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Abstract Warm inflationary universe models in the con-
text of the generalized Chaplygin gas, the modified Chaply-
gin gas, and the generalized cosmic Chaplygin gas are being
studied. The dissipative coefficient of the form � ∝ T , and
the weak and the strong dissipative regimes are being con-

sidered. We use the quartic potential, λ∗φ4

4 , which is ruled out
by current data in cold inflation but in our models by analysis
it is seen to be in agreement with the WMAP9 and the latest
Planck data. In these scenarios, the power spectrum, the spec-
tral index, and the tensor-to-scalar ratio are being examined
in the slow-roll approximation. We show the dependence of
the tensor–scalar ratio r on the spectral index ns and observe
that the range of the tensor–scalar ratio is r < 0.05 in the
generalized Chaplygin gas, r < 0.15 in the modified Chap-
lygin gas, and r < 0.12 in the generalized cosmic Chaplygin
gas models. Our results are in agreement with recent obser-
vational data like WMAP9 and the latest Planck data.

1 Introduction

It is well known that inflation presents most compelling solu-
tion of many problems of big bang model, namely the hori-
zon, the flatness, the homogeneity, and the monopole prob-
lems [1,2]. The most fascinating feature of the inflationary
universe model is that it interprets the origin of the observed
anisotropy in the cosmic microwave background radiations,
and also the distribution of large scale structures [3]. But
some questions arise in the theory of inflation, one of them
being how to end this inflationary epoch and enter in the big
bang phase. Warm inflation provides a possible solution to
this problem. Standard inflation, known as cold inflation, has
two regimes: slow roll and reheating. In the slow-roll lim-
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its, the universe expands as potential energy dominates the
kinetic energy and the interaction of inflation (scalar field)
with other fields become negligible. In the reheating epoch,
kinetic energy is comparable to potential energy and inflation
oscillates around the minimum of its potential, while losing
its energy to massless particles. After reheating, the universe
is filled with radiation.

Warm inflation provides a mechanism in which reheating
is avoided. During the warm inflationary period, dissipative
effects are important, so that radiation production takes place
at the same time as inflationary expansion. The strong regime
in warm inflation is that in which damping effects on infla-
tion dynamics of the radiation field are strong, these dissi-
pating effects originates from a friction term which describe
the physical process of decay of inflation field into a ther-
mal bath due to its interaction with other field. Decay of
remaining inflationary field or dominant radiation create the
mater component of universe. Warm inflation comes to an
end when the universe heats up to become radiation domi-
nated and gets connected with the big bang scenario [4,5]. In
standard inflation density perturbations are generated due to
quantum fluctuations associated to the inflation scalar field,
which are necessary for the large scale structure formation
at the late time in the evolution of the universe [6]. How-
ever, in warm inflation, thermal fluctuations instead of quan-
tum fluctuations become a source of density perturbations
[7,8].

Monerat et al. [9] studied the cosmology of the early uni-
verse and the initial condition for inflation in a model with
radiation and Chaplygin gas (CG). Antonella et al. [10] dis-
cussed warm inflation on the brane. Del campo and Herrera
[11] considered a warm inflationary model with the gen-
eralized Chaplygin gas (GCG), and they used a standard
scalar field and dissipation coefficient of the form � ∝ φn

and then developed a model with a chaotic potential. Setare
and Kamali investigated warm tachyon inflation by assuming

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4121-x&domain=pdf
mailto:abduljawad@ciitlahore.edu.pk
mailto:jawadab181@yahoo.com
mailto:drshamailarani@ciitlahore.edu.pk


274 Page 2 of 11 Eur. Phys. J. C (2016) 76 :274

intermediate [12] and a logamediate scenario [13]. Bastero-
Gill et al. obtained the expressions for the dissipation coeffi-
cient in supersymmetric (SUSY) models in [14]. This result
provides possibilities for the realization of warm inflation in
SUSY field theories.

Herrera et al. [15] studied intermediate inflation in the
context of GCG using standard and tachyon scalar fields.
The same authors dealt with the dissipation coefficient � =
c Tm

φm−1 in the context of warm intermediate and logamediate
inflationary models [16]. They also studied warm inflation
in loop quantum cosmology with the same dissipative coef-
ficient [17]. Bastero-Gill et al. in [18] have also explored
inflation by assuming the quartic potential. Sharif and Saleem
[19] studied inflationary models with a generalized cosmic
Chaplygin gas (GCCG). Setare and Kamali analyzed warm
viscous inflation on the brane in [5]. They have also consid-
ered a generalized de Sitter scale factor including a single
scalar field and studied q-inflation in the context of warm
inflation with two forms of damping term [20]. Panotopou-
los and Videla [21] investigated the quartic potential model
in the framework of warm inflation by using a decay rate pro-
portional to the temperature and showed that it is compatible
with the latest observational data. We extend this work with
the inclusion of Chaplygin gas (CG) models.

The goal of the present work is to investigate the real-
ization of a warm quartic inflationary model in the context
of CG models. This paper is organized as follows: the next
section deals with the basic background equations of a warm
inflationary scenario. In Sect. 3, we construct models with
GCG, MCG, and GCCG by using a quartic potential. In the
last section, we summarize our results.

2 Basic inflationary scenario

We start by using the Friedmann–Robertson–Walker (FRW)
metric and consider a spatially flat universe which contains
a self interacting inflation field φ and radiation field, where
V (φ) is the scalar potential, ρφ and ργ are the energy den-
sities of inflation field and radiation field, respectively; then
we write down a modified Friedmann equation of the form

H2 = 1

3M2
p
(ρφ + ργ ), (1)

where Mp = 1√
8πG

is the reduced Planck mass, and ρφ =
φ̇2

2 + V (φ) and Pφ = φ̇2

2 − V (φ) are the energy densi-
ties and potential of the scalar field, respectively. Energy-
momentum conservation leads to the following equations
[4,5]:

ρ̇φ + 3H(ρφ + Pφ) = −�φ̇2, ρ̇γ + 4H(ργ ) = �φ̇2.

(2)

The dynamics of warm inflation is described by adding a
friction term in the equation of motion given by

φ̈ + (3H + �)φ̇ + V ′ = 0, (3)

� is the dissipation coefficient. During the inflation era, �

is responsible for the decay of the scalar field into radia-
tion, this decay rate can be a function of the scalar field
or temperature or depends on both �(T, φ) or simply is a
constant. During warm inflation the production of radiation
is quasi-stable, i.e. ρ̇γ � 4Hργ and ρ̇γ � �φ̇2 [4,5,7,22–
24], the energy density associated with scalar field dominates
over the energy density of radiation field, i.e. ρφ � ργ .
Assuming the set of slow-roll conditions, i.e. φ̇2 � V (φ)

and φ̈ � (3H + �)φ̇ [4,5], then the equations of motion
reduces to

3H(1 + R)φ̇ � −V ′, 4Hργ � �φ̇2, (4)

here a dot means derivative with respect to time and
V ′ = ∂V

∂φ
. The dissipation coefficient is a basic quantity,

which has been calculated from first principles in the con-
text of supersymmetry. In these models, there is a scalar
field with multiplets of heavy and light fields that makes
it possible to obtain several expression for the dissipa-
tion coefficient. The general form for � can be written as
[25,26]

� = b
Tm

φm−1 ,

where b is associated to dissipative microscopic dynamics
and exponent m is integer. In the literature different cases
have been studied for the different values of m, in the spe-
cial case m = 1, i.e. � ∝ T represents the high temper-
ature SUSY case, for the value m = 0 i.e. � ∝ φ corre-
sponds to an exponentially decaying propagator in the high

temperature SUSY model; for m = −1 i.e. � ∝ φ2

T , we
have agreement with the non-SUSY case [27,28]. We intro-
duce the parameter R = �

3H , which is the relative strength
of thermal damping compared to the expansion damping.
In warm inflation, we can assume two possible scenarios;
one is the weak dissipative regime defined as R � 1, in
which Hubble damping is still the dominant term, and the
other one is the strong dissipative regime defined as R � 1,
and � controls the damped evolution of the inflation field in
it.

Moreover, the thermalization energy density of the radi-
ation field can be written as ργ = CT 4, where we have the
constant C = π2g∗/30, and g∗ denotes the number of rel-
ativistic degrees of freedom; in a Minimal Supersymmetric
Standard Model (MSSM), g∗ = 228.75 and C � 70 [7].
Using Eq. (4) and ργ ∝ T 4 the temperature becomes
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T =
[

�V ′2

62CH3(1 + R)2

] 1
4

. (5)

The slow-roll parameters of warm inflation are given by [7]

ε = −Ḣ

H2 , η = −Ḧ

H Ḣ
, β = − 1

H

d

dt
(ln�).

In warm inflation, the slow-roll conditions are expressed as
ε � 1 + R, η � 1 + R, β � 1 + R. On the other hand, the
number of e-folds is calculated by using the standard formula

N =
∫ tend

t∗
Hdt. (6)

Here, t∗ and tend denote the time when inflation starts and
comes to an end, respectively.

Next, we discuss the perturbation parameters for the cur-
rent scenario by assuming CG models. The perturbation
parameters of the warm inflation are obtained in [7]. The
amplitude of the power spectrum of the curvature perturba-
tion is given by

PR =
(

π

4

) 1
2 H

5
2 �

1
2 T

φ̇2
, (7)

and we can calculate the scalar spectral index ns by using
ns = 1 + dPR

dlnk , which is equivalent to

ns = 1 − 9ε

4
+ 3η

2
− 9β

4
. (8)

However, the tensor-to-scalar ratio turns out to be [20]

r = 32Gφ̇2

�
1
2 π

3
2 T H

1
2

. (9)

In the following, we take a standard scalar field and � ∝ T to
study how these conditions affect the inflationary dynamics
for a quartic potential.

3 Chaplygin inflationary models with quartic potential

We consider a quartic potential, V (φ) = λ∗φ4

4 , which is a
simple Higgs potential as developed in particle physics the-
ories [29]. In the following work, we assume an inflation
decay rate � = bT and a quartic potential in warm inflation
models with a Chaplygin gas.

3.1 Generalized Chaplygin gas

The CG is considered to be an alternative description of accel-
erating expansion and it has a connection with string theory.
CG emerges as an effective fluid of generalized D-branes in
a (d + 1, 1) space time where the action can be written as

a generalized Born–Infield action [30]. Kammshchick [31]
considered the FRW universe composed of CG and showed
that the universe is in agreement with current observations
of cosmic acceleration. Its extended form is GCG, whose
equation of state (EoS) is as follows:

Pgcg = − A

ρλ
gcg

,

where Pgcg and ρgcg denote the pressure and energy density,
respectively, and 0 < λ ≤ 1, and A is the positive constant.
The energy density of GCG can be obtained by using equation
of continuity and given by

ρgcg =
(
A + B

a3(1+λ)

) 1
1+λ

, (10)

where B is a positive integration constant and a is a scale
factor. We start with the modified Friedmann equation of the
form

H2 = 1

3M2
p

((
A + ρ1+λ

φ

) 1
1+λ + ργ

)
. (11)

This modification is possible due to an extrapolation of Eq.
(10) so that

ρgcg =
(
A + ρ1+λ

m

) 1
1+λ →

(
A + ρ1+λ

φ

) 1
1+λ

, (12)

where ρm denotes the matter energy density. During the infla-
tion era, the energy density of the scalar field dominates the
energy density of the radiation field, i.e., ρφ � ργ , and it
is of the order of the potential i.e. ρφ ∼ V . For simplicity,
we take λ = 1, for which the Friedmann equation takes the
form

H2 = 1

3M2
p

√
A + ρ2

φ ∼ 1

3M2
p

√
A + V 2. (13)

3.1.1 Weak dissipative regime

Here, we consider the weak dissipative regime where R � 1;
the Friedmann and Klein–Gordon equations take the standard
form in the slow-roll approximation. By taking � = bT , the
temperature of the radiation field becomes

T =
(

bV ′2

62CH3

) 1
3

.
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For a weak dissipative regime, the slow-roll parameters are
as follows:

ε = M2
pV V ′2

2(A + V 2)
3
2

,

η = M2
p

(A + V 2)
1
2

(
V ′′ + V ′2

V
− 3VV ′2

2(A + V 2)

)
,

β = M2
p

(
4V ′′(A + V 2) − 3V ′2V

6(A + V 2)
3
2

)
.

By using Eq. (6), the number of e-folds becomes

N = 1

M2
p

∫ φ∗

φend

√
A + V 2

V ′ dφ.

The amplitude of the power spectrum given in Eq. (7) takes
the form

PR =
(

81πb2

122CV ′2

) 1
2
(√

A + V 2

3M2
p

) 3
2

. (14)

By inserting the values in Eq. (8), the scalar spectral index
turns out to be

ns − 1 = 3M2
p

2(A + V 2)
1
2

( −9VV ′2

4(A + V 2)

−3

2

(
4V ′′(A + V 2) − 3V ′2V

6(A + V 2)

)
+ V ′′ + V ′2

V

)
.

(15)

The tensor-to-scalar ratio given in Eq. (9) becomes

r =
192G

√
3CM2

pV
′

9bπ
3
2 (A + V 2)

1
4

. (16)

We use V = λ∗φ4

4 and V ′ = λ∗φ3 to express r and ns as a
function of φ,

ns − 1 = 12M2
p

2(16A + λ2∗φ8)
1
2

( −6λ3∗φ10

16A + λ2∗φ8 + 4λ∗φ2
)

,

r =
384G

√
3CM2

pλ∗φ3

9bπ
3
2 (16A + λ2∗φ8)

1
4

.

3.1.2 Strong dissipative regime

Now we consider a strong dissipative regime where R � 1,
in the slow-roll approximation; the temperature is given as

T =
(

V ′2

4bCH

) 1
5

.

For the strong regime, the slow-roll parameters lead to

ε = M2
pV V ′2

2R(A + V 2)
3
2

η = M2
p

R(A + V 2)
1
2

(
V ′′ + V ′2

V
− 3VV ′2

2(A + V 2)

)
,

β = 1

R
M2

p

(
2V ′′(A + V 2) − V ′2V

5(A + V 2)
3
2

)
.

The expression of the number of e-folds takes the following
form:

N = 1

M2
p

∫ φ∗

φend

√
A + V 2

V ′ Rdφ.

In a similar way we can obtain the amplitude of the power
spectrum, the scalar spectral index, and the tensor-to-scalar
ratio as follows:

PR =
(

π

4

) 1
2 b

9
5

V ′ 3
5 (4C)

7
10

(√
A + V 2

3M2
p

) 9
10

, (17)

ns − 1 =
(

3(4C)
1
5

b
4
5 V ′ 2

5

)
(3M2

p)
2
5

2(A + V 2)
1
5

×
(
V ′′ + V ′2

V
− 9VV ′2

4(A + V 2)

−3

2

(
2V ′′(A + V 2) − V ′2V

5(A + V 2)

))
, (18)

r = 32G(4C)
7

10 V ′ 3
5

b
9
5 π

3
2

(√
A + V 2

3M2
p

) 1
10

. (19)

In terms of the scalar field, r and ns turn out to be

ns − 1 =
(

3(4C)
1
5

b
4
5 (λ∗φ3)

2
5

)
(3M2

p)
2
5

10(16A + λ2∗φ8)
1
5

×
( −39λ3∗φ10

16A + λ2∗φ8 + 26λ∗φ2
)

, (20)

r = 32G(4C)
7

10 (λ∗φ3)
3
5

b
9
5 π

3
2

(√
16A + λ2∗φ8

12M2
p

) 1
10

. (21)

We plot r versus ns for the GCG models in Fig. 1 for
weak (left panel) and strong dissipative regimes (right panel),
respectively. However, the parameters appearing in the model
have the values Mp = 1, λ∗ = 10−10, A = 10−45, b = 0.3.
The trajectories in Fig. 1 show the increasing behavior of r
with respect to ns . It can be noted that in the weak dissipa-
tive regime (left panel of Fig. 1) the range of the tensor-
to-scalar ratio becomes r < 0.006 for 0.4 < ns < 1.
However, it is r = 0.05 corresponding to ns = 0.96 for
the strong dissipative regime (left panel of Fig. 1). It is
observed that WMAP9 [32] provides the value of tensor
scalar ratio as r < 0.13 and the spectral index is measured
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Fig. 1 Plot of the tensor–scalar ratio r versus scalar spectral index ns for the GCG model in the weak dissipative regime (left panel) and the strong
dissipative regime (right panel)

to be ns = 0.972 ± 0.013. According to the Planck data,
r < 0.11 and ns = 0.968 ± 0.006 [33]. In view of these
observations, our results for the GCG model are compatible
with observational data [32,33].

3.2 Modified Chaplygin gas

The MCG has an equation of state as follows [34]:

Pmcg = μρmcg − ν

ρλ
mcg

,

where Pmcg and ρmcg denote the pressure and energy density,
respectively, and 0 ≤ λ ≤ 1, μ, ν are positive constants. We
use the energy conservation equation and express the density
of MCG in this form:

ρmcg =
(
A + c

a3(1+λ)(1+μ)

) 1
1+λ

, (22)

where c is a constant of integration and A = ν
1+μ

. We start
with the modified Friedmann equation of the form

H2 = 1

3M2
p

((
A + ρ

(1+λ)(1+μ)
φ

) 1
1+λ + ργ

)
, (23)

this modification is possible only due to an extrapolation of
Eq. (22), so that

ρmcg =
(
A + ρ(1+λ)(1+μ)

m

) 1
1+λ →

(
A + ρ

(1+λ)(1+μ)
φ

) 1
1+λ

,

(24)

where ρm denotes the matter energy density, and hence the
Friedmann equation takes the form

H2 = 1

3M2
p
(A + ρ

(1+λ)(1+μ)
φ )

1
1+λ

∼ 1

3M2
p
(A + V (1+λ)(1+μ))

1
1+λ . (25)

3.2.1 Weak dissipative regime

For the weak dissipative regime the temperature remains
the same as given in the GCG case. However, the slow-roll
parameters take the following form:

ε = M2
p(1 + μ)V (1+λ)(1+μ)−1V ′2

2(A + V (1+λ)(1+μ))
2+λ
1+λ

,

η = M2
p

(A + V (1+λ)(1+μ))
1

1+λ

×
(

2V ′′ + V ′2((1 + λ)(1 + μ) − 1)

V

−V (1+λ)(1+μ)−1V ′2(1 + λ)(1 + μ)

(A + V (1+λ)(1+μ))

)
,

β = M2
p

(
4(A + V (1+λ)(1+μ))V ′′ − 3(1 + μ)V ′2V (1+λ)(1+μ)−1

6(A + V (1+λ)(1+μ))
2+λ
1+λ

)
.

The number of e-folds is obtained:

N = 1

M2
p

∫ φ∗

φend

(A + V (1+λ)(1+μ))
1

1+λ

V ′ dφ.

Other perturbed parameters turn out to be

PR =
(

81πb2

122CV ′2

) 1
2
(

(A + V (1+λ)(1+μ))
1

1+λ

3M2
p

) 3
2

, (26)

ns − 1 = 3M2
p

2(A + V (1+λ)(1+μ))
1

1+λ

(
V ′2((1 + λ)(1 + μ) − 1)

V

− V (1+λ)(1+μ)−1V ′2

(A + V (1+λ)(1+μ))

(
3

4
(1 + μ) + (1 + λ)(1 + μ)

)
+ 2V ′′

− 3

2

(
4(A + V (1+λ)(1+μ))V ′′ − 3(1 + μ)V ′2V (1+λ)(1+μ)−1

6(A + V (1+λ)(1+μ))

))
,

(27)

r =
192G

√
3CM2

pV
′

9bπ
3
2 (A + V (1+λ)(1+μ))

1
2(1+λ)

. (28)
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By using a quartic potential r and ns are expressed as function
of φ,

ns − 1 = 3M2
p

2(A + (0.25λ∗φ4)(1+λ)(1+μ))
1

1+λ

×
(

λ∗φ2((1 + λ)(1 + μ) − 1)

− (0.25λ∗φ4)(1+λ)(1+μ)−1λ2∗φ6

(A + (0.25λ∗φ4)(1+λ)(1+μ))

×
(

3

4
(1 + μ) + (1 + λ)(1 + μ)

)
+ 6λ∗φ2

− 3

12(A + (0.25λ∗φ4)(1+λ)(1+μ))

×
(

4(A + (0.25λ∗φ4)(1+λ)(1+μ))λ∗φ2

−3(1 + μ)λ2∗φ6(0.25λ∗φ4)(1+λ)(1+μ)−1
))

, (29)

r =
192G

√
3CM2

pλ∗φ3

9bπ
3
2 (A + (0.25λ∗φ4)(1+λ)(1+μ))

1
2(1+λ)

. (30)

3.2.2 Strong dissipative regime

Here, we mention that the temperature remains the same as
obtained in the GCG case for the strong regime. However,
the slow-roll parameters take the form

ε = M2
p(1 + μ)V (1+λ)(1+μ)−1V ′2

2R(A + V (1+λ)(1+μ))
2+λ
1+λ

,

η = M2
p

R(A + V (1+λ)(1+μ))
1

1+λ

×
(

2V ′′ + V ′2((1 + λ)(1 + μ) − 1)

V

−V (1+λ)(1+μ)−1V ′2(1 + λ)(1 + μ)

(A + V (1+λ)(1+μ))

)
,

β = 1

R
M2

p

(
4(A + V (1+λ)(1+μ))V ′′ − (1 + μ)V ′2V (1+λ)(1+μ)−1

10(A + V (1+λ)(1+μ))
2+λ
1+λ

)
.

The number of e-folds is given by

N = 1

M2
p

∫ φ∗

φend

(A + V (1+λ)(1+μ))
1

1+λ

V ′ Rdφ.

Other perturbed quantities lead to

PR =
(

π

4

) 1
2 b

9
5

V ′ 3
5 (4C)

7
10

(
(A + V (1+λ)(1+μ))

1
1+λ

3M2
p

) 9
10

, (31)

ns − 1 = 3(4C)
1
5

2b
4
5 V ′ 2

5

(3M2
p)

2
5

(A + V (1+λ)(1+μ))
2

5(1+λ)

×
(
V ′2((1 + λ)(1 + μ) − 1)

V
− V (1+λ)(1+μ)−1V ′2

(A + V (1+λ)(1+μ))

×
(

3

4
(1 + μ) + (1 + λ)(1 + μ)

)
+ 2V ′′

− 3

2

(
4(A + V (1+λ)(1+μ)V ′′ − (1 + μ)V ′2V (1+λ)(1+μ)−1)

10(A + V (1+λ)(1+μ))

))
,

(32)

r = 32G(4C)
7

10 V ′ 3
5

b
9
5 π

3
2

(
(A + V (1+λ)(1+μ))

1
1+λ

3M2
p

) 1
10

. (33)

By putting in the value of V and V ′, we get r and ns in terms
of φ,

ns−1 = 3(4C)
1
5

2b
4
5 (λ∗φ3)

2
5

(3M2
p)

2
5

(A + (0.25λ∗φ4)(1+λ)(1+μ))
2

5(1+λ)

×
(

λ∗φ2((1 + λ)(1 + μ) − 1)

− (0.25λ∗φ4)(1+λ)(1+μ)−1λ2∗φ6

(A + (0.25λ∗φ4)(1+λ)(1+μ))

×
(

3

4
(1 + μ) + (1 + λ)(1 + μ)

)

− 3

20(A + (0.25λ∗φ4)(1+λ)(1+μ))

×
(

4(A + (0.25λ∗φ4)(1+λ)(1+μ))λ∗φ2

−(1+μ)λ2∗φ6(0.25λ∗φ4)(1+λ)(1+μ)−1
)

+6λ∗φ2
)

,

r = 32G(4C)
7

10 (λ∗φ3)
3
5

b
9
5 π

3
2

×
(

(A + (0.25λ∗φ4)(1+λ)(1+μ))
1

1+λ

3M2
p

) 1
10

.

It can be noted from Fig. 2 that we have plots of r in
terms of ns for the MCG models in the weak and the strong
regimes where r and ns are expressed as a function of φ. The
parameters appearing in the model have the values λ = 1,
μ = 0.5, λ∗ = 10−3, A = 10−25, b = 25. The range of the
tensor–scalar ratio is r < 0.045, when the spectral index is
0.6 < ns < 1, in the weak regime (left panel). However, we
get r < 0.15 for 0.7 < ns < 1 with b = 60 for the strong
dissipative regime (right panel). The observed range of r and
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Fig. 2 Plot of the tensor–scalar ratio r versus scalar spectral index ns for the MCG model in the weak dissipative regime (left panel) and the strong
dissipative regime (right panel)

ns is compatible with the data provided by WMAP9 [32] and
Planck [33].

3.3 Generalized cosmic Chaplygin gas

Gozalez Diaz [35] introduced the GCCG model; its equation
of state is given by

Pgccg = −ρ−λ[A + (ρ1+λ
gccg − A)−ω],

where A = D
1+ω

− 1 and D can take a positive or a negative
value. λ is a positive constant and −l < ω < 0, l > 1. If we
take ω → 0 then this equation of state reduces to the GCG
model. We obtain the energy density of GCCG by integrating
the energy conservation equation,

ρgccg =
[
A +

(
1 + B

a3(1+λ)(1+ω)

) 1
1+ω

] 1
1+λ

. (34)

The modified Friedmann equation in view of GCCG becomes

H2 = 1

3M2
p

((
A +

(
1 + ρ

(1+λ)(1+ω)
φ

) 1
1+ω

)) 1
1+λ + ργ

)
.

(35)

This modification is possible only due to an extrapolation of
Eq. (34) so that

ρgccg =
(
A + (1 + ρ(1+λ)(1+ω)

m )
1

1+ω

) 1
1+λ

→
(
A +

(
1 + ρ

(1+λ)(1+ω)
φ

) 1
1+ω

) 1
1+λ

. (36)

For this case, the Friedmann equation takes the form

H2 = 1

3M2
p

(
A +

(
1 + ρ

(1+λ)(1+ω)
φ

) 1
1+ω

) 1
1+λ

,

∼ 1

3M2
p

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 1
1+λ

. (37)

3.3.1 Weak dissipative regime

In this regime, the slow-roll parameters become

ε =
M2

pV
(1+λ)(1+ω)−1

(
1 + V (1+λ)(1+ω)

) −ω
1+ω

V ′2

2

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 2+λ
1+λ

,

η = M2
p(

A +
(

1 + V (1+λ)(1+ω)

) 1
1+ω

) 1
1+λ

×
(

2V ′′ + V ′2((1 + λ)(1 + ω) − 1)

V

−ω(1 + λ)V (1+λ)(1+ω)−1V ′2(
1 + V (1+λ)(1+ω)

)

−

(
1 + V (1+λ)(1+ω)

) −ω
1+ω

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

)V ′2

×(1 + λ)V (1+λ)(1+ω)−1
)

,
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β =

⎛
⎜⎜⎜⎜⎝

4

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

)
V ′′ − 3V ′2V (1+λ)(1+ω)−1

(
1 + V (1+λ)(1+ω)

) −ω
1+ω

6

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 2+λ
1+λ

⎞
⎟⎟⎟⎟⎠

×M2
p.

By using Eq. (6), the number of e-folds is given as

N = 1

M2
p

∫ φ∗

φend

(
A +

(
1 + V (1+λ)(1+μ)

) 1
1+ω

) 1
1+λ

V ′ dφ.

The perturbed parameters take the form

PR =
(

81πb2

122CV ′2

) 1
2

×

⎛
⎜⎜⎜⎜⎝

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 1
1+λ

3M2
p

⎞
⎟⎟⎟⎟⎠

3
2

, (38)

ns − 1 = 3M2
p

2

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 1
1+λ

×
(
V ′2((1 + λ)(1 + ω) − 1)

V

− 3

12

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

)

×
(

4V ′′
(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

)

−3V ′2V (1+λ)(1+ω)−1
(

1 + V (1+λ)(1+ω)

) −ω
1+ω

)
+ 2V ′′

−ω(1 + λ)V (1+λ)(1+ω)−1V ′2(
1 + V (1+λ)(1+ω)

)

−

(
1 + V (1+λ)(1+ω)

) −ω
1+ω

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

)V ′2

×(1 + λ)V (1+λ)(1+ω)−1
(

3

4
+ (1 + λ)

))
, (39)

r =
192G

√
3CM2

pV
′

9bπ
3
2

(
A +

(
1 + V (1+λ)(1+μ)

) 1
1+ω

) 1
2(1+λ)

. (40)

We can write r and ns in terms of φ as follows:

ns − 1 = 3M2
p

2(A + (1 + (0.25λ∗φ4)(1+λ)(1+ω))
1

1+ω )
1

1+λ

×
(

4((1 + λ)(1 + ω) − 1)λ∗φ2 + 6λ∗φ2

− 3

12(A + (1 + (0.25λ∗φ4)(1+λ)(1+ω))
1

1+ω )

×
(

12λ∗φ2(A + (1 + (0.25λ∗φ4)(1+λ)(1+ω))
1

1+ω )

−3λ2∗φ6(0.25λ∗φ4)(1+λ)(1+ω)−1

×(1 + (0.25λ∗φ4)(1+λ)(1+ω))
−ω

1+ω

)

− (0.25λ∗φ4)(1+λ)(1+ω)−1λ2∗φ6

(1 + (0.25λ∗φ4)(1+λ)(1+ω))
ω(1 + λ)

− (1 + (0.25λ∗φ4)(1+λ)(1+ω))
−ω
1+ω

(A + (1 + (0.25λ∗φ4)(1+λ)(1+ω))
1

1+ω )

×
(

3

4
+ (1 + λ)

)

×λ2∗φ6(1 + λ)(0.25λ∗φ4)(1+λ)(1+ω)−1
)

,

r =
192G

√
3CM2

pλ∗φ3

9bπ
3
2 (A + (1 + (0.25λ∗φ4)(1+λ)(1+μ))

1
1+ω )

1
2(1+λ)

.

3.3.2 Strong dissipative regime

For the strong regime, the slow-roll parameters take the form

ε =
M2

pV
(1+λ)(1+ω)−1

(
1 + V (1+λ)(1+ω)

) −ω
1+ω

V ′2

2R

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 2+λ
1+λ

,

η = M2
p

R

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 1
1+λ

×
(

2V ′′ + V ′2((1 + λ)(1 + ω) − 1)

V
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−ω(1 + λ)V (1+λ)(1+ω)−1V ′2(
1 + V (1+λ)(1+ω)

)

−

(
1 + V (1+λ)(1+ω)

) −ω
1+ω

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

)V ′2

×(1 + λ)V (1+λ)(1+ω)−1
)

,

β =

⎛
⎜⎜⎜⎜⎝

4

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

)
− V ′2V (1+λ)(1+ω)−1

(
1 + V (1+λ)(1+ω)

) −ω
1+ω

10

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 2+λ
1+λ

⎞
⎟⎟⎟⎟⎠

1

R
M2

p.

The number of e-folds leads to

N = 1

M2
p

∫ φ∗

φend

(
A +

(
1 + V (1+λ)(1+μ)

) 1
1+ω

) 1
1+λ

V ′ Rdφ.

The corresponding perturbed quantities become

PR =
(

π

4

) 1
2 b

9
5

V ′ 3
5 (4C)

7
10

×

⎛
⎜⎜⎜⎜⎝

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 1
1+λ

3M2
p

⎞
⎟⎟⎟⎟⎠

9
10

, (41)

ns − 1 = 3(4C)
1
5

2b
4
5 V ′ 2

5

(3M2
p)

2
5

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 2
5(1+λ)

×
(
V ′2((1 + λ)(1 + ω) − 1)

V

− 3

20

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

)

×
(

4V ′′
(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

)

−V ′2V (1+λ)(1+ω)−1
(

1+V (1+λ)(1+ω)

) −ω
1+ω

)
+ 2V ′′

−ω(1 + λ)V (1+λ)(1+ω)−1V ′2(
1 + V (1+λ)(1+ω)

)

−

(
1 + V (1+λ)(1+ω)

) −ω
1+ω

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

)V ′2

×(1 + λ)V (1+λ)(1+ω)−1
(

3

4
+ (1 + λ)

))
, (42)

r = 32G(4C)
7

10 V ′ 3
5

b
9
5 π

3
2

×

⎛
⎜⎜⎜⎜⎝

(
A +

(
1 + V (1+λ)(1+ω)

) 1
1+ω

) 1
1+λ

3M2
p

⎞
⎟⎟⎟⎟⎠

1
10

. (43)

However, r and ns as a function of φ are

ns − 1 = 3(4C)
1
5

2b
4
5 (λ∗φ3)

2
5

× (3M2
p)

2
5

(A + (1 + (0.25λ∗φ4)(1+λ)(1+ω))
1

1+ω )
2

5(1+λ)

×
(

4λ∗φ2((1 + λ)(1 + ω) − 1)

− 3

20(A + (1 + (0.25λ∗φ4)(1+λ)(1+ω))
1

1+ω )

×
(

12λ∗φ2(A + (1 + (0.25λ∗φ4)(1+λ)(1+ω))
1

1+ω )

−(0.25λ∗φ4)(1+λ)(1+ω)−1λ2∗φ6

×(1 + (0.25λ∗φ4)(1+λ)(1+ω))
−ω
1+ω

)

− (0.25λ∗φ4)(1+λ)(1+ω)−1λ2∗φ6

(1 + (0.25λ∗φ4)(1+λ)(1+ω))

×ω(1 + λ)

− (1 + (0.25λ∗φ4)(1+λ)(1+ω))
−ω
1+ω

(A + (1 + (0.25λ∗φ4)(1+λ)(1+ω))
1

1+ω )

(
3

4
+ (1 + λ)

)

×λ2∗φ6(1 + λ)(0.25λ∗φ4)(1+λ)(1+ω)−1 + 6λ∗φ2
)

,
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Fig. 3 Plot of the tensor–scalar ratio r versus scalar spectral index ns for the GCCG model in the weak dissipative regime (left panel) and the
strong dissipative regime (right panel)

r = 32G(4C)
7

10 (λ∗φ3)
3
5

b
9
5 π

3
2

×
(

(A + (1 + (1 + (0.25λ∗φ4)(1+λ)(1+ω))
1

1+ω )
1

1+λ

3M2
p

) 1
10

.

The plots of r versus ns for the GCCG models in the weak
and the strong regimes are shown in Fig. 3. The constant
parameters are λ = 1, ω = −0.5, Mp = 1, λ∗ = 10−2,
A = 10−5, b = 30. In the weak regime (left panel), the
tensor–scalar ratio is confined to r < 0.12 when the spectral
index is ns < 1. In the strong regime, we get r < 0.08 for
b = 80, 0.2 < ns < 1. These values show that the GCCG
model is compatible with the data provided by WMAP9 and
Planck [32,33].

4 Conclusions

Warm inflation presents a compelling solution for the main
problem of the inflationary theory, namely how this inflation-
ary period will come to an end. In this type of models, radi-
ations are produced during inflation, and a dissipative coef-
ficient is introduced. This is the reason why we have inves-
tigated the warm inflationary scenario inspired with quartic

form of potential V = λ∗φ4

4 and the well-known form of the
dissipative coefficient � ∝ T . In order to find the consistency
of the results, we have assumed various well-known Chap-
lygin gas models such as GCG, MCG, and GCCG. Also,
we have considered this universe to be filled with radiation
and a standard scalar field and accordingly the Friedmann
equations are modified. In the slow-roll approximation, we
have investigated inflationary parameters such as the num-
ber of e-folds, the scalar spectrum, the scalar spectral index,
and the tensor-to-scalar ratio both in the weak and the strong
dissipative regimes.

To analyze our results, we have plotted the graphs between
the tensor-to-scalar ratio r and scalar spectral index ns for

each model in the weak (where � � 3H ) and the strong
(where � � 3H ) dissipative regimes. For the GCG model,
it is found that in the weak dissipative regime with 0.4 <

ns < 1, we have r < 0.006, and in the strong dissipative
regime, r = 0.05 at ns = 0.96 (referred to in Fig. 1). In the
MCG model, the spectral index lies between 0.6 < ns < 1,
the range of the tensor–scalar ratio is r < 0.045 in the weak
regime. However, in the strong regime, we have obtained the
range r < 0.15 for 0.7 < ns < 1. In the GCCG model,
for the weak regime when the spectral index is ns < 1, the
tensor–scalar ratio is confined to r < 0.12. But in the strong
regime for b = 80, 0.2 < ns < 1, we get r < 0.08.

In addition, WMAP9 provides the value of the tensor–
scalar ratio r < 0.13 and the spectral index is measured to
be ns = 0.972±0.013, according to the Planck data r < 0.11
and ns = 0.968 ± 0.006. We have concluded remarking that
the obtained range/values of r corresponding to the well-
settled ns are well supported to WMAP9 [32] and Planck
data [33] in all models of CG models.
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