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Abstract We consider a higher-derivative extension of
QED modified by the addition of a gauge-invariant dimens-
ion-6 kinetic operator in the U (1) gauge sector. The Feyn-
man diagrams at one-loop level are then computed. The
modification in the spin-1 sector leads the electron self-
energy and vertex corrections diagrams finite in the ultra-
violet regime. Indeed, no regularization prescription is used
to calculate these diagrams because the modified propaga-
tor always occurs coupled to conserved currents. Moreover,
besides the usual massless pole in the spin-1 sector, there is
the emergence of a massive one, which becomes complex
when computing the radiative corrections at one-loop order.
This imaginary part defines the finite decay width of the mas-
sive mode. To check consistency, we also derive the decay
length using the electron–positron elastic scattering and show
that both results are equivalent. Because the presence of this
unstable mode, the standard renormalization procedures can-
not be used and is necessary adopt an appropriate framework
to perform the perturbative renormalization. For this pur-
pose, we apply the complex-mass shell scheme (CMS) to
renormalize the aforementioned model. As an application of
the formalism developed, we estimate a quantum bound on
the massive parameter using the measurement of the elec-
tron anomalous magnetic moment and compute the Uehling
potential. At the end, the renormalization group is analyzed.

a e-mail: rturcati@sissa.it
b e-mail: mariojr@ufrrj.br

1 Introduction

Effective field theories (EFT) play a central role in modern
physics. They cover almost all branches in physics such as
nuclear systems derived from low-energy quantum chromo-
dynamics [1], chiral perturbation theory [2–5], BCS theory
formulated from conventional superconductivity [6], infla-
tionary model in cosmology [7,8], gravitationally induced
decoherence [9], and so on. Even our most fundamental the-
ories, General Relativity and the Standard Model, are thought
of as leading terms of some underlying theory [10,11].

The ideas concerning EFT have began with a nonlinear
modification of Maxwell electromagnetism made in order
to understand the photon–photon electrodynamical scatter-
ing process by Euler and Heisenberg [12] in the 1930s. At
the same time, Fermi developed the theory of beta decay
to describe the elementary process n → p + e− + ν̄e in
the framework of quantum field theory [13]. Even having
some interesting features, Fermi and Euler–Heisenberg the-
ories were not taken seriously since they were not renor-
malizable. Nevertheless, some years later, the development
of the renormalization and the renormalization group tech-
niques [14], along with the theorem derived by Appelquist
and Carazzone [15]—which states that heavy mass particles
can be decoupled from low energy dynamics under certain
conditions—gave rise to the current EFT programme [16].

Effective theories allow us to simplify the description of a
given physical process by taking into account the appropri-
ate variables at a given energy scale, i.e., one can consider
only the relevant degrees of freedom at a specific energy
range. It is basically a low energy dynamics valid below some
energy scale and which does not depend on the behavior in
the ultraviolet regime. EFT have the advantage of reducing
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the number of degrees of freedom, turning the description of
the physical system under consideration easier to deal with.
An appropriate choice of degrees of freedom is a crucial point
in the understanding of the problem.

One interesting set of EFT models are the so-called higher-
order theories. This class of theories are characterized basi-
cally by the modification of the free propagator through the
introduction of higher-order kinetic terms in the Lagrangian,
which leads to a modified propagator that exhibits a bet-
ter asymptotic behavior. However, these theories are usu-
ally plagued with ghosts states, giving rise to non-Hermitian
interactions and scattering processes that do not preserve
probabilities, violating the unitarity. There are many phe-
nomena that are described in this framework such as dark
energy [17–19], ultraviolet regulators [20–22], renormaliz-
able gravity models [23], string theory [24], and supersym-
metry [25], for instance. It also have been suggested that
quantum gravity effects can give rise to partners to every
field in the Standard Model [26,27], which can be included
in a straightforward way by the aforementioned formalism,
generating an extension of the SM. In addition, some work
has recently demonstrated that higher-order derivative theo-
ries may emerge in the scope of noncommutative spacetimes
[28–32]. In this framework, the introduction of a minimal
length naturally generates higher-order kinetic terms, as in
the case of electrodynamics and general relativity [33], for
instance. In this sense, a better understanding of some basic
features of higher-order theories would certainly help us to
improve our knowledge of this set of models.

Concerning QED, a possible way to find an effective
Lagrangian is through the addition of a gauge-invariant
dimension-6 operator containing higher derivatives in the
free Lagrangian of the U (1) sector, namely,

Leff = −1

4
F2

μν − 1

4M2 Fμν�Fμν, (1)

where M is the only parameter added to theory and is respon-
sible for introducing a cutoff in the ultraviolet regime of QED.
This modification is very similar to the Pauli–Villars regu-
larization procedure [34], the Lee–Wick model [35,36] at
quantum level, and Podolsky electromagnetism [37,38] in
the classical context. The new degree of freedom in QED
changes dramatically the behavior of the theory at short
distances. Nevertheless, unitarity is not preserved.1 Many
remarkable features are found in this QED extension such as
the coexistence of Dirac magnetic monopoles and massive

1 Actually, the Lee–Wick electrodynamics is claimed to be unitary.
Higher-order kinetic terms introduce the appearance of negative norm
states in the Hilbert space, which violates the unitarity. Lee and Wick
argued that unitarity could be preserved if the Lee–Wick particles obtain
a decay width and do not appear in the asymptotic states. For further
information, see [35,36,39,40].

vector bosons [41], the presence of finite electromagnetic
mass and self-energy of point particles [37,38]. Also, it pro-
vides an adequate scenario to solve the 4/3 problem [42–44].

Our goal in this paper is precisely to address: (i) the
one-loop radiative corrections, (ii) the perturbative renor-
malization of the HDQED in the complex-mass shell (CMS)
scheme, (iii) a quantum bound on the M-parameter using the
measurement of the electron anomalous magnetic moment,
(iv) the decay width of the unstable mode taking into account
the electron–positron scattering, (iv) the computation of the
Uehling potential in the HDQED framework, and the (v)
analysis of the renormalization group.

This work is organized as follows. In Sect. 2 we give
a brief description of our model. In the following section,
Sect. 3, we compute the second-order radiative corrections
in the HDQED context. Also, the finite decay width of the
unstable mode is explicity calculated. At the end of Sect. 3
we present the Uehling potential. The complex-mass shell
renormalization scheme together with the renormalization
group is presented in Sect. 4. We summarize our results in
Sect. 5.

In our conventions h̄ = c = 1 and the signature of the
metric is (+1,−1,−1,−1).

2 The higher-derivative QED

The higher-derivative electromagnetism usually is defined by
the U (1)-gauge-invariant Lagrangian density

Leff = −1

4
F2

μν − 1

4M2 Fμν�Fμν − JμA
μ, (2)

where Fμν = ∂μAν − ∂ν Aμ is the field strength and M is a
mass parameter which introduces a length scale in the model.
Using the Bianchi identity, the higher-order kinetic term can
be rewritten as

− 1

4M2 F
μν�Fμν → 1

2M2 ∂μF
μν∂λFλν, (3)

which implies that Lagrangian (2) takes the form

Leff = −1

4
F2

μν + 1

2M2 ∂μF
μν∂λFλν − JμA

μ. (4)

The effective Lagrangian (4), besides being Lorentz invari-
ant, gives origin to local field equations that are linear in the
field quantities and are given by(

1 + �
M2

)
∂μF

μν = J ν, (5)

∂μ F̃
μν = 0, (6)

where F̃μν = 1
2εμναβFαβ . From the above fourth-order

equations of motion, it is clear that the system will carry
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more degrees of freedom than Maxwell electromagnetism.
In this sense, it is instructive understand what is the particle
content of this model at the quantum level. To accomplish
this, we first add the gauge-fixing term Lζ = − 1

2ζ

(
∂μAμ

)2

to the Lagrangian (4), where ζ is the gauge-fixing parameter,
and then compute the propagator in momentum space, which
assumes the form

Dμν(k) = M2

k2(k2 − M2)

[
ημν + (ζ − 1)

kμkν

k2 − ζ
kμkν

M2

]
.

(7)

Contracting (7) with the external conserved currents Jμ, one
obtains

M ≡ Jμ(k)Dμν(k)J
ν(k) = − J 2

k2 + J 2

k2 − M2 . (8)

The scattering amplitude (8) has poles at k2 = 0 and
k2 = M2. Taking into account that J is space-like (J 2 < 0)
[45–47], we have the residues

ResM(k2 = 0) > 0, ResM(k2 = M2) < 0. (9)

From the above residues it is clear that the model under con-
sideration carry two spin-1 modes, one massless and one
massive. The positive sign residue corresponds to the spin-1
massless excitation, which can be related to the QED pho-
ton. The spin-1 massive mode possess a wrong sign residue
which give rise to negative norm states (ghost states) and
consequently causes unitarity violation. However, since we
are treating the HDQED as an effective field theory, it will
not concern us. Regarding to renormalizability, the modified
spin-1 propagator always occurs coupled to conserved cur-
rent, which means that terms proportional to the momenta
kμ give vanish contributions. Hence, the modified propaga-
tor reduces to

Dμν(k
2) = M2

k2(k2 − M2)
ημν = −ημν

k2 + ημν

k2 − M2 , (10)

which is the difference between Maxwell and Proca prop-
agators. The first term on the right of Eq. (10) is the QED
propagator, which is renormalizable by power counting. The
second corresponds to a massive spin-1 propagator. Mas-
sive vector theories have a bad behavior at high energies and
do not go to zero asymptotically. However, there are two
exceptions: (i) gauge theories with spontaneous symmetry
breaking and (ii) neutral vector bosons coupled to conserved
currents. The condition (ii) ensures the renormalizability of
the Proca model, showing that the model is renormalizable
by power counting.

Fig. 1 The potential U (in units of e2

4π
), as a function of the distance

r . The dashed line represents the Coulomb potential (in units of e2

4π
). It

is clear from the above figure that in the HDQED the potential is finite
at origin. Here, we are assuming the M-value found (M ≈ 438 GeV)
in Sect. 3

According to Eq. (10), the nonrelativistic potential U (r)
between two electrically charged particle can be expressed
as

U (r) = UCoulomb(r) −UYukawa(r) (11)

= − e2

4πr

(
1 − e−Mr

)
, (12)

which have the following properties:

1. The regularized potential is finite at the origin

U (r → 0) = − e2

4π
M, (13)

which is evidence that point-like particles has electro-
magnetic mass and self-energy finities.

2. The standard Coulomb potential is recovered when
Mr >> 1.

3. At short distances, i.e., Mr << 1,U differs significantly
from the Coulomb potential, as one can see from Fig. 1.

3 Second-order radiative corrections of the HDQED

The Lagrangian density characterizing the higher-derivative
spinor quantum electrodynamics can be written as

L = ψ̄
(
iγ μ∂μ − m

)
ψ − 1

4
F2

μν + 1

2M2 ∂μF
μν∂λFλν

−e ψ̄γ μψ Aμ, (14)

where the first term on the right is the Dirac kinetic operator,
m is the electron mass and the last term denotes the interacting
term. In the lowest-order perturbation theory, the scattering
of charged particles by each other is characterized by the
matrix element of the operator in momentum space
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∫
d4k Jμ(k)Dμν(k)J

ν(k), (15)

where Jμ = e ψ̄γ μψ is the conserved charged fermionic
current and Dμν(k) is the Feynman propagator.

According to (15), the modified propagator always occurs
coupled to conserved currents and the momenta dependence
vanishes, reducing the propagator to

Dμν(k) = −ημν

k2 + ημν

k2 − M2 = M2

k2(k2 − M2)
ημν, (16)

which provides a better behavior at high energies since the
propagator goes as k−4 at the asymptotic limit. By power
counting, all higher-order process of the Lagrangian (2) are
finite, except for the charge renormalization. In other words,
the QED primary divergences related to the electron self-
energy and vertex corrections are convergent. Nevertheless,
the vacuum polarization diagram, as in QED case, is ultravi-
olet divergent. We will apply the dimensional regularization
to cancel off the divergence arising from the vacuum polar-
ization. Now, we shall undertake the computation of second-
order radiative corrections of the HDQED.

3.1 Electron self-energy

The electron self-energy expression
(p) at one-loop approx-
imation in the HDQED is given by

− i
(/p) = (ie)2
∫

d4k

(2π)4

[
1

k2 − λ2 − 1

k2 − M2

]

×γμ
/p − /k + m

(p − k)2 − m2 γ μ, (17)

where λ is an infrared regulator. A dimensional analysis
shows that the modified propagator makes the integral (17)
convergent at high energies. The explicit form of the electron
self-energy integral is


(/p) = α

2π

∫ 1

0
dx[2m − (1 − x)/p]

×ln

[
x(x − 1)p2 + xm2 − (1 − x)μ2 + (1 − x)M2

x(x − 1)p2 + xm2 − (1 − x)λ2

]
,

(18)

where α = e2/4π is the fine structure constant. Using the
on-shell condition (p′2 = p2 = m2) and remembering that
the higher-order electrodynamics bring about small devia-
tions from QED, which implies that the mass is very large
compared to the electron mass (M � m), the integral (18)
reduces to



(
/p = m

) ∼= 3α

2π
m ln

(
M

m

)
, (19)

which yields a finite value to the electron mass. Indeed, this
result is not a surprise since the self-force acting on a point

charge particle is finite and well defined in the HDQED sce-
nario. As an aside, we remark that the 4/3 problem finds a
natural explanation in the HDQED context since the electro-
magnetic mass enters in the Aharonov–Lorentz equation in a
form consistent with special relativity [42–44]. Nevertheless,
the infrared divergence remains.

3.2 Vertex correction

In the HDQED, the second-order vertex correction is given
by

�μ(p′, p) = ie2
∫

d4k

(2π)4

M2

k2
(
k2 − M2

)

×γα

(/p′ − /k + m)

(p′ − k)2 − m2 γ μ (/p − /k + m)

(p − k)2 − m2 γ α.

(20)

As in the case of electron self-energy, the vertex correction
(20) is ultraviolet convergent at short distances due to the
modified propagator. Again, no regularization procedure is
necessary. In order to obtain an explicit form of the vertex
correction, we can use the Gordon identity of the Dirac cur-
rent, which yields

�μ(p′, p) = γ μF1(q
2) + iσμνqν

2m
F2(q

2), (21)

where the functions F1(q2) and F2(q2) are called the form
factors and qν := p′ν − pν is the four-momentum transfer
at the vertex. At radiative corrections, the information con-
cerning to vertex corrections are all contained in F1(q2) and
F2(q2). So, computing the vertex correction at one-loop level
provide us with the following form factors:

F1(q
2) = α

2π

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz δ(1 − x − y − z)

×
⎧⎨
⎩ln

[
(1 − z)2m2 − xyq2 + zM2

(1 − z)2m2 − xyq2

]

+ z
[
m2(1 − 4z + z2) + (1 − x)(1 − y)q2

]
[
(1 − z)2m2 − xyq2

] [
z + (1 − z)2 m2

M2 − xy q2

M2

]
⎫⎬
⎭ ,

(22)

F2(q
2) = α

π

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz z2(1 − z)

× δ(1 − x − y − z)[
(1 − z)2 − xy q2

m2

] [
z + (1 − z)2 m2

M2 − xy q2

M2

] . (23)

From F1(q2) and F2(q2) it is clear that ultraviolet diver-
gences do not affect the vertex corrections. The F2(q2) form
factor when q2 → 0 is related to deviation from the electron
magnetic moment standard prediction of the Dirac equation.
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q = p − p

k

p

p

p+ k

p + k

Fig. 2 The one-loop correction of the vertex diagram

3.2.1 Anomalous magnetic moment of the electron

The electron anomalous magnetic moment is the most precise
measurement in QED, having an accuracy up to 12 decimal
places. This astonishing outcome can be used in the context
of HDQED to put a quantum bound on the M-parameter and
then compare with that of QED (Fig. 2).

To accomplish this, we first note that for an electron scat-
tered by an external static magnetic field and at the limit
q2 → 0, the gyromagnetic ratio is [48]

g

2
= 1 + 2 F2(0) . (24)

The form factor of the electron, F2(0), corresponds to a shift
in the g-factor, usually quoted in the form F2(0) = g−2

2 . So,
taking the limit q2 → 0 in (22), it can be shown that

F2(0) = α

π

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz δ(1 − x − y − z)

× z2

(1 − z)
[
z + (1 − z)2 m2

M2

] . (25)

Integrating the above expression first with respect to x , gives

F2(0) = α

π

∫ 1

0
dz

∫ 1−z

0
dy

z2

(1 − z)
[
z + (1 − z)2 m2

M2

]

= α

π

∫ 1

0
dz

z2

z + (1 − z)2 m2

M2

. (26)

Computing F2(0), we arrive at the conclusion that

F2(0) ≈ α

2π

{
1 − 2

3

( m

M

)2 − 2

[
25

12
+ ln

( m

M

)] ( m

M

)4

+ O
[( m

M

)6
]}

. (27)

The first term of the above equation is equal to that calcu-
lated by Schwinger in 1948 [49]. Since then F2(0) has been

calculated to order α10 for QED. The second term of Eq.
(27) is the most important correction related to the param-
eter M of the HDQED electrodynamics. Recent calculation
concerning F2(0) in the framework of QED gives for the
electron [50]

F2(0) = 1,159,652,181.643 (25)(23)(16)(763) × 10−12,

(28)

where the uncertainty comes mostly from that of the best
non-QED value of the fine structure constant α. The current
experimental value for the anomalous magnetic moment is,
in turn [51,52],

F2(0) = 1,159,652,180.73 (0.28) × 10−12. (29)

Comparison of the theoretical value predicted by QED with
the experimental one shows that these results agree in 1 part
in 1012. As a consequence,

2

3

( m

M

)2
< 0.91(0.82) × 10−12. (30)

Consequently, a lower limit on the M-parameter is M ≈
438 GeV.

3.3 Vacuum polarization

As discussed previously, in the HDQED framework the
modification introduced by the higher-order kinetic terms
improves the behavior of the physical process in the high
frequencies regime. As a consequence, the above Feynman
diagrams become finite at one-loop order. However, because
the fermionic sector is unaltered in the HDQED, the vacuum
polarization tensor will be identical to the one in QED, i.e.,

�μν(k2) = �(k2) (ημνk2 − kμkν), (31)

where the contribution at one-loop level of the polarization
scalar �(k2) is

i�μν
1 (k) = −(−ie)2

∫
d4 p

(2π)4 tr

(
iγ μ

/p − m

iγ ν

/p − /k − m

)
.

(32)

Bearing in mind that the propagator always occurs coupled
to conserved current, the dressed propagator in HDQED
assumes the form

i�μν(k
2) = −iημν

k2(1 − �(k2))

+ iημν

[k2 − M2(1 − �(k2))](1 − �(k2))
, (33)

which clearly reveals that the radiative corrections coming
from the fermionic loops give contribution to M-parameter.
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Performing the integration of (32) using dimensional reg-
ularization we find

�1(k
2) = − α

3π

μ2ε

ε
+ α

6π
(2γ + 1) − α

3π
ln

(
4πμ2

m2

)

− 5α

9π

(
1 + 12m2

5k2

)
+ α

3π

(
1 + 2m2

k2

)
f (k2),

(34)

where the function f (k2) is given by

f (k2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
√

1 − 4m2

k2 sinh−1
(√−k2

2m

)
if k2 < 0,

√
4m2

k2 − 1 cot−1
(√

4m2

k2 − 1

)
if 0 < k2 ≤ 4m2 ,

√
1 − 4m2

k2

[
2 cosh−1

(√
k2

2m

)
− iπ

]
if k2 > 4m2.

(35)

It is important to note that there is an imaginary part which
emerges when k2 > 4m2. This complex term is a clear indi-
cation that the massive mode develops a finite decay width,
an aspect that will be discussed in detail in the next section.
Also, the appearance of a complex massive pole implies that
one cannot just apply the standard renormalization schemes.
The appropriate framework to treat this issue needs to take
into account the existence of unstable particles, a point that
deserves some considerations and that will be done in Sect. 5.

3.3.1 Decay width of the unstable mode

Before proceeding with the renormalization procedure we
will discuss the finite decay rate of the unstable mode. To
begin with, we first introduce the auxiliary field formalism.
This technique has the advantage of eliminate the higher-
order kinetic terms through the introduction of auxiliary
fields, reducing the Lagrangian to quadratic terms in the
fields. So, defining the auxiliary field

Zμ := −∂λFλμ

M2 , (36)

inserting in the Lagrangian (4), and defining Aμ := Bμ+Zμ,
the Lagrangian (4) assumes the form

L = −1

4
B2

μν −
[
−1

4
Z 2

μν + 1

2
M2 Z 2

μ

]
, (37)

where Bμ and Zμ are related to the massless and massive
fields, respectively. Here we promptly note that the intro-
duction of auxiliary fields provide us a clear interpretation
of the distinct modes at different energy levels. According
to (37), at low energy, the massless mode dominates over
the massive one the description of the system, reproducing
the results of QED. However, at high frequencies, the mas-
sive mode emerges and gives contributions to the physical

observables as the anomalous magnetic moment of the elec-
tron, for instance. Thereafter, at short distances the unstable
mode should develop a finite decay width. In the auxiliary
field formalism the decay width description can be simpli-
fied by noting that at the ultraviolet regime only the massive
propagator is relevant, namely,

DM
μν(k

2) = ημν

k2 − M2 , (38)

which is the Proca propagator with a minus sign. In electron–
positron scattering, when the mass of the massive mode
exceeds the electron–positron mass (M > 2me), the neg-
ative residue appears in the physical sheet. However, as we
have discussed in the previous section, at this energy range
the massive mode becomes complex and must decay in light
particles. The decay width � can be obtained by the standard
self-energy sum. Hence, at the narrow width approximation,
the resummed massive propagator assumes the form

DM
μν(k) = ημν

k2 − M2 − iM�
. (39)

Comparing the denominator of (39) with the imaginary part
that arises in the self-energy sum when k2 > m2 in (35), we
promptly find that the finite decay width of the M-parameter
is

� = e2

12π
M

(
1 + 2m2

M2

) √
1 − 4m2

M2 . (40)

To check the consistency of the previous decay width deriva-
tion, one can follow another route to obtain the decay rate
of the M-parameter through the analysis of the electron–
positron elastic scattering. The general expression for the
decay rate of this process is

� = 1

2π2

1

2k0

∫
d3q

2q0

∫
d3q ′

2q ′0 δ4(k − q − q ′) 1

3

∑
λ,s,s′

|M|2,

(41)

where k is the massive spin-1 four-momentum and q and
q ′ are related to the electron and positron momenta, respec-
tively. The electron–positron elastic scattering amplitude is

M = eεμ(k, λ)ū(q, s)γ μv(q ′, s′), (42)

where εμ is the polarization vector and u and v represent the
fermions functions. Using the completeness relation,
∑
λ

εμ(k, λ)εν(k, λ) = −ημν + kμkν

M2 , (43)

∑
s

uα(q, s)ūβ(q, s) = (
/q + m

)
αβ

, (44)
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∑
s′

vα(q ′, s′)v̄β(q ′, s′) = (
/q ′ − m

)
αβ

, (45)

the decay factor � assumes the form

� = e2

3π2

1

M3

∫
d3q

2q0

∫
d3q ′

2q ′0 δ4(k − q − q ′)
[
(q · k)(q ′ · k)

+1

4
M2(M2 + 4m2)

]
. (46)

Solving the above integral, we arrive at the decay rate

� = e2

12π
M

√
1 − 4

m2

M2

(
1 + 2

m2

M2

)
θ(M − 2m) , (47)

which is identical to the decay rate (40) found when consid-
ering the one-loop corrections in the spin-1 sector, so lend-
ing support to our derivation. It is worth to note that since
M � 2m, the � factor reduces to

� ≈ e2

12π
M. (48)

In general, there may be many decays modes, which means
that the massive mode lifetime τ is given by

τ = 1

�T
<

12π

e2M
, (49)

where using our estimative for the mass value M ≈ 438 GeV
gives a lifetime of τ � 10−24s.

3.3.2 Uehling potential

One of the great triumphs of QED was the prediction of the
small difference between the energy levels 2S1/2 and 2P1/2 in
the hydrogen atom—the Lamb shift—which is related to the
radiative corrections to the Coulomb potential coming from
the vacuum polarization. Since in the HDQED framework
the energy potential is not singular at the origin [44], we are
interested in probe what sort of contribution will arise in this
context. To start with, the general expression for the energy
potential is given by

U (r) = −4πα

∫
d3k

(2π)3 e
ik·r�00

(
−k2

)
. (50)

Inserting the resummed propagator (33) in the energy poten-
tial expression (50), and neglecting terms of α3 order, one
obtains

U (r) = −α

r

(
1 − e−Mr

)

− 2α2

3πr

∫ ∞

1
dξ

(
1 + 1

2ξ2

) (
ξ2 − 1

)1/2

ξ2

e−2mrξ − e−Mr

1 − 4m2ξ2/M2

+ 2α2

3πr

∂

∂M2

∫ ∞

1
dξ

(
1 + 1

2ξ2

) (
ξ2 − 1

)1/2

ξ2

e−2mrξ − e−Mr

1 − 4m2ξ2/M2

− α

2r
Mre−Mr 2α

π

∫ 1

0
dx x(1 − x) ln

[
1 − M2

m2 x(1 − x)

]
,

(51)

where the ξ -integral above is the integral representation of
the Uehling potential in the HDQED framework. Since the
above integral is hard to solve analytically, we will focus only
on the asymptotic limit mr � 1.

For mr � 1, only the region 0 ≤ ξ − 1 � (mr)−1

gives contributions to the integral. So, considering ξ � 1,
we obtain

U (r) = −α

r

(
1 − e−Mr

)

−√
2

α2

πr

∫ ∞

1
dξ

√
ξ − 1

e−2mrξ − e−Mr

1 − 4m2ξ2/M2 +

+√
2

α2

πr

∂

∂M2

∫ ∞

1
dξ

√
ξ − 1

e−2mrξ − e−Mr

1 − 4m2ξ2/M2 +

+ α2

2πr
Mr e−Mr

⎧⎨
⎩

5

9

(
1 + 12m2

5M2

)

−1

3

(
1 + 2m2

M2

) √
1 − 4m2

M2

[
2 cosh−1

(
M

2m

)
− iπ

]⎫⎬
⎭.

(52)

In the above limit, the ξ -integral becomes

∫ ∞

1
dξ

√
ξ − 1

e−2mrξ − e−Mr

1 − 4m2ξ2/M2

=
√

π

4

(
1 + 2m

M

)1/2(M

2m

)3/2

eMr �

(
−1

2
, Mr+2mr

)

+
( π

2mr

)1/2
e−2mr M

4m
�

(
1,

3

2
,−Mr + 2mr

)

+π

2

(
1 + 2m

M

)1/2 (
M

2m

)3/2

e−Mr , (53)

where � is the incomplete Gamma function and � is the con-
fluent hypergeometric function of the first kind (Kummer’s
function). Since M > 2m in (51), the Uehling potential also
gives rise to an imaginary part, which goes to zero when M
goes to infinity. At the limit in which the massive mode is
much bigger than the mass of the fermions, i.e., M � m, the
perturbative expansion at m/M gives for the real part of the
Uehling potential, at the first order, the expression


(U ) � −α

r

(
1 − e−Mr

)
− α2

√
2πr

e−2mr

(2mr)3/2

(
1 − 3

4Mr

)

− α2

√
2 r

(
M

2m

)3/2

e−Mr + 11α2

18π
M e−Mr , (54)
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while for the imaginary part it gives

�(U ) � α2

6
M e−Mr + α2

4
√

2 r

1

(2mr)3/2

e−Mr

(Mr)1/2 , (55)

which exponentially decay at the asymptotic limit.
To conclude we remark that in the limit that M goes to

infinity, the ξ -integral becomes a Gamma function and the
potential (51) reduces to

lim
M→∞U (r) = −α

r
− α2

√
2π r

e−2mr

(2mr)3/2 , (56)

which is the standard Uehling potential in QED.

4 Renormalization

4.1 Renormalized perturbation theory

The presence of a finite decay width implies that one needs to
find an appropriate framework to describe unstable particles
in the perturbation theory. It follows that applying directly the
standard summation of self-energy violates the gauge invari-
ance [53–55]. To circumvent this problem, many methods
have been proposed over the last years [56–66]. Currently,
the most general procedure to treat perturbative renormal-
ization of unstable particles in quantum field theory is the
so-called complex-mass shell (CMS) scheme. The CMS is
an extension of the on-shell procedure for unstable particles
which is fully gauge invariant over all the phase space. In
this formalism, the renormalization constant and the com-
plex massive pole are defined at the location of the unstable
propagator (for further information, see [67–69]).

Performing the perturbative renormalization one obtains
the renormalized Lagrangian

L = ψ̄
(
iγ μ∂μ − m

)
ψ − 1

4
F2

μν + 1

2M2 ∂μF
μν∂λFλν

−eψ̄γ μψ Aμ − 1

2ζ

(
∂μA

μ
)2 + iδψψ̄γ μ∂μψ − δmψ̄ψ

−δA

4
F2

μν + 1

2δM
∂μF

μν∂λFλν − δeψ̄γ μψ Aμ, (57)

where the relations between the bare and renormalized quan-
tities are

ψ(0) = √
Zψ ψ, A(0)

μ = √
ZA Aμ, (58)

and

ζ0 = ZA ζ, e0

√
ZA = e,

ZA

M2
0

= 1

M2 + 1

δM
. (59)

We call attention to the fact that, according to the usual renor-
malization procedure, one has to put counterterms into all
diagrams, even the finite ones, since in an interacting theory

the bare mass and the coupling constants are not equal to
the physical parameters. A quick glance at the renormalized
Lagrangian (57) shows us that five conditions are necessary
in order to fix all the counterterms, which are given by


(/q)|/q=m = 0,
d

d/q

(/q)|/q=m = 0, �(k2)|k2=0 = 0,

�μ(p)|p=0 = γ μ, �(k2)|k2=M2 = 0. (60)

The first constraint fixes the physical electron mass, the sec-
ond and third fix the Dirac and sector-1 propagator to have
a residue equal to 1, the fourth fixes the electron charge, and
the last one defines the complex massive pole. Since the mas-
sive pole is complex, the renormalization constant will also
be complex, which agrees with our claim that one needs to
find a convenient framework to deal with the renormalization
of unstable particles. In this sense, writing M0 = √

ZM M ,
where ZM is the complex massive renormalization factor
defined by

ZM = 1

1 − �(k2 = M2)
, (61)

one obtains the relation M2/M2
0 := 1 − �

(
k2 = M2

)
.

On the other hand, the M-parameter is renormalized by the
renormalization function ZA. As well as QED, the ZA-factor
is given by

ZA = 1

1 − �(k2 = 0)
, (62)

and the renormalization factors ZA and ZM are related by
the expression

ZM = ZA

(
1 + M2

δM

)−1

. (63)

We also point out that the Ward identity ensures that the factor
Zψ is equal to the vertex correction renormalization ZV , i.e.,
Zψ = ZV . As a consequence, the HDQED does not give a
further contribution to the charge renormalization.

4.2 Renormalization group

The Callan–Symanzik equation of the renormalization group
is given by

[
μ

∂

∂μ
+ β(e)

∂

∂e
+ MγM (e)

∂

∂M
− nγA(e)

]
�(n) = 0,

(64)

where �(n) is the one-particle irreducible Green function and
μ is an arbitrary energy scale. The functions (β, γM , γA) are
related with the renormalization factors by
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β(e) = μ
∂e

∂μ
, γM (e) = −μ

2

∂

∂μ
ln ZM and

γA(e) = μ

2

∂

∂μ
ln ZA. (65)

Thus we may conclude that the beta function is unchanged
in the HDQED framework. This happens because at high
momenta the M-parameter is negligible, being given explic-
itly by β(e) = e3/12π2. Moreover, as well as in QED, the
HDQED is not asymptotically free. Combining the functions
(65) and Eqs. (59), it is easy to see that β(e) = e γA(e),
implying that γA(e) = α/3π and

γM (e) = − e2

12π2 . (66)

The invariance of the Green function �(n) under a scale trans-
formation, �(n)(e, M, μ) = �(n)(ē(t), M̄(t), μ̄(t) = μ et ),
leads to an effective constant coupling ē(t) and an effective
M̄(t)-parameter as a function of the dimensionless scale t ,
both satisfying the equations

∂ ē

∂t
= β(ē), (67)

∂ M̄

∂t
= M̄(t) γM (ē(t)), (68)

where ē(t = 0) = e and M̄(t = 0) = M . The solution of
(67) gives

ē2(t) = e2
(

1 − e2 t

6π2

)−1

. (69)

Solving Eq. (68) we find

M̄(t) = M
e

ē(t)
= M

√
1 − e2 t

6π2 , (70)

which gives a running mass as a function of the energy scale.

5 Final remarks

In this paper we have investigated some issues related to one-
loop corrections of HDQED. Since the higher-order kinetic
terms in the spin-1 sector improves the behavior of the QED
propagator at short distances, we have shown that the vertex
correction and the electron self-energy are finite and depends
explicitly on the M-parameter. In this sense, it became clear
that the M-parameter acts as a natural regulator parameter
which at the limit where M → ∞ recovers the QED diver-
gences. Nevertheless, the vacuum polarization remains diver-
gent. It is also worth to emphasize that we did not make use
of any regularization procedure in the computations of these
diagrams. The only assumption made was that the scattering
processes should occur in the presence of external conserved

currents. Despite the fact that the couplings with external con-
served currents have eliminated the momenta dependence in
the loop integrals, which simplified our task of solving the
integrals, at the next leading order this prescription cannot be
used anymore. Higher-order scattering processes induce the
appearance of internal loops, which are not canceled when
one takes into account the presence of conserved currents.
We also call attention to the fact that our computations were
made in the Lorenz gauge. However, any gauge condition is
feasible [41].

From the analysis of the complex-mass shell conditions
in the perturbative renormalization scheme, we have con-
cluded that the HDQED enforces us to input another con-
straint in order to fix all the counterterms in the renormal-
ized Lagrangian. Concerning the charge renormalization, the
massless pole is the only one relevant while for the renormal-
ization of the M-parameter one needs to take into account
the complex massive pole. Analyzing the Callan–Symanzik
equation, we have observed that the beta function and the
anomalous dimension are unchanged by the presence of the
M-parameter. Thus we may conclude that the M-parameter is
negligible at the ultraviolet regime. Nevertheless, the gamma
function associated to the M-parameter given by (66) and the
effective M-parameter has an interesting behavior running
with the energy scale. It is worth to remark that to the best
of our knowledge it is the first time that the CMS scheme
is applied to treat higher-order derivative electrodynamics
theories.

As an interesting application we have found a quantum
bound on the M-parameter using the value of the electron
anomalous magnetic moment. This measurement has been
used to estimate stringent constraints on possible theories
beyond the standard model. Using the latest measurements of
the mentioned phenomenon we found M = 438 GeV. Also,
we have calculated the Uehling potential in the HDQED
framework. Although the effect of Uehling potential to the
Lamb shift is negligible, in muonic atoms the vacuum polar-
ization is dominant, which in principle could be used to put
a new bound in the mass parameter of HDQED. This new
constraint on the M-parameter can be further investigated
in the future. Regarding the modern particle physics exper-
iments, we point out that the detection of this new degree
of freedom could be related to physics beyond the Standard
Model. In our prescription we have included the higher-order
term after the spontaneous symmetry breaking has occurred
in the electroweak theory (EW). However, this new degree
of freedom could be added in the EW Lagrangian before
the symmetry breakdown. In this way, the appearance of a
mass−2 dimensional parameter at TeV scale could be a sign
of a phenomenon arising from new physics, as effects of a
large extra dimension, for instance.

In order to outline possible directions for future investi-
gations, we would like to emphasize that the scenario devel-
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oped here to treat unstable modes could be extended, at least
in principle, to other spin fields. Also, issues concerning the
unitarity of higher-order theories in the CMS formalism can
be investigated in the future.
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