles universally. We can have 2 → 2 annihilation chan-
nels, as well as 2 → 3 and 2 → 4 ones, respectively. How-
ever, the latter processes are suppressed (due to phase space)
and are not considered in the calculation of the relic density
bounds.15

For two dark matter particles of mass M annihilating into
particles of mass m and m′, the thermally averaged annihila-
tion cross section in the non-relativistic (NR) limit is given
by

〈σv〉NR = 1

32πM2

√
4M2

s

√
M2

s − 4M2

√
1 − (m + m′)2

4M2

×
√

1 − (m − m′)2

4M2 �(s; M,m,m′,�UV), (4.4)

where the symbol �(s; M,m,m′,�UV) can be expressed as

�(s; M,m,m′,�UV) =
∫

d�

4π
〈|M(M,�UV)|2〉. (4.5)

For our case, the processes which contribute to the annihila-
tion process have the same particle final states of mass m. So
for our case

〈σv〉NR = 1

32πM2

√
4M2

s

√
M2

s − 4M2

√
1 − 4m2

4M2

×
∫

d�

4π
〈|M(M,�UV)|2〉. (4.6)

Here 〈σv〉NR is obtained by substituting

s → 4M2 + M2v2, (4.7)

where s is the Mandelstam variable, 〈|M(M,�UV)|2|〉 is the
thermally averaged invariant matrix amplitude squared, and
v is the velocity of dark matter (v ≈ 10−3). This leads to the
following series expanded form of the thermally averaged
cross section in the non-relativistic limit:

〈σv〉NR = a(�UV, M)︸ ︷︷ ︸
s − wave

+ b(�UV, M)v2︸ ︷︷ ︸
p − wave

+ · · · . (4.8)

We calculate he expression for a(�UV, M) and b(�UV, M)

for all the processes given later, and the final results are given
in the Appendix.

Since all these processes are of higher order and repre-
sented by six dimensional operators, they will always be

15 For completeness we suggest the reader to refer to Ref. [57] from
which we follow the computational strategy in the present context.

123



494 Page 10 of 24 Eur. Phys. J. C (2016) 76 :494

suppressed by a power of �2
UV. For e.g., if we are look-

ing at a process which involves the annihilation of a pair of
DM particles to a pair of photons via this higher dimensional
operator, the expression for 〈σv〉NR will be given by

〈σv〉NRAμAμ = 4M2 cos4(θW )

π�4
UV

+ 2M2 cos4(θW )

π�4
UV

v2

= aNRAμAμ (�UV, M) + bNRAμAμ (�UV, M)v2

(4.9)

where M is the mass of the DM candidate and θW is the
Weinberg angle. We will get similar expressions for other
processes, and the results are quoted in the appendix. All
these processes will contribute to the relic density.

So now we know that a(�UV, M) and b(�UV, M) are
functions of the effective theory scale �UV and dark mat-
ter mass M . Other parameter and masses that appear in the
computation of a(�UV, M) and b(�UV, M) are fixed quan-
tities. So we write them in a functional form, a(�UV, M)

and b(�UV, M). We calculate the relic density of dark mat-
ter �DMh2 from the resulting 〈σv〉NR in the present context.
The expression for �DMh2 is given by the standard result
[57],

�DMh2(�UV, M)

= 2.08 × 109xF GeV−1

MPl
√
g∗(xF )

(
a(�UV, M) + 3 b(�UV,M)

xF

) , (4.10)

where MPl is the Planck mass, given by MPl ≈ 1019GeV.
Here xF is a parameter which characterizes the freeze-out
temperature (TF ) of the dark matter, given by

xF (�UV, M) = M

TF

= ln

(
c(c + 2)g

√
45

8

M MPl

2π3
√
g∗(xF )

(a(�UV, M) + 6 b(�UV,M)
xF

)√
g∗(xF )

)
,

(4.11)

where g∗(xF ) = 106 (for SM) is the effective number of
degrees of freedom at freeze-out and c is evaluated recur-
sively from the constraint

c(c + 2) = 1. (4.12)

Since the annihilation cross section 〈σv〉 ∝ a(�UV, M) in
the leading order, Eq. (4.10) shows that the relic density is
inversely proportional to the annihilation cross section of
DM.

In Eq. (4.10), the unknown parameters are �UV and M .
Therefore, demanding the value of �DMh2 to lie within the
experimental bounds, we can get a range of (M,�UV) satis-
fying the constraint obtained from recent Planck data [52]:

�DMh2(�UV, M) = 0.1199 ± 0.0027. (4.13)

Having obtained the relevant parameter space, we look at
some of the well-measured annihilation channels for indi-
rect detection of dark matter. These indirect detection exper-
iments look for dark matter annihilation to SM particles. We
compare the results from our model with the bounds given
by FermiLAT [56] and others. The effective processes con-
tributing to the relic density calculation are shown in Fig. 2.
Keeping the above model in mind, in the next subsection we
consider two possible scenarios:

1. Light dark matter (LDM).
2. Heavy dark matter (HDM).

The difference between the two scenarios is that, in the case of
HDM, the DM candidate has a mass greater than 350 GeV.
In Fig. 3, we explicitly show the allowed parameter space
(M,�UV) for our DM candidate. The plot shows visible
breaks at the mass of the top quark. It also shows that for
masses of the DM candidate greater than 350 GeV, the scales
involved are larger by a factor of 10. Thus, for HDM, pro-
cesses involving interactions with the DM will have an extra
suppression due to larger scales. This also imposes a con-
straint on the mass of the dilaton, if we are to interpret it as
a DM candidate.

4.2.1 Light dark matter

In this subsection we consider that the dark matter candidate
is a dilaton, with a mass less than 350 GeV. The main annihi-
lation channels will be DM DM → f f̄ where f = t, b, τ ,
and DM DM → gg, γ γ,W+W−, Z Z . Hence the total ther-
mally averaged cross section for LDM can be written as

〈σv〉LDM = 〈σv〉GμGμ + 〈σv〉AμAμ + 〈σv〉WμWμ

+〈σv〉ZμZμ + 〈σv〉hh +
∑
f

〈σv〉 f f . (4.14)

In Fig. 4a, we show the allowed annihilation channels of
LDM candidate into SM particles.

4.2.2 Heavy dark matter

In this subsection we consider that the Dark Matter has a mass
greater than 350 GeV. The annihilation channels remain the
same; however, as we can see from Fig. 3, the correspond-
ing scale of the EFT increases by an order of magnitude.
We also show the same annihilation channels as the LDM in
Fig. 4b. We observe similar features as observed in the pre-
vious case. However, the annihilation cross sections are well
below the current experimental sensitivity, and they cannot
be probed by present experiments. This extra suppression is
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Fig. 2 Effective processes contributing to relic density of dark matter. Here 2 → 3 and 2 → 4 processes are suppressed
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Fig. 3 Allowed parameter space for the DM candidate. The kink in the
graph at M = mt shows that beyond this mass, annihilation channels
to top pairs are allowed

mainly due to larger scales (by a factor of 10) and universal
O(1) coupling.

To show that these are well within the bounds given by
FermiLAT [56], we show one specific case of DM annihilat-
ing into W bosons in Fig. 5. The green shaded region shows

Fig. 4 Top panel Annihilation cross sections of LDM to SM particles.
Bottom panel Annihilation cross sections of HDM to SM particles
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Fig. 5 Comparison of DM annihilation channel with bounds given by
FermiLAT

Fig. 6 DM-DM self-interaction
at the tree level

2σ bounds on the thermally averaged cross section for the
process. We find that for most of our parameter space, the
predictions of our model are well within these bounds.

5 Constraints from dark matter self-interaction

In this subsection we will explicitly discuss the constraints on
the parameters of the background models of extended theo-
ries of gravity: (1) local f (R) gravity and (2) non-minimally
coupled dilaton with gravity, by applying the constraints from
dark matter self-interaction. To describe this fact let us con-
sider the process φφ → φφ, where φ is the scalar dark
matter candidate in the Einstein frame as introduced earlier
by applying conformal transformation in the metric. Here
φφ → φφ represents the dark matter self-interaction and it
is characterized by the coefficient of φ4 term in the effective
potential in the Einstein frame, i.e. it can be estimated by the
term V

′′′′
0 /4!.

The simplest four point contact interaction diagram con-
tributing at the tree level is depicted in Fig. 6. In this case the
S-matrix element and amplitude of the φφ → φφ process
are given by

iMφφ→φφ = −iλ = −iV
′′′′
0 /4!, (5.1)

|Mφφ→φφ |2 = λ2 =
(
V

′′′′
0 /4!

)2
. (5.2)

Consequently the differential scattering cross section for the
φφ → φφ process is given by

dσ

d�
= |Mφφ→φφ |2

64π2s
= λ2

64π2s
=
(
V

′′′′
0 /4!

)2

64π2s
, (5.3)

where s is the Mandelstam variable and in the center of mass
frame, characterized by p1,2 = (M, 0, 0,±v), it is given by

s = (p1 + p2)
2 = 4M2, (5.4)

where p1,2 are the momenta of the two incoming scalar dark
matter particle, M is the mass of the scalar dark matter.
Finally using Eq. (5.4) and integrating over the total solid
angle one can finally write down the expression for the scat-
tering cross section for the φφ → φφ self-interaction pro-
cess:

σ = |Mφφ→φφ |2
64πM2 = λ2

64πM2 =
(
V

′′′′
0 /4!

)2

64πM2 . (5.5)

Now, in order to have an observable effect on dark matter
halos over large (cosmological) timescales, we have to satisfy
the following constraint in the present context [58]:

σ

M
� 1 cm2/g = 5 × 103 GeV−3. (5.6)

Further using Eq. (5.5) in (5.6), we get the following simpli-
fied expression for this constraint:

λ2

64πM3 � 5 × 103 GeV−3,

⇒
(
V

′′′′
0 /4!

)2

64πM3 � 5 × 103 GeV−3. (5.7)

Further depending on the different types of models of mod-
ified gravity theory as discussed in this paper, we will get a
different value of the self-interaction parameter λ, which is
a function of some other parameters characterizing the types
of modified gravity. In our discussion for f (R) gravity these
parameters are a, b, and n, and for a non-minimally cou-
pled dilaton with gravity and SM it is characterized by the
non-minimal coupling parameter ξ as introduced earlier.

5.1 Case I: for f (R) gravity

A. For n = 2:
In this case f (R) is given by

f (R) = aR + bR2, (5.8)

where we set a = 1 to have consistency with the Einstein
gravity at the leading order and in this case b is the only
parameter that has to be constrained from dark matter self-
interaction. Additionally it is important to note that the mass
dimension of b for n = 2 case is −2.
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In this case the self-interaction parameter λ or V
′′′′
0 /4! can

be expressed as

λ = V
′′′′
0 /4! = Mφφ→φφ = 14

9b�2
UV

, (5.9)

where �UV is the UV cut-off of the effective field theory
and further, using Eq. (5.9), the constraint condition stated
in Eq. (5.7) can be recast as

|b| � 7

1800
√

2π�2
UV

×
(

GeV

M

)3/2

=

⎧⎪⎪⎨
⎪⎪⎩

3.87 × 10−13 GeV−2 for LDM with
M = 100 GeV, �UV = 2000 GeV
3.46 × 10−16 GeV−2 for HDM with
M = 500 GeV, �UV = 20000 GeV.

(5.10)

Thereby, depending on the choice of the dark matter mass
M and UV cut-off �UV parameters, we can constrain the
parameter b from the dark matter self-interaction.

B. For n > 2:
In this case f (R) is given by

f (R) = aR + bRn, with n > 2 (5.11)

where for physical consistency, we set a �= 1 and in this
case, a and b are the parameters to be constrained from dark
matter self-interaction for n > 2 case. Here it is important to
note that for the further numerical estimation we set n = 3.
Additionally it is important to note that the mass dimension
of b for the n = 3 case is −4.

In this case the self-interaction parameter λ can be
expressed as

λ = V
′′′′
0 /4! = Mφφ→φφ, (5.12)

where �UV is the UV cut-off of the effective field theory.
Calculations give

λ = 0.0004 + a [−0.0552 + a (0.2405 + (0.1140a − 0.2958)a)]

(1 − a)2.5b0.5�2
UV

.

The allowed values of the parameters a and b for n = 3
are shown in Fig. 7a. This figure is shown for M = 100 GeV
and �UV = 2 TeV. The plot for the HDM candidate
(M = 500 GeV and �UV = 20 TeV) looks exactly the
same. We observe that as a approaches 1, the value of b rises
asymptotically and grows, whereas, for values of a > 1, b is
negative and starts becoming smaller. We have checked that
the nature of the results is similar for n = 4 also, although
the allowed values of a and b are slightly different.

5.2 Case II: for non-minimally coupled gravity

Here we will discuss the situation where ξ �= 1/6,
φ

�UV
>>

1
ξ

and the effect of the non-minimal coupling ξ can be visu-
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Fig. 7 Plots showing variation of the parameters of modified gravity. In
a, we show the variation of the parameters a and b in f (R) = aR+bRn

for n = 3. Notice the non-analytic behavior at a = 1. This graph is
plotted for M = 100 GeV and �UV = 2 TeV. The plots look exactly
the same for the HDM candidate also. In b, we show a plot of the
parameter ξ of the non-minimally coupled gravity as a function of DM
mass

alized prominently as it couples to the SM sector. The other
case, ξ �= 1/6,

φ
�UV

<< 1
ξ

, is not relevant in the present
context as in this case the effect of the non-minimal coupling
ξ can be neglected and the SM sector couples to gravity min-
imally. In ξ �= 1/6,

φ
�UV

>> 1
ξ

case, the only parameter for
the modified gravity theory is the non-minimal coupling ξ for
the given value of dimensionless coefficients C0(g),C2(g)
andC4(g). Here we will constrain ξ using the constraint from
dark matter self-interaction. For the sake of simplicity we set
C0(g) ∼ C2(g) ∼ C4(g) ∼ O(1).

In ξ �= 1/6,
φ

�UV
>> 1

ξ
the self-interaction parameter λ

can be expressed as

λ = V
′′′′
0 /4! = Mφφ→φφ = 14 + ξ(16ξ − 15)

1944ξ2 , (5.13)

where �UV is the UV cut-off the effective field theory.
In this case, we show a plot of the parameter ξ as a function

of M in Fig. 7b. We find that for a larger mass of the scalaron,
a smaller value of ξ ∼ O(10−5) is favored. The range of M
is taken so as to cover the entire parameter space for LDM
and HDM candidates.

Thus, we observe that interpreting the dilaton as a dark
matter candidate naturally incorporates dark matter self-
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interaction and this can be directly used to put bounds on
the parameters of the extended theories of gravity. We have
presented a tree level analysis of the self-interactions. This
will receive corrections from higher order processes which
have not been considered here.

6 Alternate UV completion of the effective field theory

In this section, we plan to highlight some of the well-known
models which behave similarly as the effective field the-
ory in the present context. The matter–gravity interaction,
after a conformal transformation, generates terms involving
interactions of the DM with other SM particles through the
Lagrangian density,

Lint = φ2

�2
UV

LSM, (6.1)

where �UV is the mass scale of the effective theory, below
which this effective description works well.

The usual procedure is to start with description of a UV
complete theory. If the UV complete theory contains a heavy
particle of mass M ∼ �UV, we integrate out that particle
to get an effective Wilsonian operator at energies less than
the UV cut-off scale �UV, which contains all other particles
with masses lighter than �UV. To compare one UV com-
plete model with the framework of an effective description
in the present context, we have to investigate if all the DM
interaction operators are generated in that model.

In order to quantify the validity of the effective field theory,
we can compare its cross section with that from the full theory
at momentum transfer Qtr in the process,

pp → φφ + jet/γ, (6.2)

where φ is the scalar dark matter candidate in the model. The
cross sections are calculated for Qtr < �UV, with �UV being
the scale of the corresponding theory [9–11]. For the effective
theory the scale can be taken arbitrarily but a measurement
of the observables puts constraints on it. On the other hand,
the scale of a complete theory depends on the particle to be
integrated out from the theory.

6.1 Inert Higgs doublet model for low �UV

The inert Higgs doublet model (IHDM) is a complete descrip-
tion where there is a DM candidate which can have interac-
tion operators similar to the effective f(R) theory, at some
particular mass scale. There are many studies in the litera-
ture which look at the DM aspect of IHDM. A recent study
[59] has treated the non-SM CP even scalar in the IHDM as
the DM candidate and found the allowed parameter space

satisfying the relic density. Part of this parameter space gets
ruled out from the direct detection and collider physics con-
straints. An earlier study [60] analyzes the DM relic abun-
dance and prospects for direct or indirect detection in detail.
References [61,62] discuss new updated parameter regions
in the IHDM. Reference [63] provides an explanation of the
presence of γ lines in the IHDM.

The inert Higgs doublet model is the minimal and simplest
extension of the SM as it contains one extra scalar SU(2) dou-
blet �2, apart from the SM-Higgs doublet �1 whose neutral
component takes a vacuum expectation value (vev) equal to
v. It also couples to SM quarks and SM leptons similar to the
SM-Higgs. �2 does not get any vev. It also does not couple
to SM quarks and leptons. We also additionally enforce a Z2

symmetry, which transforms

�1 → �1, (6.3)

�2 → −�2, (6.4)

and the other SM fields remain invariant under it. The most
general CP-invariant, Z2 symmetry abiding scalar potential
is given as

V (�1,�2) = μ2
1|�1|2 + μ2

2|�2|2 + λ1|�1|4 + λ2|�2|4

+λ3|�1|2|�2|2 + λ4|�†
1�2|2 + λ5

2
((�

†
1�2)

2 + h.c.),

(6.5)

where μ2
i , λi s are taken real. We define two scalar doublets

in the unitary gauge by

�1 =
(

0
(v+h)√

2

)
; �2

(
H+

(S+i A)√
2

)
. (6.6)

With these definitions we get the mass terms and the inter-
action Lagrangian of the scalar sector:

L ⊃ 1

2
m2

hh
2 + 1

2
m2

S S
2 + λ

2
vhSS + λ

4
h2S2

+ λ2

2
S2A2 + other interactions, (6.7)

where

m2
h = 2λ1v

2,m2
S = μ2

2 + λ

2
v2 with λ = λ3 + λ4 + λ5,

(6.8)

and A is the CP-odd scalar of the model. The Yukawa cou-
pling in this theory is written as

Lyuk = yq Q̄L�1qR + h.c., (6.9)

which gives the mass of the fermions and also the hq̄q cou-
plings. Due to the Z2 symmetry imposed here, S cannot
decay to fermion channels. The mS can be made sufficiently
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Fig. 8 Left qq̄ → SS in the
full theory. Right Effective
process, after integrating out the
heavy mediator

q

q̄

h/H

S

S

q

q̄

S

S

small avoiding its decay to other scalars and WW/ZZ modes.
Therefore we take S as the DM candidate having direct inter-
actions with the Higgs. This Lagrangian can give us processes
like

pp → SS + jet/γ (6.10)

directly by a Higgs mediated process as shown in Fig. 8. At
�UV < mh , we can integrate out the Higgs boson to get an
effective vertex q̄qSS, which is the kind of effective cou-
pling to produce DM in the f(R) theory. If we take S as the
dilation then f (R) theory in first order generates a coupling
mq

�2
UV

q̄qSS. In DM annihilation, processes with two final state

particles contribute dominantly. We consider here the effec-
tive operators that only contribute to DM annihilation with
a two body final state. At �UV ∼ mh the theory contains
the DM candidate, W, Z boson, and all SM fermions except
the top quark. In IHDM the heavy Higgs (h) has all SM
like couplings i.e. the standard Yukawa and hWW and hZZ
couplings. Combining those with the hSS coupling present
in the model we get effective operators of the form q̄qSS,
WWSS, and Z ZSS, integrating out the Higgs. The couplings
hγ γ, hgg are present in the one-loop level. So operators
like SSγ γ, SSgg also get generated as the effective form
of IHDM at �UV ∼ mh . So we can generate all operators of
f (R) theory involving DM annihilation from the inert Higgs
doublet model. We can check the validity of the effective the-
ory description of f (R) gravity comparing it with the inert
2HDM contributions to some process involving DM.

6.2 UV complete model for high �UV

We construct a model where we do not directly add effec-
tive operators contributing to DM pair production and DM
annihilation processes as described above. We introduce a
heavy scalar H as a part of a third scalar doublet introduced
in the IHDM. Here this new doublet acquires a non-zero vev,
vH , resulting in a non-zero HAA/HSS vertex which origi-
nates from quartic coupling. Similarly H also couples to SM
fermions and gauge bosons similarly to SM Higgs, though
with different couplings. The Lagrangian consisting of H
interaction terms is given by

L ⊃ 1

2
m2

H H2 + λH HSS + yHq Hq̄q + gHV HVV + ...,

(6.11)

where V = {W, Z} and q denotes any SM fermion. At
�UV ∼ mH , the heavy scalar H gets integrated out from
our model to provide effective operators like q̄qSS, VV SS,
which are similar to the operators present in the effective f(R)
theory. So with big �UV we can calculate DM cross sections.

7 Conclusion

To summarize, in the present article, we have addressed the
following points:

• In this paper, we have proposed background models of
extended theories of gravity, which are minimally cou-
pled to SM fields. Initially we have started with a model
where the usual Einstein gravity is minimally coupled
with the SM sector. But to explain the genesis of dark
matter without affecting the SM particle sector, we have
further modified the gravity sector by allowing quantum
corrections motivated from (1) local f (R) gravity and
(2) a non-minimally coupled dilaton with gravity and SM
sector.

• Next we have constructed an effective theory in the Ein-
stein frame by applying a conformal transformation on
the metric. We have explicitly discussed the rules and
detailed techniques of conformal transformation in the
gravity sector as well as in the matter sector. Here for
completeness, we have also presented the results for arbi-
trary D spacetime dimensions. We have used D = 4 in
the rest of our analysis.

• Then we have also shown that the effective theory
constructed from (1) local f (R) gravity and (2) non-
minimally coupled dilaton with gravity and SM sector
looks exactly same.

• Here we have used the relic constraint as observed by
Planck 2015 to constrain the scale of the effective field
theory �UV as well as the dark matter mass M . We have
considered two cases: (1) light dark matter (LDM) and
(2) heavy dark matter (HDM), and we deduced upper
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bounds on the thermally averaged cross section of dark
matter annihilating to SM particles, in the non-relativistic
limit.

• We have modeled self-interactions of dark matter from
their effective potentials in both cases: (1) local f (R)

gravity and (2) a non-minimally coupled dilaton with
gravity and SM sector. Using the present constraint on
dark matter self-interactions, we have constrained the
parameters of these two gravity models.

• Next we have proposed different UV complete models
from a particle physics point of view, which can give rise
to the same effective theory that we have deduced from
extended theories of gravity. We have mainly considered
two models: (1) inert Higgs doublet model for LDM and
(2) inert Higgs doublet model with a new heavy scalar
for HDM. We have also explicitly shown that the UV
completion of this effective field theory does not need to
come from modifications to the matter sector, but rather
from extensions of the gravity sector.

• To conclude, we note that dark matter can indeed be con-
sidered to be an artifact of extended theories of gravity.
In our work, we have presented a dark matter candidate
which is generated purely from the gravity sector. We
have presented bounds on the mass of such a DM can-
didate, depending on the scale of the effective theory
considered.

The future prospects of this work are given now:

• The prescribed ideas can be worked out to derive cos-
mological constraints for other modified gravity frame-
works, i.e. the Randall–Sundrum single braneworld
(RSII) [64–72],16 Einstein–Hilbert–Gauss–Bonnet
(EHGB) gravity [75,80–82], Dvali–Gabadadze–Porrati
(DGP) braneworld [79], Einstein–Gauss–Bonnet–
Dilaton (EGBD) gravity [74,76–78,83], etc.

• Using the observational constraints from indirect detec-
tion of dark matter one can further constrain various
classes of modified theory of gravity scenarios.

• Detailed study of DM collider and direct detection con-
straints [84] on the effective theory prescription and the
study of the effectiveness of the prescribed theory from
the various extended theories of gravity is one of the
promising areas of research.

• Explaining the genesis of dark matter in the presence of
non-standard/ non-canonical kinetic term [85] and also
exploring the highly non-linear regime of effective field
theory are open issues in this literature.

• The relation between dark matter abundance, primordial
magnetic field and gravity waves, and the leptogenesis

16 See also the Refs. [73–78], for Randall–Sundrum two braneworld
(RSI) model.

scenario from these effective operators can be studied. In
the case of the RSII single membrane, some of the issues
have been recently worked out in Ref. [86].

• The exact role of dark matter in the case of alternatives to
inflation—specifically for cyclic and bouncing cosmol-
ogy [87–89] can also be studied in the present context.
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Appendix A: Conformal transformations in extended
theories of gravity

Conformal transformations in gravity sector

Consider a D dimensional spacetime, where M is a smooth
manifold and gμν is the Lorentzian metric on it. Under a
conformal transformation the metric gμν , its inverse gμν , the
determinant

√−g, and the infinitesimal line element trans-
form as:

gμν ⇒ g̃μν = �2(x)gμν, (8.1)

gμν ⇒ g̃μν = �−2(x)gμν, (8.2)

gμνg
νβ = δβ

μ ⇒ g̃μν g̃
νβ

= �2(x)gμν�
−2(x)gνβ = δβ

μ, (8.3)
√−g ⇒ √−g̃ = �D(x)

√−g, (8.4)

ds2 = gμνdx
μdxν ⇒ ds̃2 = g̃μνdx̃μdx̃ν
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= �2(x)gμνdxμdxν = �2(x)ds2, (8.5)

where the conformal factor �(x) is a smooth, non-vanishing,
spacetime point dependent rescaling of the metric. The con-
formal transformations can shrink or stretch the distances
between the two points described by the same coordinate
system xμ (where μ = 0, 1, 2, . . . , D) on the manifold M.
However, these transformations preserve the angles between
vectors, particularly null vectors, which define light cones,
thereby leading to a conservation of the global causal struc-
ture of the manifold. For simplicity, if we take the conformal
factor to be a constant spacetime independent function, then it
is known as a scale transformation. On the contrary, any arbi-
trary D dimensional coordinate transformations xμ → x̃μ

only change the structural form of the coordinates, but not
the associated geometry. This implies that coordinate trans-
formations are completely different from conformal transfor-
mations, which connect two different frames via conformal
couplings.

Finally, the Einstein tensor transforms as

Gμν ⇒ G̃μν = Gμν +
(
D − 2

2

)
�−2(x)

[
4∂μ�(x)∂ν�(x)

+(D − 5)∂α�(x)∂α�(x)gμν

]
− (D − 2)�−1(x)

[
�μ�ν − gμν�

]
�(x), (8.6)

G̃μν ⇒ Gμν = G̃μν +
(
D − 2

2

)
�−2(x)(D − 1)∂α

�(x)∂α�(x)g̃μν

+ (D − 2)�−1(x)
[
�̃μ�̃ν − g̃μν�̃

]
�(x). (8.7)

We observe that conformal transformations under some spe-
cific conditions behave like a duality transformation in super-
string theory. To demonstrate this, let us define the conformal
factor by

�(x) = eω(x) = e
κ√
6
φ(x)

, (8.8)

where ω(x) = κ√
6
φ(x) represents the new scalar field

“scalaron” or “dilaton”. Here we define κ = �−1
UV. Now,

the conformal transformation in the metric gμν , its inverse
gμν , determinant

√−g, and consequently the infinitesimal
line element transform as

gμν ⇒ g̃μν = e2ω(x)gμν = e
2κ√

6
φ(x)

gμν, (8.9)

gμν ⇒ g̃μν = e−2ω(x)gμν = e
− 2κ√

6
φ(x)

gμν, (8.10)

gμνg
νβ = δβ

μ ⇒ g̃μν g̃
νβ = e2ω(x)gμνe

−2ω(x)gνβ = δβ
μ,

(8.11)
√−g ⇒ √−g̃ = eDω(x)√−g = e

Dκ√
6
φ(x)√−g, (8.12)

ds2 = gμνdx
μdxν ⇒ ds̃2 = g̃μνdx̃μdx̃ν

= e2ω(x)gμνdxμdxν = e
2κ√

6
φ(x)

ds2. (8.13)

In the present context, the Einstein frame and the Jordan
frame are connected via the following duality transformation:

�(x) = 7eω(x) = e
κ√
6
φ(x) ⇐⇒ �−1(x)

= e−ω(x) = e
− κ√

6
φ(x)

, (8.14)

which is exactly the same as the weak–strong coupling dual-
ity in superstring theory. Using Eq. (8.8) we get

�−1(x)∂μ�(x) = ∂μω(x) = κ√
6
∂μφ(x), (8.15)

�−1(x)�μ�ν�(x) = �μ�νω(x) + ∂μω(x)∂νω(x)

= κ√
6
�μ�νφ(x) + κ2

6
∂μφ(x)∂νφ(x),

(8.16)

�−1(x)��(x) = �ω(x) + ∂μω(x)∂νω(x)

= κ√
6
�φ(x) + κ2

6
∂μφ(x)∂νφ(x).

(8.17)

Consequently in terms of the “scalaron” or “dilaton”, the
Christoffel connections can be recast as

�β
μν ⇒ �̃β

μν = �β
μν + [

δβ
μ∂ν + δβ

ν ∂μ − gμνg
βα∂α

]
ω(x)

= �β
μν + κ√

6

[
δβ
μ∂ν + δβ

ν ∂μ − gμνg
βα∂α

]
φ(x),

(8.18)

�ν
μν ⇒ �̃ν

μν = �ν
μν + D∂μω(x) = �ν

μν + κD√
6

∂μφ(x),

(8.19)
�̃β

μν ⇒ �β
μν = �̃β

μν − [
δβ
μ∂ν + δβ

ν ∂μ − g̃μν g̃
βα∂α

]
ω(x)

= �̃β
μν − κ√

6

[
δβ
μ∂ν + δβ

ν ∂μ − g̃μν g̃
βα∂α

]
φ(x),

(8.20)

�̃ν
μν ⇒ �ν

μν = �̃ν
μν − D∂μω(x) = �̃ν

μν − κD√
6

∂μφ(x).

(8.21)

Consequently, the Riemann tensors, Ricci tensors, and Ricci
scalars can be expressed in terms of the “scalaron” or “dila-
ton” as

R̃μ
ναβ ⇒ Rμ

ναβ = R̃μ
ναβ −

[
δ
μ
β �̃ν�̃α − δμ

α �̃ν�̃β

+g̃να�̃μ�̃β − g̃νβ�̃μ�̃α

]
ω(x)

+
[
δμ
α ∂νω(x)∂βω(x) − δ

μ
β ∂νω(x)∂αω(x)

+gνβ∂μω(x)∂αω(x) − gνα∂μω(x)∂βω(x)
]

+
[
δ
μ
β g̃να − δμ

α g̃νβ

]
g̃λη∂

λω(x)∂ηω(x)

= R̃μ
ναβ − κ√

6

[
δ
μ
β �̃ν�̃α − δμ

α �̃ν�̃β
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+g̃να�̃μ�̃β − g̃νβ�̃μ�̃α

]
φ(x)

+κ2

6

[
δμ
α ∂νφ(x)∂βφ(x) − δ

μ
β ∂νφ(x)∂αφ(x)

+gνβ∂μφ(x)∂αφ(x) − gνα∂μφ(x)∂βφ(x)
]

+κ2

6

[
δ
μ
β g̃να − δμ

α g̃νβ

]
g̃λη∂

λφ(x)∂ηφ(x), (8.22)

R̃μν ⇒ Rμν = R̃μν + (D − 2)

× [
∂μω(x)∂νω(x) − g̃μν∂αω(x)∂αω(x)

]
+ [(D − 2)�̃μ�̃ν + g̃μν�̃

]
ω(x)

= R̃μν + κ2(D − 2)

6
× [

∂μφ(x)∂νφ(x) − g̃μν∂αφ(x)∂αφ(x)
]

+ κ√
6

[
(D − 2)�̃μ�̃ν + g̃μν�̃

]
φ(x), (8.23)

R̃ ⇒ R = e2ω(x)
[
R̃ + 2(D − 1)�̃ω(x)

−(D − 2)(D − 1)∂αω(x)∂βω(x)g̃αβ
]

= e
2κ√

6
φ(x)

[
R̃ + 2κ(D − 1)√

6
�̃φ(x)

−κ2(D − 2)(D − 1)

6
∂αφ(x)∂βφ(x)g̃αβ

]
.

(8.24)

Additionally, the d’Alembertial operator can be expressed in
terms of the “scalaron” or “dilaton” as

�̃ ⇒ � = e2ω(x) [�̃ − (D − 2)g̃μν∂μω(x)∂ν

]

= e
2κ√

6
φ(x)

[
�̃ − κ(D − 2)√

6
g̃μν∂μφ(x)∂ν

]
.

(8.25)

Finally, the Einstein tensor is transformed as

G̃μν ⇒ Gμν = G̃μν +
(
D − 2

2

)[
∂μω(x)∂νω(x)

+
(
D − 3

2

)
∂αω(x)∂αω(x)g̃μν

]

+(D − 2)
[
�̃μ�̃ν − g̃μν�̃

]
ω(x)

= G̃μν + κ2

6

(
D − 2

2

)[
∂μφ(x)∂νφ(x)

+
(
D − 3

2

)
∂αφ(x)∂αφ(x)g̃μν

]

+ κ√
6
(D − 2)

[
�̃μ�̃ν − g̃μν�̃

]
φ(x). (8.26)

We use the results for D = 4 to study the consequences in
the context of dark matter.

Conformal transformations in matter sector

Let us assume that matter is minimally coupled with the grav-
ity sector. In such a case, in an arbitrary D dimensional space-
time, the action can be written as

SM =
∫

dDx
√−gLM , (8.27)

which is invariant under the conformal transformation in the
metric, as mentioned earlier. In our present context, in D = 4,
we have taken the matter sector to be SM i.e. LM = LSM.
Under this conformal transformation, the energy-momentum
stress tensor transforms as

T̃μν
M = 2√−g̃

δ

δg̃μν

(√−g̃L̃M

)
= �−D−2(x)Tμν

M

= e−(D+2)w(x)Tμν
M = e

− κ√
6
(D+2)φ(x)

Tμν
M , (8.28)

T̃μ
ν,M = T̃μα

M g̃αν = �−D(x)Tμ
ν,M = e−Dw(x)Tμ

ν,M

= e
− κ√

6
Dφ(x)

Tμ
ν,M , (8.29)

T̃μν,M = T̃ αβ
M g̃αμg̃βν = �−D+2(x)Tμν,M = e(2−D)w(x)Tμν,M

= e
κ√
6
(2−D)φ(x)

Tμν,M , (8.30)

T̃M = Tμ
μ,M = �−D(x)Tμ

μ,M = e−Dw(x)Tμ
μ,M

= e
− κ√

6
Dφ(x)

Tμ
μ,M , (8.31)

where L̃M is the energy-momentum stress tensor in Einstein
frame and this is related to the Jordan frame via the following
transformation rule:

L̃M = �−D(x)LM = e−Dw(x)LM = e
− κ√

6
Dφ(x)LM .

(8.32)

Using the fact that the matter sector is governed by a perfect
fluid and the structural form of the conformal transformation
in the metric, one can show that the density and pressure can
be transformed in the Einstein frame as

ρ̃ = �−D(x)ρ = e−Dw(x)ρ = e
− κ√

6
Dφ(x)

ρ, (8.33)

p̃ = �−D(x)p = e−Dw(x) p = e
− κ√

6
Dφ(x)

p, (8.34)

where (ρ, p) and (ρ̃, p̃) are the density and pressure of the
matter content in the Jordan and Einstein frame, respectively.
The results clearly show that if we impose conservation of
the energy-momentum stress tensor in one frame, then in the
other conformally connected frame it is no longer conserved.
Only if we assume that in both frames the matter content
is governed by the traceless tensor, then conservation holds
good in both frames simultaneously. But for a general matter
content this may not always be the case. For example, in the
D = 4 version of the effective field theory discussed in this
paper, we assume that the matter content is governed by the
well-known SM fields in the Jordan frame. But after applying
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the conformal transformation in the metric, the conformal
coupling factor becomes

�−4(x) = e−4ω(x) = e
− 4κ√

6
φ(x)

, (8.35)

or more precisely, the “scalaron”or the “dilaton” field is inter-
acting with the SM matter fields in the Einstein frame, which
will act as the primary source of generating a scalar dark
matter candidate from an extended theory of gravity.

Appendix B: Thermally averaged annihilation cross
section

Here we outline the annihilation cross section for the pro-
cesses contributing to the relic density (Fig. 9).

We have

〈σv〉NRGμGμ = 32M2

π�4
UV

+ 16M2

π�4
UV

v2 = aN RGμGμ (�UV, M)

+ bN RGμGμ (�UV, M)v2, (9.1)

〈σv〉NRWμWμ =

√
1 − M2

W
M2

32πM2

×
(

64M4

�4
UV

+ 64M8

�4
UVM4

W

− 128M6

�4
UVM2

W

+ 8M4
W

�4
UV

)

+

√
1 − M2

W
M2

32πM2

(
32M4

�4
UV

+ 64M8

�4
UVM4

W

− 96M6

�4
UVM2

W

)
v2

= aNRWμWμ (�UV, M) + bNRWμWμ (�UV, M)v2, (9.2)

〈σv〉NRZμ Zμ =

√
1 − M2

Z
M2

32πM2 sin4 θW

×
(

64M4

�4
UV

+ 64M8

�4
UVM4

Z

− 128M6

�4
UVM2

Z

+ 8M4
Z

�4
UV

)

+

√
1 − M2

Z
M2

32πM2 sin4 θW

×
(

32M4

�4
UV

+ 64M8

�4
UVM4

Z

− 96M6

�4
UVM2

Z

)
v2

= aNRZμ Zμ (�UV, M) + bNRZμ Zμ (�UV, M)v2, (9.3)

〈σv〉N RAμ Aμ = 4M2 cos4(θW )

π�4
UV

+ 2M2 cos4(θW )

π�4
UV

v2

= aNRAμ Aμ (�UV, M) + bNRAμ Aμ (�UV, M)v2, (9.4)

〈σv〉N Rhh =

√
1 − M2

h
M2

32πM2

(
64M4

�4
UV

+ 32M4

�4
UV

v2

)

= aNRhh (�UV, M) + bN Rhh (�UV, M)v2, (9.5)

〈σv〉NR f f =

√
1 − M2

f

M2

32πM2

(
4M2M2

f

�4
UV

− 4M4
f

�4
UV

+ M2M2
f

�4
UV

v2

)

= aNR f f (�UV, M) + bNR f f (�UV, M)v2, (9.6)

where f can be any fermion channel which is kinematically
allowed. Here the expression for a and b for the individual
processes are given by
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φ
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p2

Ga
μ

Ga
ν

φ

φ
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φ

φ

h

h

p2

p1

φ

φ

f

f

Fig. 9 Effective processes contributing to relic density of dark matter
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aNRGμGμ (�UV, M) = 32M2

π�4
UV

, (9.7)

aNRWμWμ (�UV, M) =

√
1 − M2

W
M2

32πM2

×
(

64M4

�4
UV

+ 64M8

�4
UVM

4
W

− 128M6

�4
UVM

2
W

+ 8M4
W

�4
UV

)
, (9.8)

aNRZμZμ (�UV, M) =

√
1 − M2

Z
M2

32πM2 sin4 θW

×
(

64M4

�4
UV

+ 64M8

�4
UVM

4
Z

− 128M6

�4
UVM

2
Z

+ 8M4
Z

�4
UV

)
, (9.9)

aNRAμAμ (�UV, M) = 4M2 cos4(θW )

π�4
UV

, (9.10)

aNRhh (�UV, M) =

√
1 − M2

h
M2

32πM2

64M4

�4
UV

, (9.11)

aNR f f (�UV, M) =

√
1 − M2

f

M2

32πM2

(
4M2M2

f

�4
UV

− 4M4
f

�4
UV

)
,

(9.12)

bNRGμGμ (�UV, M) = 16M2

π�4
UV

, (9.13)

bNRWμWμ (�UV, M) =

√
1 − M2

W
M2

32πM2

×
(

32M4

�4
UV

+ 64M8

�4
UVM

4
W

− 96M6

�4
UVM

2
W

)
, (9.14)

bNRZμZμ (�UV, M) =

√
1 − M2

Z
M2

32πM2 sin4 θW

×
(

32M4

�4
UV

+ 64M8

�4
UVM

4
Z

− 96M6

�4
UVM

2
Z

)
, (9.15)

bNRAμAμ (�UV, M) = 2M2 cos4(θW )

π�4
UV

, (9.16)

bNRhh (�UV, M) =

√
1 − M2

h
M2

32πM2

32M4

�4
UV

, (9.17)

bN R f f (�UV, M) =

√
1 − M2

f

M2

32πM2

×
(

4M2M2
f

�4
UV

− 4M4
f

�4
UV

+ M2M2
f

�4
UV

v2

)
. (9.18)

Therefore, summing up all the contributions, we get

〈σv〉NR = 〈σv〉N RGμGμ + 〈σv〉NRWμWμ + 〈σv〉N RZμZμ

+〈σv〉N RAμ Aμ + 〈σv〉N Rhh + 〈σv〉NR f f

= a(�UV, M) + b(�UV, M)v2, (9.19)

where a(�UV, M) and b(�UV, M) are defined by

a(�UV, M) = aNRGμGμ (�UV, M)

+ aNRWμWμ (�UV, M) + aNRZμ Zμ (�UV, M)

+ aNRAμ Aμ (�UV, M) + aNRhh (�UV, M)
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+
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×
(

64M4

�4
UV

+ 64M8

�4
UVM4

W

− 128M6

�4
UVM2

W

+ 8M4
W

�4
UV

)

+

√
1 − M2

Z
M2

32πM2 sin4 θW

(
64M4

�4
UV

+ 64M8

�4
UVM4

Z

− 128M6

�4
UVM2

Z

+ 8M4
Z

�4
UV

)

+4M2 cos4(θW )

π�4
UV

+

√
1 − M2

h
M2

32πM2

(
64M4

�4
UV

)
+

√
1 − M2

f

M2

32πM2

(
4M2M2

f

�4
UV

− 4M4
f

�4
UV

)
,

(9.20)
b(�UV, M) = bNRGμGμ (�UV, M) + bNRWμWμ (�UV, M)

+ bNRZμ Zμ (�UV, M)

+ bNRAμ Aμ (�UV, M) + bNRhh (�UV, M) + bNR f f (�UV, M)

= 16M2

π�4
UV

+

√
1 − M2

W
M2

32πM2

(
32M4
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UV

+ 64M8

�4
UVM4

W

− 96M6
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)

+

√
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− 96M6
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×2M2 cos4(θW )
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+

√
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h
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+

√
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(
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)
. (9.21)

Appendix C: Effective potential construction for dark
matter self-interaction

In this section we discuss the effective potential construc-
tion necessarily required for the dark matter self-interaction.
Using the results of this section derived from modified grav-
ity: (1) f (R) gravity, (2) non-minimally coupled gravity the-
ory, we further constrain the parameters of the modified grav-
ity theories.
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Case I: for f (R) gravity

A. For n = 2

In this case f (R) is given by

f (R) = aR + bR2, (10.1)

where we set a = 1 to have consistency with the Einstein
gravity at the leading order and in this case b is the only
parameter that has to be constrained from the dark matter self-
interaction for the n = 2 case. Additionally it is important to
note that the mass dimension of b for the n = 2 case is −2.

In the present context, the effective potential can be
expressed as

V (φ) = �2
UV

4b
e
− 4√

6
φ(x)
�UV

(
e

2√
6

φ(x)
�UV − a

)2

. (10.2)

To further study the constraint on the model parameters, one
can expand the effective potential by respecting the Z2 sym-
metry as

V (φ) = V0 + V
′′
0

2! φ2 + V
′′′′
0

4! φ4 + · · · , (10.3)

where the Taylor expansion coefficients are given by

V0 = 0, (10.4)

V
′′
0 = 1

3b
, (10.5)

V
′′′′
0 = 24λ = 14

9b�2
UV

. (10.6)

B. For n > 2

In this case f (R) is given by

f (R) = aR + bRn, (10.7)

where, for physical consistency, we set a �= 1 and in this
case, a and b are the parameters to be constrained from the
dark matter self-interaction for the n > 2 case. Here it is
important to note that for the further numerical estimation
we set n = 3. Additionally it is important to note that the
mass dimension of b for the n = 3 case is −4.

In the present context the effective potential can be
expressed as

V (φ) = A�2
UV e

− 4√
6

φ(x)
�UV

(
e

2√
6

φ(x)
�UV − a

)B

, (10.8)

where A and B are defined by

A = b(n − 1)

(nb)
n

n−1
, (10.9)

B = n

n − 1
. (10.10)

To further study the constraint on the model parameters, one
can expand the effective potential by respecting the Z2 sym-
metry as

V (φ) = V0 + V
′′
0

2! φ2 + V
′′′′
0

4! φ4 + · · · , (10.11)

where the Taylor expansion coefficients are given by

V0 = 0, (10.12)

V
′′
0 = 2A

3
(1 − a)B−2

[
4a2 + (B − 2)2 + a(3B − 8)

]
,

(10.13)

V
′′′′
0 = 24λ = 4A

9�2
UV

(1 − a)B−4

×
[
16a4 + (B − 2)4 + a2(B − 4)(7B − 24)

+a3(15B − 64)+a(−64+B(63+2B(B − 10)))
]
.

(10.14)

Therefore,

λ = 0.0004 + a [−0.0552 + a (0.2405 + (0.1140a − 0.2958)a)]

(1 − a)2.5b0.5�2
UV

.

Case II: for non-minimally couples gravity with
ξ �= 1/6,

φ
�UV

>> 1
ξ

Here we will discuss the situation where ξ �= 1/6,
φ

�UV
>>

1
ξ

and the effect of the non-minimal coupling ξ can be visu-
alized clearly as it couples to the SM sector. The other case,
ξ �= 1/6,

φ
�UV

<< 1
ξ

, is not relevant in the present context
as in this case the effect of the non-minimal coupling ξ can
be neglected and SM sector couples to gravity minimally.
In the ξ �= 1/6,

φ
�UV

>> 1
ξ

case the only parameter for the
modified gravity theory is the non-minimal coupling ξ for the
given value of dimensionless coefficients C2(g) and C4(g)
and here we will constrain ξ using the constraint from the
dark matter self-interaction. For the sake of simplicity we set
C2(g) ∼ C4(g) ∼ O(1).

In the present context the effective potential can be
expressed as

V (φ) = e
− 4φ√

6�UV

∞∑
α=0

Cα(g)
�4

UV

ξ
α
2

(
e

2φ√
6�UV − 1

)α
2

.

(10.15)

Here for our numerical study we truncate the above series at
α = 4 and, applyingZ2 symmetry of the effective potential,
one can write down the expression
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V (φ) = e
− 4φ√

6�UV
∑

α=0,2,4

Cα(g)
�4

UV

ξ
α
2

(
e

2φ√
6�UV − 1

)α
2

=
[
A + B e

− 2φ√
6�UV + C e

− 4φ√
6�UV

]
, (10.16)

where A, B, and C is given by

A = �4
UV

C4(g)

ξ
, (10.17)

B = �4
UV

(
C2(g) − 2C4(g)

ξ

)

ξ
, (10.18)

C = �4
UV

(
C0(g) − C2(g)

ξ
+ C4(g)

ξ2

)
. (10.19)

To further study the constraint on the model parameters,
one can expand the effective potential by respecting the Z2

symmetry as

V (φ) = V0 + V
′′
0

2! φ2 + V
′′′′
0

4! φ4 + · · · , (10.20)

where the Taylor expansion coefficients are given by

V0 = 0, (10.21)

V
′′
0 = B + 4C

9�2
UV

, (10.22)

V
′′′′
0 = 24λ = B + 16C

81�4
UV

. (10.23)

For C0(g) ∼ C2(g) ∼ C4(g) ∼ O(1), we get the following
expression for the self-interaction parameter:

λ = 14 + ξ(16ξ − 15)

1944ξ2 . (10.24)
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