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Abstract Within the background-field framework we pre-
sent a path integral derivation of the splitting Ward identity
for the one-particle irreducible effective action in the pres-
ence of an infrared regulator, and make connection with ear-
lier works on the subject. The approach is general in the
sense that it does not rely on how the splitting is performed.
This identity is then used to address the problem of back-
ground dependence of the effective action at an arbitrary
energy scale. We next introduce the modified master equation
and emphasize its role in constraining the effective action.
Finally, application to general gauge theories within the geo-
metric approach is discussed.

1 Introduction

The notion of exact renormalization group originated from
the pioneering work of Wilson [1]. Since then, it has re-
emerged in various formulations [2–5]. Among them is the
approach taken in [4,5] where, contrary to [2,3] which study
the scale dependence of the Wilsonian effective action, one
deals with the scale dependence of the generator of one-
particle irreducible diagrams, hereafter referred to simply as
the effective action. The dependence on the energy scale k
is introduced by adding to the ultraviolet action an effective
mass term for the dynamical fields, with a scale dependent
mass Rk(q2), usually referred to as the cutoff kernel, which
decreases monotonically with momentum q. This resembles
Wilson’s notion of incomplete integration, where the path
integral over heavier modes is less suppressed. It turns out
that the scale dependence of this effective action �k is ruled
by an equation which is exact, in the sense that it does not
rely on the existence of any small expansion parameter. This
equation relates the scale derivative of the effective action to
its second derivative with respect to the classical dynamical
fields �

(2)
k ,
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∂t�k = 1
2 Tr

[
(�

(2)
k +Rk)

−1∂t Rk
]

(1.1)

where t = log k. Despite being exact, finding solutions to
this equation without resorting to any approximation seems
out of reach. In practice one truncates the effective action to
reduce the parameter space to a lower dimensional subspace,
where the equations can be solved. This reduced parameter
space can be finite or still infinite dimensional. For reviews on
exact renormalization, and especially the approach of [4,5],
see [6–12].

Finding a consistent truncation requires additional care
when using the background-field method [13,14]. The
background-field method is used widely in Yang–Mills the-
ory and field theory of gravity for the computational facil-
ity and conceptual insight it provides. Its use is also neces-
sary for the construction of a covariant effective action [15–
17], for both gauge and non-gauge theories. When using the
background-field method, apart from the usual Lorentz sym-
metry and possible internal symmetries of the theory, there
will be extra relations among the couplings of different oper-
ators in the effective action which originate from the fact
that the background and quantum fields enter the ultravio-
let action in a specific combination, namely the total field.
These constraint relations are governed by some sort of Ward
identities, which we generally refer to as splitting Ward iden-
tities.

Considering nontrivial instances studied in the literature,
such an identity was first used for the standard (infrared)
effective action with nonlinear quantum-background split
[18], to prove renormalizability of general nonlinear sigma
models in two dimensions. Within the renormalization group
approach of [4,5], it has appeared in [19–23] and emphasized
more recently in [24,25], for linear splitting of the field. For
geometrical effective actions, which require a nonlinear split,
it was first pointed out in [10,26], in the context of gauge the-
ories. Attempts to apply the equation in the case of nonlinear
field splitting were made in [27] for quantum gravity, in the
geometric approach.
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In this work we give a general path integral derivation of
the splitting Ward identities leading to the above mentioned
constraint relations, in the presence of an infrared regula-
tor, and show how these constraints are consistent with the
functional flow equation of the effective action. Particular
attention is paid to the choice of measure. Employing these
identities, the problem of background dependence is then
addressed for the most general case of quantum-background
split, which, even in its special case of a linear split, gener-
alizes some recent results in the literature [24,25]. We then
introduce the modified master equation and explain how, with
its aid, these identities can be applied in practice to put con-
straints on the form of the effective action. As a check, the
modified master equation is explicitly shown to be satisfied
at the one-loop level, irrespective of the scheme of regular-
ization. All this is done without reference to a specific way
of splitting the total field. Next, after reviewing the advan-
tages of the exponential splitting and the notion of covariant
effective action, we discuss general covariance of the results
of earlier sections. Finally we explain how these results can
be applied to gauge theories within the geometric approach.
In this paper we set the framework and leave the application
to a future publication.

2 Modified splitting Ward identity

2.1 Setup and derivation of the identity

The starting point of our discussion is the quantization of a
bare theory with action S[φ], for which the background-field
method is to be employed. Here, in general φ is meant to
denote a set of fields φi , with i regarded as a generalized
index, including the label of fields, possible Lorentz indices,
and also the spacetime/momentum argument. The fields are
then chosen to be split into a background ϕi and a fluctu-
ation field ξ i , so that φi (ϕ, ξ) is now a function of ϕi and
ξ i , and such that φi (ϕ, 0) = ϕi . With foresight, the notation
is chosen to match that commonly used for the exponential
splitting, discussed in more detail in Sect. 5 and Appendix
C, which is going to be our main application, but at this point
we do not specify how the splitting is done. For simplic-
ity of notation, throughout the paper, we use a dot to denote
contraction of the generalized indices. The following formal-
ism applies to non-gauge theories and gauge theories prior
to gauge fixing. We defer a discussion of the gauge fixing
procedure to Sect. 6.

The generator of connected n-point functions Wk[ϕ, J ] is
a functional of the background and a source field Ji given by
the path integral

exp (−Wk[ϕ, J ])
=

∫
Dφ μ(φ) exp (−S[φ] − Sk[ϕ, ξ ] − J ·ξ) . (2.1)

A dependence on the energy scale k is introduced by adding
a cutoff term, bilinear in the dynamical fields,

Sk[ϕ, ξ ] = 1
2 ξ ·Rk(ϕ)·ξ, (2.2)

with a cutoff kernel which depends only on the background
field, and vanishes at k = 0. Also, the sole assumption on
the integration measure is that it depends exclusively on the
total field. This assumption is in fact not of central importance
and is irrelevant in certain regularization schemes, as we will
comment on later. The cutoff and source terms break the
single-field dependence of the exponent in (2.1), and there-
fore lead to an (off-shell) effective action which, in principle,
depends on how the total field is split. The scale dependent
effective action is defined through the modified Legendre
transform

�k[ϕ, ξ̄ ] = Wk[ϕ, J ] − J ·ξ̄ − Sk[ϕ, ξ̄ ], (2.3)

where ξ̄ i = 〈ξ i 〉 is the expectation value of ξ i .
The quantum-background split, being a field redefinition,

does not affect physical quantities, but will have nontrivial
consequences for the off-shell effective action. As empha-
sized in (2.3), the effective action is no longer a function of
a single field but depends separately on both the background
and fluctuations. However, the fact that the bare action is a
function of a single field must leave some trace on the form of
the effective action. In terms of symmetries, the bare action
is invariant under a set of simultaneous transformations of
the background and the fluctuation field that leaves the total
field unaltered

ϕi → ϕi + δϕi , ξ i → ξ i + δξ i ;
φi (ϕ, ξ) → φi (ϕ + δϕ, ξ + δξ) = φi (ϕ, ξ). (2.4)

This symmetry will be inherited, possibly in a deformed way,
by the effective action, which is manifested through the cor-
responding Ward identity, called the modified splitting Ward
identity (mspWI), which we now wish to prove. The presence
of an infrared regulator provides a modification to the analog
splitting Ward identity in the absence of this term, and hence
the name ‘modified’.

The derivation of the identity is rather straightforward.
One varies Eq. (2.1) with respect to ϕi . In doing so, one also
varies the dummy variable ξ i such that the total field is left
unchanged. This results in the equality

δWk[ϕ, J ]
δϕ

·δϕ=
〈
δSk[ϕ, ξ ]

δϕ
·δϕ + δSk[ϕ, ξ ]

δξ
·δξ+ J ·δξ

〉
.

(2.5)

We recall here the formulas for the functional derivatives of
the connected and one-particle irreducible correlation func-
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tion generators, which follow easily from (2.1) and (2.3),

δWk[ϕ, J ]
δ Ji

= ξ̄ i ,

δ�k[ϕ, ξ̄ ]
δξ̄ i

= −Ji − δSk[ϕ, ξ̄ ]
δξ̄ i

, (2.6)

δ�k[ϕ, ξ̄ ]
δϕi

= δW [ϕ, J ]
δϕi

− δSk[ϕ, ξ̄ ]
δϕi

.

Using these identities, and shuffling terms a bit, Eq. (2.5) is
rewritten as

δ�k[ϕ, ξ̄ ]
δϕ

·δϕ + δ�k[ϕ, ξ̄ ]
δξ̄

·〈δξ 〉

=
〈
δSk[ϕ, ξ ]

δξ
·δξ

〉
− δSk[ϕ, ξ̄ ]

δξ̄
·〈δξ 〉

+
〈
δSk[ϕ, ξ ]

δϕ

〉
·δϕ − δSk[ϕ, ξ̄ ]

δϕ
·δϕ. (2.7)

Dropping the arbitrary variation δϕi , the last two terms on
the right-hand side can be reorganized into an expression in
terms of the connected two-point function, which is related
to the one-particle irreducible two-point function using the
first two equations in (2.6),
〈
δSk[ϕ, ξ ]

δϕi

〉
− δSk[ϕ, ξ̄ ]

δϕi

= 1

2

〈
ξ · δRk(ϕ)

δϕi
·ξ

〉
− 1

2
ξ̄ · δRk(ϕ)

δϕi
·ξ̄

= −1

2
Tr

[
δ2Wk[ϕ, J ]

δ Jδ J

δRk(ϕ)

δϕi

]

= 1

2
Tr

[(
δ2�k[ϕ, ξ̄ ]

δξ̄δξ̄
+ Rk(ϕ)

)−1
δRk(ϕ)

δϕi

]

. (2.8)

The traces in the second line denote cyclic contraction of
indices. Combining this result with Eq. (2.7), we finally arrive
at the mspWI

δ�k[ϕ, ξ̄ ]
δϕi

+ δ�k[ϕ, ξ̄ ]
δξ̄

·
〈
δξ

δϕi

〉
− 1

2
Tr

[(
δ2�k[ϕ, ξ̄ ]

δξ̄δξ̄
+Rk(ϕ)

)−1
δRk(ϕ)

δϕi

]

+ξ̄ ·Rk(ϕ)·
〈
δξ

δϕi

〉
−

〈
ξ ·Rk(ϕ)· δξ

δϕi

〉
= 0. (2.9)

Considering ξ j (ϕ, φ) as a function of the background and the
total field, the functional derivative in δξ j/δϕi is understood
to be taken while keeping the total field fixed.

Let us consider at this point some special cases of this
identity. In the absence of a regulator Rk(ϕ) = 0, the mspWI
simplifies to an identity, similar in structure to the familiar
splitting Ward identity for exponential quantum-background
split [18,28–30]

δ�k[ϕ, ξ̄ ]
δϕi

+ δ�k[ϕ, ξ̄ ]
δξ̄

·
〈
δξ

δϕi

〉
= 0. (2.10)

If, in addition, δξ i depends only on the background field or is
at most linear in ξ i , then we will have 〈δξ i 〉 = δ〈ξ i 〉 and the
above equation translates to the fact that the symmetry of the
bare action is also a symmetry of the effective action. Here,
in the general case where Rk(ϕ) is nonvanishing and δξ i can
have higher order terms in ξ i , there will be modifications to
this statement.

Also, in the case of a linear splitting φi = ϕi +ξ i we have
δξ i = −δϕi , so the last two terms in (2.9) cancel out and the
mspWI reduces to the modified shift Ward identity,

δ�k[ϕ, ξ̄ ]
δϕi

− δ�k[ϕ, ξ̄ ]
δξ̄ i

−1

2
Tr

[(
δ2�k[ϕ, ξ̄ ]

δξ̄δξ̄
+Rk(ϕ)

)−1
δRk(ϕ)

δϕi

]

= 0, (2.11)

to which [19–23] provide some early references. The signif-
icance of using this identity along with the flow equation has
been stressed more recently in [24,25].

2.2 Diagrams and shorthand notation

So far, we have used the notation in its expanded form to
make the steps of the derivation clear. Now that we have fin-
ished this task, we introduce some shorthand notation which
facilitate handling the equations significantly. From now on,
for conciseness, we drop the index k on Rk and �k , denote
∂t by an overdot when there is no ambiguity, and define for
the functional Q[ϕ, ξ ]

Q; i1...in , ji ... jm ≡ δn+mQ

δξ i1 . . . δξ inδϕ j1 . . . δϕ jm
. (2.12)

In a more general sense, the notations ‘,’ and ‘;’ will also
be used later to denote, respectively, partial derivatives with
respect to the first and second arguments. Let us also denote
the propagator and its inverse by Gi j and Gi j , respectively,

Gi j = �;i j + Ri j , GikGkj = δij . (2.13)

Using these compact notations, the mspWI (2.9) is rewritten
as

Ni ≡ �,i+�; j 〈ξ j,i 〉− 1
2 Gmn(Rnm),i +ξ̄m Rmn〈ξn,i 〉 − 〈

ξm Rmnξ
n,i

〉 = 0

(2.14)

where the quantity Ni , whose k-dependence is implicit,
defines the expression on the left-hand side of this equation
and is introduced for later use.
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In order to gain more insight into the mspWI, one can
write it in a more explicit way, by expanding the quantity ξ j,i
in powers of the fluctuations, with background dependent
coefficients

ξ j,i =
∞∑

n=0

C j
i,i1i2...in

ξ i1ξ i2 . . . ξ in . (2.15)

These coefficients are taken to be symmetric in their lower
indices i1i2 . . . in , without loss of generality. The expression
for 〈ξ j,i 〉 as a function of ξ̄ i is now seen more clearly in terms
of diagrams. With the help of the Feynman rules defined in
Appendix A, the second term on the left-hand side in Eq.
(2.14) is written in the following way:

Γ;j〈ξj,i 〉 =
∞∑

n=0

Γ;j Cj
i,i1i2···in 〈ξi1ξi2 · · · ξin〉 =

∑

(2.16)

where the sum is over all possible diagrams of the given
form, whose number is infinite, and include diagrams of all
loop orders. The vertex with a black circle, whose index i is
implicit, represents �; j C j

i,i1i2...in
. The white circles are con-

nected n-point functions of the fluctuation fields. In partic-
ular, the white circles connected by a single line are noth-
ing but ξ̄ . The last two terms in (2.14) are also written
as

ξ̄ ·R·〈ξ,i 〉 − 〈ξ ·R·ξ,i 〉 = Rpq 〈ξq,i 〉ξ̄p − 〈ξq,i ξp〉
)

=
∞∑

n=1

Rpq Cq
i,i1i2···in 〈ξi1ξi2 · · · ξin〉ξ̄p − 〈ξi1ξi2 · · · ξinξp〉)

=
∑

arrow not on external lines

(2.17)

Here, the vertex with a black circle denotes −Rpq C
q
i,i1i2...in

,
and the line with an arrow is the free index p in the cutoff.
Again, the sum is over all possible diagrams of the given
form, keeping in mind that the arrow is never on the external
lines. The connected n-point functions are still to be written
in terms of the one-particle irreducible n-point functions, as
explained in Appendix A, so that the diagrams on the right
in (2.16) and (2.17) will provide a representation of the left-
hand side in terms of the background and the classical fluctu-
ating fields ξ̄ i . The final form of the mspWI in diagrammatic
language is

Ni ≡ Γ,i − 1
2 GR,i +

∑
+

∑
= 0

(2.18)

2.3 Comments

Let us pause at this point to make a few comments. In fact,
Eq. (2.14) can be rewritten in a different way, which also
makes connection with some earlier works. This can be seen
by applying Eq. (B.5) to the expectation value of ξn,i

〈ξn,i 〉;p = Gpq(〈ξqξn,i 〉 − ξ̄q〈ξn,i 〉), (2.19)

which, upon contraction with Gpm Rmn

− Gpm Rmn〈ξn,i 〉;p = −Gpm RmnG pq(〈ξqξn,i 〉 − ξ̄q〈ξn,i 〉)
= −〈ξm Rmnξ

n,i 〉 + ξ̄m Rmn〈ξn,i 〉,
(2.20)

leads exactly to the sum of the last two terms in (2.14). So
the mspWI (2.14) can also be written as

�,i +�; j 〈ξ j,i 〉 − 1
2G

mn(Rnm),i −GnpRpm〈ξm,i 〉;n = 0

(2.21)

In a gauge theory context, and within the geometric approach,
a similar identity has been obtained in [10,26]. We emphasize
that Eq. (2.14) or (2.21) is very general and does not rely on

any assumption other than the dependence of the ultraviolet
action (and the measure) on a single field.

Before closing the discussion on the mspWI, let us also
make a comment on the choice of measure in (2.1). In the
derivation of the mspWI, we chose the measure of integra-
tion to be a function of the total field. In the literature various
choices are made for the measure, for all of which the split-
ting Ward identity (2.10) is claimed to be valid for the result-
ing effective action, see for example [18,28–31]. In fact, as
apparent from the steps of the derivation, any deviation from
a single-field measure in (2.1) will result in extra terms in
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(2.9), which vanish only in certain regularization schemes.
For instance, the covariant measure Dξ

√
det gi j (ϕ), for some

metric gi j on field space, will lead to the mspWI

�,i +�; j 〈ξ j,i 〉 − 1
2 Gmn(Rnm),i +ξ̄m Rmn〈ξn,i 〉

− 〈
ξm Rmnξ

n,i
〉 + δ(0)〈(∇iξ

j ); j 〉 = 0, (2.22)

where ∇i is the background covariant derivative, compatible
with the metric gi j (ϕ), and δ(0) is the Dirac delta function
in position space, evaluated at zero.

2.4 Consistency with the flow equation

At any given energy scale k, the constraint equation, Eq.
(2.14), Ni,k = 0, restricts the infinite dimensional theory
space, i.e. the space of coefficients of all possible Lorentz (or
diffeomorphism) invariant operators constructed from ϕi and
ξ i , with possible internal symmetries, to a lower, but still infi-
nite, dimensional subspace. In the ultraviolet scale the con-
straint identity (2.14) is automatically satisfied if the ultra-
violet action S depends only on the total field, which is our
primary assumption, while in the infrared the identity reduces
to (2.10) and tells us that the effective action is a functional of
a single field � j (ϕ, ξ̄ ) which satisfies � j,i +�

j
;l〈ξ l,i 〉 = 0

(see Sect. 3 for more details). Such an interpretation does
not seem to be possible at the intermediate scales. Roughly
speaking, the dimension of these subspaces is the number of
operators one can construct from a single field.

For different values of k, the one-parameter set of sub-
spaces, given by Ni,k = 0, sweeps a surface in theory space,
of one dimension higher, on which all the curves (2.3) lie.
In fact, the curves (2.3) also sweep this surface for different
ultraviolet actions that depend on a single field, while satis-
fying the exact flow (1.1). This shows the consistency of the
mspWI with the renormalization group equation, Eq. (1.1).

Of course, any solution to the exact flow equation which
intersects the above mentioned surface must lie entirely on
this surface by the uniqueness theorem, and in particular
it must coincide with one of the trajectories (2.3). In other
words, starting with a solution to the mspWI at some scale,
under the renormalization group flow it will remain inside
the set of solutions to Ni,k = 0 at any other scale, and tends
to some single-field dependent action in the ultraviolet.1

It would still be instructive to find explicitly the flow equa-
tion for the quantity Ni defined in (2.14). Some necessary
relations we will be using in the following, but which in prin-
ciple have a wider application, are collected in Appendix B.
By direct computation, the renormalization group flow of the
first term in (2.14) is found as follows:

1 Up to terms proportional to δ(0) (see Eq. (6.9)).

∂t�,i = 1
2G

mn(Ṙnm),i − 1
2G

mp(Gpq),i G
qn Ṙnm

= 1
2G

mn(Ṙnm),i − 1
2G

mp(Rpq),i G
qn Ṙnm

− 1
2G

mp�;pq ,i Gqn Ṙnm

= 1
2G

mn(Ṙnm),i − 1
2G

qn ṘnmG
mp(Rpq),i

− 1
2G

qn ṘnmG
mp�;pq ,i

= 1
2GṘ,i − 1

2 (GṘG)qp(Rpq),i − 1
2 (GṘG)qp�;pq ,i .

(2.23)

In a similar way, the flow of the third term is found to be

− 1

2
∂t [Gmn(Rnm),i ] = − 1

2G
mn(Ṙnm),i+ 1

2G
mp(Ġ pq )G

qn(Rnm),i

= − 1
2G

mn(Ṙnm),i + 1
2G

mp ṘpqG
qn(Rnm),i

+ 1
2G

mp�̇;pqGqn(Rnm),i

= − 1
2GṘ,i + 1

2 (GṘG)mn(Rnm),i

+ 1
2 (GR,i G)qp�̇;pq . (2.24)

Summing the two terms leads to

∂t
[
�,i − 1

2G
mn(Rnm),i

]

= − 1
2 (GṘG)qp�;pq ,i + 1

2 (GR,i G)qp�̇;pq
= − 1

2 (GṘG)qp (�,i );pq + 1
2 (GR,i G)qp�̇;pq . (2.25)

But from (B.3) the last term on the right-hand side is rewritten
as

1
2 (GR,i G)qp�̇;pq
= − 1

4 (GR,i G)qp(GṘG)rs
[
�;pqrs+2Gmn�;prm�;qsn

]

= − 1
4 (GṘG)qp(GR,i G)rs

[
�;pqrs+2Gmn�;prm�;qsn

]

= − 1
2 (GṘG)qp

[− 1
2GR,i

]
;pq , (2.26)

where in the second equation we have used the fact that the
term inside the brackets is symmetric with respect to the
interchange qp ↔ rs, and therefore we have interchanged
Ṙ and R,i , and in the final equation we have used an identity
similar to (B.3) but with Ṙ replaced by R,i . So finally we
find the equation

∂t
[
�,i − 1

2G
mn(Rnm),i

]

= − 1
2 (GṘG)qp

[
�,i − 1

2G
mn(Rnm),i

]
;pq , (2.27)

which relates the scale derivative of the sum of the first and
third terms in (2.14) to the second ξ -derivatives of the same
quantity. Now let us consider the remaining terms in (2.14).

123



201 Page 6 of 17 Eur. Phys. J. C (2016) 76 :201

For the second term we find a flow of the following form:

∂t [�; j 〈ξ j,i 〉] = ∂t�; j 〈ξ j,i 〉 + �; j∂t 〈ξ j,i 〉
= − 1

2 (GṘG)qp(�; j );pq 〈ξ j,i 〉
− 1

2�; j (GṘG)qp〈ξ j,i 〉;pq
= − 1

2 (GṘG)qp(�; j 〈ξ j,i 〉);pq
+(GṘG)qp�; j p 〈ξ j,i 〉;q

= − 1
2 (GṘG)qp(�; j 〈ξ j,i 〉);pq

+(GṘG)qpG jp 〈ξ j,i 〉;q
−(GṘG)qp R jp 〈ξ j,i 〉;q

= − 1
2 (GṘG)qp(�; j 〈ξ j,i 〉);pq+(GṘ)

q
j 〈ξ j,i 〉;q

−(GṘGR)
q
j 〈ξ j,i 〉;q (2.28)

while, using (B.8), we can write the t-derivative of the last
two terms in (2.14) as

∂t (ξ̄
m Rmn〈ξn,i 〉 − 〈

ξm Rmnξ
n,i

〉
)

= − 1
2 (GṘG)qp ξ̄m Rmn〈ξn,i 〉;pq + ξ̄m Ṙmn〈ξn,i 〉

− 1
2 (GṘG)qp(− 〈

ξm Rmnξ
n,i

〉
);pq − 〈ξm Ṙmnξ

n,i 〉
= − 1

2 (GṘG)qp(ξ̄m Rmn〈ξn,i 〉);pq
+(GṘG)qp Rpn〈ξn,i 〉;q + ξ̄m Ṙmn〈ξn,i 〉
− 1

2 (GṘG)qp(− 〈
ξm Rmnξ

n,i
〉
);pq − 〈ξm Ṙmnξ

n,i 〉
= − 1

2 (GṘG)qp(ξ̄m Rmn〈ξn,i 〉 − 〈ξm Rmnξ
n,i 〉);pq

+(GṘGR)
q
n〈ξn,i 〉;q + ξ̄m Ṙmn〈ξn,i 〉 − 〈ξm Ṙmnξ

n,i 〉.
(2.29)

Again, summing the two pieces gives

∂t [�; j 〈ξ j,i 〉 + ξ̄m Rmn〈ξn,i 〉 − 〈ξm Rmnξ
n, i〉]

= − 1
2 (GṘG)qp[�; j 〈ξ j,i 〉 + ξ̄m Rmn〈ξn,i 〉 − 〈ξm Rmnξ

n,i 〉];pq
+(GṘ)

q
j 〈ξ j,i 〉;q + ξ̄m Ṙmn〈ξn,i 〉 − 〈ξm Ṙmnξ

n,i 〉. (2.30)

The second line vanishes by an identity similar to (2.20),
which is found by applying (B.5) to O = ξ j,i , and contracting
with (GṘ)

q
j . Thus a relation similar to that of the sum of the

first and third terms in (2.14) holds also for the sum of the
remaining terms. So we have shown that for the quantities
N1i and N2i defined by

Ni ≡ �,i − 1
2 Gmn(Rnm),i

︸ ︷︷ ︸
N1i

+�; j 〈ξ j,i 〉 + ξ̄m Rmn〈ξn,i 〉 − 〈
ξm Rmnξ

n,i
〉

︸ ︷︷ ︸
N2i

(2.31)

we have

∂tN1i = − 1
2 (GṘG)qp(N1i );pq ,

∂tN2i = − 1
2 (GṘG)qp(N2i );pq , (2.32)

and consequently the same identity is valid for their sum Ni

∂tNi = − 1
2 (GṘG)qp(Ni );pq . (2.33)

This gives an explicit equation for the running of the quan-
tity Ni with the energy scale, and it fulfills our expectations
elaborated on at the beginning of this section. The extra infor-
mation (2.32) will be used in Sect. 6 to address background
gauge invariance of the geometric effective action for gauge
theories. Equation (2.33) is also similar to a flow equation
reported in [26] for gauge theories in the geometric approach.

3 Background dependence

3.1 General considerations

At the beginning of Sect. 2.4 we briefly pointed out that in the
infrared limit k = 0, as a result of the splitting Ward Identity
(2.10), the effective action depends on a single field �l which
is implicitly defined through �l,i +�l; j 〈ξ j,i 〉 = 0.2 This
suggests re-expressing the effective action in terms of the
background and the field �i by defining the quantity �̄k[ϕ,�]
at an arbitrary scale as

�k[ϕ, ξ ] = �̄k[ϕ,�], �l,i +�l; j 〈ξ j,i 〉 = 0, (3.1)

where the field �k(ϕ, ξ) is considered as a function of ϕi ,
ξ i , and k. Let us now rewrite the mspWI in terms of �̄k . The
partial derivatives of the two effective actions are related in
the following way:

δ�k[ϕ, ξ ]
δϕi

= δ�̄k[ϕ,�]
δϕi

+ δ�̄k[ϕ, φ]
δ�

· δ�

δϕi
, (3.2)

δ�k[ϕ, ξ ]
δξ i

= δ�̄k[ϕ,�]
δ�

· δ�
δξ i

. (3.3)

Using these relations, and the definition of �i , in (2.21) gives
the background dependence of �̄k[ϕ,�]
�̄,i = 1

2G
mn(Rnm),i +GnpRpm〈ξm,i 〉;n . (3.4)

It is clear that in the infrared, k = 0, all the background
dependence is gone, and the effective action is a function of
the single field �i , as was expected by construction.

If we further assume that the scale and background depen-
dence of the cutoff kernel can be collected into a dependence
on a single quantity k̂(k, ϕ) [24], then this is even more sim-

2 Here we are assuming that this differential equation is integrable, with
a solution �(ϕ, ξ) that is invertible as a function of ξ . The case of a
linear splitting, studied in the next subsection, provides the simplest but
not the only such example. The following argument is therefore valid
only if this assumption is true.
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plified. In this case we define

�k[ϕ, ξ ]= �̂k̂[ϕ,�], �l,i+�l; j 〈ξ j,i 〉 = 0, Rk(ϕ)= R̂k̂,

(3.5)

where the field �k̂(ϕ, ξ) is considered as a function of ϕi ,

ξ i , and k̂, and the partial derivatives in its defining equa-
tion above are defined accordingly. Notice also that with the
assumption Rk(ϕ) = R̂k̂ the quantity 〈ξ j,i 〉 can be consid-

ered as a function of ϕi , ξ i , and k̂. Compared to the previous
situation, the relation between partial derivatives of the effec-
tive actions is modified due to the field dependence of k̂

δ�k[ϕ, ξ ]
δϕi

= δ�̂k̂[ϕ,�]
δϕi

+ δ�̂k̂[ϕ,�]
δ�

· δ�

δϕi

+δ�̂k̂[ϕ,�]
δ�

· δ�
δk̂

δk̂

δϕi
+ δ�̂k̂[ϕ,�]

δk̂

δk̂

δϕi
, (3.6)

δ�k[ϕ, ξ ]
δξ i

= δ�̂k̂[ϕ,�]
δ�

· δ�
δξ i

. (3.7)

In terms of �̂k̂ the flow equation is also modified. Dropping

the term ∂ t̂/∂t |ϕ,ξ (t̂ = log k̂), in which ϕi and ξ i are held
fixed, the modified flow equation will be

∂�̂k̂[ϕ,�]
∂ t̂

+ δ�̂k̂[ϕ,�]
δ�

· ∂�

∂ t̂
= 1

2
G

∂R̂k̂

∂ t̂
. (3.8)

Compared to (3.2), there are two extra terms in (3.6), which,
using the above relation, cancel the first term on the right-
hand side of (3.4). The mspWI then reduces to the simple
identity

�̂,i = GnpRpm〈ξm,i 〉;n . (3.9)

One can also easily check that moving to dimensionless vari-
ables �i = k̂ D�̂i denoted by a hat, where D is the dimension
of the field �i , and defining �̂k̂[ϕ,�] = �̂k̂[ϕ, �̂], Eqs. (3.8)

and (3.9) are still valid with �̂ replaced by �̂, and �i replaced
by �̂i . In general, the function k̂ can be read off from the
condition Rk(ϕ) = R̂k̂ , if valid, and the redefinitions of the
dynamical field and the action are found from (3.1) or (3.5).
It is worth emphasizing that, as evident from (3.4) and (3.9),
in the limit k → 0, the background independence of �̄ and
�̂ will be restored regardless of how the total field is split.

3.2 A special case

Given the general analysis above, it is now straightforward to
reproduce some results in the literature. In the special case of
linear splitting the right-hand side of (3.9) vanishes because
ξ j,i = −δ

j
i and therefore 〈ξm,i 〉;n = 0. So in such examples

where Rk(ϕ) = R̂k̂ and where the fields are split linearly,
complete background independence of the effective action

�̂k̂ or �̂k̂ is guaranteed by the identity (3.9). Also the required
field redefinition follows trivially from the middle equation
in (3.5), which reduces to �l,i −�l;i = 0, and suggests �i =
ϕi + ξ i ≡ φi . In this case, Eqs. (3.8) and (3.9) reduce to

∂t̂ �̂ = 1
2G∂t̂ R̂k̂, �̂,i = 0, (3.10)

while for �̂k̂ they simplify to the following equations:

∂t̂ �̂ − D�̂i �̂;i = 1
2G∂t̂ R̂k̂, �̂,i = 0. (3.11)

Examples in the literature where the assumption Rk(ϕ) =
R̂k̂ is valid and where the linear splitting is performed are
discussed in the context of scalar field theory for a special
kind of cutoff [24], and also conformally reduced gravity
[25], for which, in two spacetime dimensions and when there
is no anomalous dimension for the field ξ i , the assumption
is valid for any cutoff just based on dimensional grounds.

4 Modified master equation

4.1 Motivation and derivation of the identity

The mspWI (2.14), (2.18), and (2.21) is supposed to put con-
straints on the form of the effective action, which would oth-
erwise be a general functional of the background field and the
fluctuations, compatible with other possible imposed sym-
metries. In practice, there are, however, two obstacles before
using the mspWI to constrain the effective action.

First of all, Eq. (2.18) is actually divergent, because the
loop diagrams in the third term, and the diagrams in the fourth
term which have loops without an arrow introduce infinities.
It is therefore not possible to use this equation directly to
put constraints on the renormalized effective action, which is
what we finally insert into the exact flow equation. In order to
remove the divergences we need to perform a loop expansion
to the desired accuracy and introduce counter-terms order
by order in perturbation theory. But in this case, there is
no point in using the mspWI, because the renormalization
group equation, Eq. (1.1), itself already gives the flow of
the effective action at any loop order [32–34], which can
be solved iteratively to get the l-loop effective action, and
the mspWI is automatically satisfied by these solutions at
any order of perturbation (see Sect. 4.2). On the other hand,
if we are not interested in a loop expansion but instead are
willing to perform another kind of approximation, e.g. an
expansion in the number of derivatives and the order of the
fluctuating fields, then we will face, once again, the problem
of divergences in (2.18).

Second, in such a situation, where, instead of doing pertur-
bation theory in the number of loops, we are interested, say,
in a derivative expansion and an expansion in the number of
fluctuations, from (2.18) it is seen that at each level (order of
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fluctuations) we need to take into account an infinite number
of diagrams, of the type of the third and fourth terms, which
include diagrams of all possible loop numbers. This is, of
course, practically impossible. Both of these problems could
be overcome if we were able to write the constraint equation,
Eq. (2.14), entirely in terms of the effective action and its
derivatives, with no manifest divergent loop terms. This is
achieved by following the BRS idea.

According to the BRS prescription, the action is modified
by introducing a source term I j for the variation of the quan-
tum field, ciξ j,i . In order for this new action to be invariant
under the transformations (2.4), the transformation parame-
ter ci is taken to be a Grassmannian variable, and the source,
which is consequently forced to be a Grassmannian field,
must be itself invariant under the symmetry transformations.
In sum, the infinitesimal symmetry transformation operator
for a general function of these fields is

s ≡ ci
δ

δϕi
+ ciξ j,i

δ

δξ j
, (4.1)

where, in general, the partial derivatives are taken, with other
fields, from the set ϕi , ξ i , ci , and Ii , kept fixed. In particular,
the fields themselves transform in the following way:

sϕi = ci , sξ i = c jξ i, j , sci = 0, s Ii = 0. (4.2)

The generator of connected diagrams is now also a func-
tion of the source field Ii and the transformation variable ci .
Explicitly3

exp (−Wk[ϕ, c, I, J ])
=

∫
Dφ μ(φ)exp(−	[ϕ, ξ, c, I ] − Sk[ϕ, ξ ] − Jiξ

i ),

	[ϕ, ξ, c, I ] ≡ S[φ] + Ii sξ
i . (4.3)

The modified action 	 is invariant under the infinitesimal
transformations (4.2). The corresponding symmetry con-
straint for the effective action �[ϕ, ξ̄ , c, I ] follows trivially
along the lines of the proof of (2.21) and is very similar to
this equation, except for the appearance of the Grassmannian
transformation variable ci

ci�,i − 1
2 G sR + �; j 〈sξ j 〉 − GnpRpm〈sξm〉;n = 0. (4.4)

The Ward identity we have been looking for now follows
immediately by noticing that

〈sξ i 〉 = δW

δ Ii
= δ�

δ Ii
≡ �i . (4.5)

Denoting, for conciseness, a partial derivative with respect to
the sources Ii , with an upper index as above, the result will be

ci�,i +� j�; j − 1
2 Gmn sRnm − GnpRpm�m

;n = 0 (4.6)

3 The same symbols W and � , as their Ii = 0 counterparts are used in
this section to avoid complicating the notation.

This is the desired Ward identity, or modified master equa-
tion. This gives an equation written entirely in terms of the
effective action and its derivatives but with no manifest diver-
gent loop terms. In other words, if the effective action were
finite, there would be no divergent terms in this equation.
There are actually two terms, the third and fourth ones in
(4.6), with a manifest loop. These are, however, regulated
with Rk , and therefore introduce no divergences, when com-
puted with a finite effective action.

4.2 Loop expansion

It would be instructive to see explicitly how the modified
master Eq. (4.6) is satisfied at tree level and especially at one-
loop level. Notice that (4.6) reduces to (2.14) upon setting
Ii = 0, and therefore provides a generalization to that. To
begin with, let us write the tree level master equation. The
last two terms in (4.6) already have a loop. So the tree level
part of this equation is

ci	,i +	 j	; j = 0. (4.7)

Using (4.1), this can also equivalently be written as s	 = 0,
which is trivially satisfied by construction. The one-loop term
is also easily found to be

D	�1−loop − 1
2 Gmn

0 sRnm − Gnp
0 Rpm	m

;n = 0, (4.8)

where we have defined the nilpotent differential operator

D	 ≡ ci
δ

δϕi
+ 	; j

δ

δ I j
+ 	 j δ

δξ j
, (4.9)

and by Gmn
0 we mean the propagator, in which the tree level

action 	 has been used instead of the effective action. After
a bit of manipulation, Eq. (4.8) can be brought into the fol-
lowing form:

D	

[
�1−loop + 1

2 Tr log(1 − G0R)
]

= 0. (4.10)

This is nothing but the one-loop (unmodified) master equa-
tion. In fact the second term in the brackets is the difference
between the one-loop effective action with a regulator and the
one without a regulator, �(1)

∣∣
R=0 −�(1), so that the quantity

inside the brackets will be the one-loop effective action in
the absence of a regulator. Consequently, in order to verify
Eq. (4.8) or (4.10), we need to check if the usual one-loop
effective action in the absence of a regulator,

1
2 Tr log 	(2), (4.11)

vanishes under the action of D	 . Using the definition (4.9),
and denoting the matrix of second ξ -derivatives of 	 by 	(2),
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and its inverse by 	(2), we get

D	
1
2 Tr log 	(2) = 1

2 Tr 	(2) c
i	,

(2)
i + 1

2 Tr 	(2) 	; j	(2) j

+ 1
2 Tr 	(2) sξ

j	
(2)
; j , 	(2)	

(2) = 1.

(4.12)

In order to simplify this further, one can find a relation
between derivatives of the tree level action by taking the
second ξ -derivative of the tree level equation, Eq. (4.7),

ci	;mn,i + (sξ j );mn	; j + sξ j	; jmn

= −(sξ j );m	; jn − (sξ j );n	; jm . (4.13)

Inserting this into (4.12) leads to

D	
1
2 Tr log 	(2)

= − 1
2 	nm

(2) (sξ j );m	
(2)
; jn − 1

2 	mn
(2) (sξ j );n	(2)

; jm
= −δ(0) (sξ j ); j . (4.14)

This shows that (4.11) does not generally vanish under the
action of D	 . There is, in fact, a contribution to the one-
loop effective action that we have been missing, which comes
from the path integral measure. Indeed, the one-loop effective
action is given by (4.11) only for the measure Dξ , so we need
to take into account the extra terms in Dφ μ[φ]. The factor
μ(φ) in front of Dφ, which is a function of the total field can
be exponentiated and counts as one-loop as it has no factor
of h̄. Clearly, this one-loop term vanishes under the action of
D	 , because it is a function of the total field, and does not
depend on the source Ii . Still, changing variables from φi to
ξ i introduces a Jacobian

Dφ = Dξ det
δφi

δξ j

∣∣∣∣
ϕ

= Dξ exp

(

− log det
δξ i

δφ j

∣∣∣∣
ϕ

)

= Dξ exp

(

−Tr log
δξ i

δφ j

∣
∣∣∣
ϕ

)

,

(4.15)

that contributes to the effective action at one-loop. Therefore,
ignoring the term − log μ[φ], we have

�1−loop = Tr log
δξ i

δφ j

∣∣∣∣
ϕ

+ 1
2 Tr log 	(2). (4.16)

Notice that the trace is taken with respect to the generalized
indices including the spacetime points in ξ i and φi , so the
first term is actually proportional to δ(0). Let us now see what
the action of D	 is on this new term:

D	 Tr log
δξ i

δφ j

∣∣∣∣
ϕ

= Tr

(
δφ

δξ

∣∣∣∣
ϕ

D	

δξ

δφ

∣∣∣∣
ϕ

)

= δφk

δξ j

∣∣∣∣
ϕ

ci
δ

δϕi

∣∣∣∣
φ

δξ j

δφk

∣∣∣∣
ϕ

= δ

δξ j

∣∣∣∣
ϕ

ci
δξ j

δϕi

∣∣∣∣
φ

= δ(0) (sξ j ); j . (4.17)

To get the third equation, we have changed the order of ϕi and
φk differentiations and contracted the k index. This cancels
(4.14) exactly.

4.3 Renormalization

The master equation is normally used to prove renormaliz-
ability (if there) at least in its modern sense of providing an
algorithm to remove ultraviolet divergences order by order
in a loop expansion by an appropriate choice of parameters
in the bare theory. This may require employing specific reg-
ularization schemes. We restrict to theories renormalizable
in this sense. In particular we assume the stability of (4.7),
i.e. that counter-terms can be introduced in such a way that
the structure of the tree level identity (4.7) is maintained for
the renormalized action 	r = 	− counter-terms. The renor-
malization program can be carried out in the same way also
in the presence of the infrared regulator. Since the difference
�k − �0 is a finite quantity, the counter-terms required to
render �k finite are the same as those of �0, and satisfy

D	 �
l−loop
div = 0, (4.18)

at the l-loop order, as can be seen from (4.6). The modi-
fied master equation therefore provides no further informa-
tion in this respect. However, removing the divergences by
adding counter-terms to the ultraviolet action, we end up
with the modified master equation for the renormalized (Ii -
dependent) effective action �r

ci�r,i + �
j
r �r; j − 1

2 Gmn
r sRnm − Gnp

r Rpm�m
r;n = 0,

(4.19)

where Gmn
r is the inverse of (Gr )mn = (�r );mn + Rmn . This

equation is finite and thus can be used to put constraints on the
form of the renormalized effective action, at arbitrary energy
scales. There is, however, a price to pay, and that is that one
needs to take into account the dependence on the extra source
field Ii as well, when writing the most general ansatz. The
field Ii can finally be set to zero in (4.19), in which case �r

will be the renormalized effective action.
The problems pointed out at the beginning of this section

are generically also encountered in the definition of the field
�i in (3.1) and (3.5). These can be similarly overcome by
replacing 〈ξ j,i 〉 with �

j
r;i in (3.1) and (3.5), which gives the

renormalized 〈ξ j,i 〉 when evaluated at Ii = 0. The resulting
equations provide a definition for �r , which is then to be
used along with (4.19), leading to similar results as (3.4) and
(3.9), with 〈ξ j,i 〉 replaced by �

j
r;i . Finally, let us note that the

flows (2.32) are also valid for both (4.6) and (4.19).
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5 Covariant effective action

Let us emphasize again that the results we have obtained
so far are general in the sense that they do not depend on
how the total field is split. However, for a general field split-
ting, the effective action defined using (2.1) and (2.3) is
not in general covariant, that is, for a field transformation
φi → φ′i (and accordingly ϕi → ϕ′i , ξ i → ξ ′i ), starting
with the transformed action S′ which satisfies S′[φ′] = S[φ],
and the transformed measure μ → μ′, in the path integral,
will not necessarily lead to an effective action �′ for which
�′[ϕ′, ξ̄ ′] = �[ϕ, ξ̄ ]. In other words, the effective action is
not a scalar under field redefinitions prior to quantization.

As first demonstrated by Vilkovisky [15,16] and DeWitt
[17], in order to have a covariant effective action, the quan-
tum fields must be defined such as to transform as vec-
tors of the field space, and moreover, the measure must
be reparametrization invariant, in the sense Dφ′ μ′[φ′] =
Dφ μ[φ], or more generally Dφ′ μ′[φ′] exp(−S′[φ′]) =
Dφ μ[φ] exp(−S[φ]).

According to the methods developed in [35–37], a natural
way to achieve a vector dynamical field is to use the expo-
nential parametrization, where the total field is given by the
action of the exponential map on the fluctuations at the base
point of the background field, φ = Expϕξ . For this purpose
the field space must be equipped with a connection �k

i j . One

can use the connection to define a geodesic curve γ i , in the
affine parametrization, as the solution to γ̈ k + �k

i j γ̇
i γ̇ j = 0,

with a dot on γ i indicating a derivative with respect to its
argument. The exponential function Expϕ at the background
point ϕi is then defined to map a vector ξ i at ϕi to a point
γ i (1) ≡ φi given by the geodesic evaluated at unit value of
its argument, where the geodesic passes through ϕi = γ i (0),
tangent to ξ i = γ̇ i (0), at zero value of its argument. Some
explicit results on the exponential parametrization are col-
lected in Appendix C.

It will be more economic to have a metric gi j on field
space. This can be used to define the connection and further-
more a covariant measure Dφ

√
det gi j (φ). The generator of

connected diagrams is now given by

exp (−Wk[ϕ, J ])
=

∫
Dφ

√
det gi j (φ) exp (−S[φ] − Sk[ϕ, ξ ] − J ·ξ) .

(5.1)

This is also covariant in the sense W ′
k[ϕ′, J ′] = Wk[ϕ, J ],

where Ji transforms as a (lower index) covariant vector, and
W ′ is defined with the transformed metric g′ in the measure,
and the transformed action S′ in the exponent.

Using the covariant formulation, the mspWI is expected
to take the same form in any coordinate system. This is, how-
ever, not manifest in (2.14) or (2.21), particularly because of

the presence of ordinary background derivatives of the vec-
tor ξ i and the cutoff Ri j in these equations. But a closer look
reveals that the first term �,i is not covariant either. This is due
to the fact that the ordinary background derivative is taken
while keeping the vector ξ i fixed. This derivative, although
legitimate, does not have a geometrical interpretation because
the vector ξ i is defined at the base point of the background
field ϕi . One can therefore write the effective action in a more
useful way by expressing it in terms of the background and
the total field with a bar φ̄ ≡ Expϕξ̄ , in which case we use a

tilde on the effective action �[ϕ, ξ̄ (ϕ, φ̄)] = �̃[ϕ, φ̄(ϕ, ξ̄ )].
Note that the total field φ̄ should not be confused with the
expectation value 〈φ〉 = 〈Expϕξ 〉.

The background derivative of the effective action keeping
the total field fixed �̃,i is now a covariant vector and can be
written as

�̃,i = �,i +�; j ξ̄ j,i . (5.2)

Using this to replace �,i in the mspWI, say (2.21), gives

�̃,i +�; j (〈ξ j,i 〉 − ξ̄ j,i ) − 1
2G

mn(Rnm),i

−GnpRpm〈ξm,i 〉;n = 0. (5.3)

The first term is now a covariant vector as already mentioned.
In fact, the second term is also covariant. This can be made
manifest by replacing the ordinary background derivatives
by covariant background derivatives

�; j (〈ξ j,i 〉 − ξ̄ j,i ) = �; j (〈∇iξ
j 〉 − ∇i ξ̄

j ). (5.4)

This works, of course, for any covariant derivative. The two
extra terms proportional to the Christoffel symbols cancel
out in this expression. A similar cancellation occurs when
replacing the ordinary derivatives by covariant derivatives in
the last two terms proportional to the cutoff

1
2G

mn(Rnm),i +GnpRpm〈ξm,i 〉;n
= 1

2G
mn ∇i Rnm + GnpRpm〈∇iξ

m〉;n . (5.5)

The manifestly covariant mspWI then takes the following
form:

Ni ≡ �̃,i +�; j (〈∇i ξ
j 〉 − ∇i ξ̄

j ) − 1
2 G

mn ∇i Rnm − Gnp Rpm 〈∇i ξ
m〉;n = 0.

(5.6)

In Sect. 2.4 we found the flow equation, Eq. (2.33), for the
quantity Ni above. We had further shown that the two pieces
N1i and N2i follow the same flow equation, and this was
derived without specifying the field space parametrization.
Consequently, one expects that the same flow equation, Eq.
(2.33), holds for the quantities N1i and N2i after making
them covariant by replacing ∂ → ∇. This is indeed true as
one can easily check. In fact the replacement ∂ → ∇ in N1i

introduces some extra terms which (cancel those of N2i and)
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satisfy the flow (2.33). In summary, the covariant versions of
N1i and N2i , denoted by a bar, are defined as

N̄1i ≡ �̃,i −�; j∇i ξ̄
j − 1

2G
mn ∇i Rnm,

N̄2i ≡ �; j 〈∇iξ
j 〉 − GnpRpm〈∇iξ

m〉;n, (5.7)

and follow the usual equation,

∂tN̄1i = − 1
2 (GṘG)qp(N̄1i );pq ,

∂tN̄2i = − 1
2 (GṘG)qp(N̄2i );pq . (5.8)

As commented on in the last paragraph of Sect. 2.2, extra
terms may arise in (5.6) when using measures other than the
one with only a total-field dependence. These terms are also
expected to be covariant if the measure is so, as exemplified
by the last term in (2.22). Clearly, such terms also satisfy the
flow equation, Eq. (2.33), by the general equation (B.8).

6 Gauge theories

The formalism we have presented so far, applies to non-gauge
theories and gauge theories before the gauge fixing proce-
dure. Of course, after gauge fixing, we will end up with a
non-gauge theory and expect our arguments to go through,
but this is not a priori clear. In particular, as a necessary step
in the process of gauge fixing, we need to show that the effec-
tive action is gauge invariant at all scales. We will adopt the
covariant approach of the previous section which turns out
to be a requirement for achieving a gauge invariant effec-
tive action. We review here briefly the geometric approach to
gauge theories and refer the reader to the literature for more
details [30,31,38].

6.1 Geometry

Let us assign the same symbols used for non-gauge theories,
to the coordinates of the gauge theory field spaceφi , as well as
their decomposition into background ϕi and dynamical fields
ξ i . We also take the vector fields Kα as a basis for the gener-
ators of the gauge group, which form a closed algebra, and
denote their components, at the point φ, by Ki

α[φ] ≡ Kαφi .
As is true for Yang–Mills theory and gravity, we assume the
existence of a metric gi j on the field space, which enables us
to define the effective action in a covariant way. For this pur-
pose, the dynamical fields ξ i are chosen to be vectors satisfy-
ing a geodesic equation, as detailed in the previous section.
However, the connection ∇V used here to define the geodesic
equations is not chosen to match exactly the one compatible
with the field space metric, but rather it is defined by the
condition ∇V

k g⊥
i j = 0, where g⊥

i j = Pm
i Pn

j gmn is the metric
projected onto the space orthogonal to the orbits, by the pro-
jection operator Pi

j ≡ δij − Ki
αγ αβKk

βgkj , where γ αβ is the

inverse of the metric γαβ = gi j K i
αK

j
β , defined on the orbits.

This is known as the Vilkovisky connection.4 The condition
∇V
k g⊥

i j = 0 does not fix the connection completely but only
up to terms which are irrelevant for the construction of the
effective action.

The process of gauge fixing consists of choosing a sur-
face S in field space which intersects the gauge orbits once
and only once. One can then choose a set of coordinates
which is adapted to this choice. This consists of parametriz-
ing the orbits with a set of fields, which take the same
value on S , and assigning a set of coordinates to the sur-
face S . To avoid complicating the notation, the coordinates
are chosen to be denoted by the same symbol used for a
general coordinate system, but with the super index i run-
ning over small Greek indices for the orbit parameters, φα ,
and taking capital Latin indices for the coordinates on S ,
φ I , which label different orbits. We will therefore explicitly
specify in the following whether we are using adapted or
general coordinates. The adapted coordinates are of course
not uniquely defined. The field redefinitions φ I → φ′I (φ I ),
and φα → φ′α(φα) correspond to the same choice of gauge
fixing condition but provide a different parametrization for
the adapted coordinate system, while the more general field
redefinitions φ I → φ′I (φ I ) and φα → φ′α(φ I , φα) lead to
some adapted coordinates with a different choice of gauge.

The definition of the Vilkovisky connection described
above, is equivalent, in the adapted coordinates, to the fol-
lowing statement, in terms of the corresponding Christoffel
symbols

(�V )KI J = 1
2h

K L(∂I hL J + ∂J hL I − ∂LhI J ),

(�V )Kα j = 0, ∂αhI J = 0, (6.1)

where hI J is the metric g⊥
i j induced on the gauge slice. An

important consequence of this, which in fact motivates its def-
inition, is that the component of the dynamical vector field
along the orbit space, ξ I , is independent of the orbit param-
eters ϕα and φα , and one can therefore write its functional
dependence as ξ I (ϕ I , φ I ). This will be used repeatedly in
the argument for gauge invariance. Let us also point out that
in the adapted coordinates, K I

α = 0 by construction, and the

matrix K β
α is assumed to be invertible.

For completeness let us also sketch briefly how the diver-
gence in the path integration over the redundant field space is
removed; we refer the reader to [31] for further details. The
natural volume element which leads to a covariant effective
action is
∏

i

dφi
√

det gi j (φ). (6.2)

Using the decomposition of the line element gi j dφi dφ j =
g⊥
i j d⊥φi d⊥φ j + γαβ dεαdεβ , where d⊥φi ≡ Pi

j dφ j and

4 This definition of the Vilkovisky connection is due to Carlip (see e.g.
the footnotes of [30,31]).
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dεα ≡ γ αβKi
βgi j dφ j , the volume element is decomposed as

∏

α

dεα
∏

i

d⊥φi
√

det⊥g⊥
i j (φ)

√
det γαβ(φ), (6.3)

where by det⊥ the determinant in the space orthogonal to the
orbits is meant. Written in the adapted coordinates, this takes
a more transparent form,

∏

α

dεα
∏

I

dφ I
√

det hI J (φK )

√
det γαβ(φ I ), (6.4)

where, with abuse of notation, the same symbol γαβ used
in a general coordinate system in (6.3) is used also here in
the adapted coordinates. Apart from the leftmost factor, this
expression depends only on the orbit space parameters φ I .

A gauge invariant integrand depends solely on φ I , and
consequently the divergent integral over

∏
α dεα will drop

out in the expectation values of gauge invariant quantities.
Therefore we are finally left with an integral over the orbit
space. Notice that no ghost fields appear in this approach as
the path integral is taken only over the equivalence classes
of fields, or orbit space fields φ I , and not the whole redun-
dant field space. The connection with the standard Faddeev–
Popov method is made by introducing in the path integral over
the orbit space, the measure

∏
αdεα δ[εα] including a Dirac

delta functional, whose integral equals unity, and changing
variables back to the general coordinate system. This requires
a Jacobian which gives rise to the Faddeev–Popov determi-
nant.

6.2 Gauge invariance

After this brief description of the geometry of gauge theories,
we will now move on to discuss gauge invariance of the effec-
tive action. Although the discussion can well be presented in
a general coordinate system, the steps of the argument will be
more clearly conveyed when presented in the adapted coordi-
nates. The covariant approach we have taken guarantees that
there will be no loss of generality in doing so. The results
will be finally restated in a coordinate-independent manner.
From now on, we therefore take, with abuse of notation, the
symbols φi , used for a general coordinate system, to coincide
with the adapted coordinates.

We will put a tilde on the effective action when expressed
as a function of the background and the total field φ̄i , as in the
previous section, and we drop the bar on φ̄i and ξ̄ i from now
on: �̃[ϕ, φ(ϕ, ξ)] = �[ϕ, ξ(ϕ, φ)]. With this notation, for a
general functional F , invariance under gauge transformations
of the total(background) field is equivalent to independence
of φα(ϕα):

δ F̃[ϕ, φ]
δφα

= 0,
δ F̃[ϕ, φ]

δϕα
= 0. (6.5)

The effective action is given as in (2.3) except that the gen-
erator of connected diagrams is defined by taking the path
integral measure to be the determinant of the field space met-
ric, evaluated at φi , as dictated by the covariant formulation

exp (−Wk[ϕ, J ])
=

∫
Dφ

√
det gi j (φ) exp(−S̃[φ I ] − Sk[ϕ, ξ ] − J ·ξ),

S̃[φ I (ϕ, ξ)] = S[ϕ, ξ ]. (6.6)

The gauge invariance of the ultraviolet action is emphasized
by making the orbit index I explicit in its argument. The
ultraviolet action, therefore, has the following properties:

S̃,α = 0, S̃;α = 0, (6.7)

where, as noted after Eq. (2.12), the “,” and “;” notations
refer to derivatives with respect to the first and second argu-
ments, respectively. Since φ I is only a function of ϕ I and
ξ I , one can infer, from the right equation in (6.7), that the
ultraviolet action is also independent of the components of
the dynamical field along the gauge orbits, ξα: S;α = 0. In
fact, given the ϕα , φα independence of ξ I , the conditions
(6.7) are equivalent to their tilda-less versions

S,α = 0, S;α = 0. (6.8)

Now, let us consider the k → ∞ limit of the effective action
defined in this way. This can be shown to be

� → S̃[φ I ] + 1
2 Tr log Ri j − d

2 log(2π)

+ 1
2 Tr log gi j + Tr log (δξ i/δφ j ), (6.9)

where d is the spacetime dimension. The last two terms van-
ish in a regularization scheme, such as dimensional regular-
ization, where δ(0) = 0. So in such a regularization scheme
it is clear that in the large k limit

�,α−1
2GR,α → (

S+ 1
2 Tr log Ri j

)
,α−1

2 R
−1R,α= S,α = 0,

(6.10)

�;α → S;α = 0. (6.11)

In fact, the second term in (6.9) also vanishes with our choice
of regularization, but it cancels anyway with the term 1

2GR,α
in the expression (6.10). Then, from the left equation in (2.32)
it follows that the identity (6.10) is valid at all scales. On
the other hand, Eq. (6.11) together with (B.2), implies that
�;β = 0 at all scales. In summary, at all scales we have

�,α − 1
2GR,α = 0 �;α = 0. (6.12)

This implies that the effective action depends on ϕ I ,
ϕα , and also ξ I , which is itself a function of ϕ I , φ I :
�[ϕ I , ϕα, ξ I (ϕ I , φ I )]. This means that the effective action,
being independent of φα , is invariant under gauge transfor-
mations of the total field. The extra ϕα dependence goes
away if there is no such dependence in the cutoff, R,α = 0,
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implying �,α = 0, �;α = 0, which is, as already mentioned,
equivalent to �̃,α = 0, �̃;α = 0. The effective action will
therefore be invariant under gauge transformations of both
the background and the total field.

For a gauge invariant ultraviolet action, the α component
of the mspWI is automatically satisfied, while the I compo-
nent gives a nontrivial constraint. If we further assume that
they are only the components of the dynamical field along
the surface S , ξ I , whose momentum modes are cut off, or
in other words, if the only nonzero components of the cutoff
kernel are RI J , then the I component of the mspWI is cast
into exactly the same form as the original identity (2.21), but
on the surface S :

�,I−1
2G

MN (RNM ),I+�;J 〈ξ J,I 〉−GNP RPM 〈ξM,I 〉;N =0.

(6.13)

In this case, also the inverse propagator has nonzero com-
ponents only along the surface S , Gαi = 0. This equation
depends on ϕα unless the additional condition R,α = 0 is
assumed.

One may now ask how the conditions (6.12) will look
like in a general coordinate system. Using the fact that in the
adapted coordinates K I

α = 0 and that K β
α is invertible, the

equation on the right-hand side in (6.12) can be written as

Ki
α[ϕ]�;i = 0, (6.14)

which is covariant and will take the same form in all coor-
dinates. However, the equation on the left-hand side does
not seem to be covariant at first sight. Using (5.2) one can
replace �,α with �̃,α . This is because the term �; j ξ j,α =
�;β ξβ,α +�;J ξ J,α vanishes by the fact that �;β = 0 and
ξ J,α = 0. One can also replace the ordinary derivative of
the cutoff with a covariant derivative ∇V , computed with
the Vilkovisky connection. The extra terms involving the
Christoffel symbols can be shown to vanish by our regular-
ization choice and the property (�V )Kα j = 0 of the Vilkovisky
connection (6.1). The condition can then be rewritten as

Ki
α[ϕ](�̃,i − 1

2G ∇V
i R) = 0. (6.15)

This is now written in a covariant way and will take the same
form in any coordinate system. From this equation it is seen
that Kk

α[ϕ]∇V
k Ri j = 0 implies background gauge invariance

of the effective action, as expected also from the equivalent
condition in the adapted coordinates. Also the covariant form
of the condition Rαi = 0 is Ki

α[ϕ]Ri j = 0. It is worth men-
tioning that, given Ki

α[ϕ]Ri j = 0, the condition for back-
ground gauge invariance Kk

α[ϕ]∇V
k Ri j = 0 is equivalent to

the vanishing of the cutoff under Lie derivatives with respect
to the gauge group generators (evaluated at the background
point) LKαRi j = 0.

The quantity on the left-hand side of (6.15), although
covariant, does not seem to completely match the expres-

sion N̄1i defined at the end of the previous section, because
it lacks the second term in N̄1i . But this term actually van-
ishes Ki

α[ϕ]�; j∇V
i ξ j = 0 by gauge invariance and the prop-

erties of the Vilkovisky connection. As a result, this quantity
follows the usual flow equation, Eq. (2.33), as expected.

In summary, in a general coordinate system, gauge invari-
ance of the ultraviolet action implies that Ki

α[ϕ]�;i = 0,
or equivalently Ki

α[φ]�̃;i = 0, which is the covariant ver-
sion of invariance under gauge transformations of the total
field. This fact, together with the assumption Ki

α[ϕ]Ri j = 0
implies that, in the adapted coordinates, the effective action
satisfies the usual mspWI on the surface S . On the other
hand, background gauge invariance Ki

α[ϕ]�̃,i = 0, or equiv-
alently Ki

α[ϕ]�,i = 0, follows with the additional condition
∇V

α Ri j = 0. Along with total-field gauge invariance, this tells
us that the effective action is only a function of the coordi-
nates on S , in which case (6.10) will also be covariant under
φ I → φ′I (φ I ).

Changing the gauge fixing condition is equivalent to
applying a field redefinition (in the adapted coordinates) of
the formφα → φ′α(φ I , φα). This transformation of the fields
does not affect the effective action, simply because it is, by
construction, a scalar under general coordinate transforma-
tions on all the field space, and not only the surface S , and
because in the adapted coordinates the effective action is
independent of the fields ϕα and φα by gauge invariance.

7 Conclusions

In a quantum field theory with an infrared regulator and
within the background-field framework, we have introduced
the notion of splitting symmetry in its most general sense,
and provided a simple and general path integral deriva-
tion of its Ward identity, which we have referred to as the
mspWI.

We have shown that the quantityNi whose vanishing gives
the Ward identity can be divided, as in (2.31), into two pieces,
N1i , N2i , each of which follows a simple flow equation,
Eq. (2.32). This proves crucial in finding the condition for
background gauge invariance, at an arbitrary energy scale, in
a geometric approach to gauge theories.

The mspWI for the effective action, encompasses the
information from the single-field dependence of the ultra-
violet action. In particular, in the infrared limit, this implies
that the effective action is also a functional of a single field
�, defined implicitly in (3.1). A redefinition ξ → � there-
fore absorbs the second term in (2.21) and makes the terms
responsible for background dependence manifest.

For the special case of exponential splitting, which results
in a covariant effective action, we have shown that the mspWI
is also covariant, i.e. that the structure of the mspWI does not
change under field redefinitions. Furthermore, we have dis-
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cussed the covariance of the flow equations (2.32). As the
derivation suggests, these flow equations, although not man-
ifestly covariant, are valid in any coordinate system. In fact
in the non-covariant quantity N1i , the extra terms arising as
a result of a field redefinition satisfy a similar flow equation
separately. This can be put in a different way: the covari-
antized versions of N1i and N2i , while summing up to Ni ,
also satisfy the usual flow (2.32).

The effective action can be computed perturbatively and
is expected to satisfy the mspWI order by order in a loop
expansion. This is explicitly verified to be the case at the
one-loop level irrespective of the scheme of regularization. In
performing this check, we have emphasized the unavoidable
role of the path integral measure chosen in (2.1).

It is argued that the mspWI is generically divergent. This
prevents the use of this identity in practice, to constrain the
effective action, except in special cases such as the linear
split. To overcome this problem, one needs to deal with the
renormalized mspWI. For this purpose, we have introduced
the modified master equation for the splitting symmetry, and
with its aid, discussed how for theories renormalizable in its
modern sense, the mspWI can be renormalized in the pres-
ence of the regulator, and that the renormalized master equa-
tion has the same structure as its unrenormalized counter-
part.

The Vilkovisky–DeWitt construction for general gauge
theories is presented in the renormalization group context of
[4,5]. It is shown that the effective action is invariant under
gauge transformations of the total field, and using (2.32), the
condition for background gauge invariance is found. In par-
ticular, this provides as a special case a nonperturbative proof
of gauge invariance of the infrared effective action. This is
seen by simply setting k = 0 in (6.15). In this particular argu-
ment, even if one is not interested in the scale dependence of
the effective action but only its infrared limit, the regulator
can be regarded merely as a tool, introduced at an interme-
diate step of the proof, to connect the ultraviolet action and
the infrared effective action, and using the simple and exact
flows (2.32), to transfer the information of gauge invariance
from the ultraviolet to the infrared. Finally, provided that the
cutoff does not have any components along the gauge orbits,
the mspWI holds in its original form (2.21), also on the gauge
fixing surface.

The formalism presented in this work is expected to
have important consequences for functional renormalization
group applications to quantum field theories with background
fields. In particular, in the renormalization group approach
of [4,5], the covariant formulation reviewed in Sect. 5 has
been previously applied to nonlinear sigma models [39–46]
and has more recently received attention in applications to
gravity [47–55] (see also [56]). Just as in the case of the lin-
ear split [24,25], the mspWI for exponential splitting is an

essential ingredient for finding consistent truncations in such
studies.
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A Feynman rules

In this appendix we introduce some Feynman rules which
are used in Sect. 2.2 to write the mspWI in diagrammatic
language. There are three types of vertices which appear in
the mspWI. These are shown by the first three of the diagrams
below:

in

i2

j

i1

= − Rjk Ck
i, i1i2···in , n ≥ 1,

(A.1)

in

i3

i1

i2

= Γ;j Cj
i, i1i2···in , n ≥ 0,

(A.2)

in

i3

i1

i2

= 〈ξi1ξi2 · · · ξin〉c, n ≥ 1,

(A.3)
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in

i3

i1

i2

= − Γ;i1i2···in , n ≥ 3.

(A.4)

There is an i index implicit in the first two vertices (A.1)
and (A.2) with a black circle. The arrow in (A.1) represents
the free index on the cutoff and should not be confused with
momentum flow. The vertices with a white circle (A.3) denote
connected n-point functions, whose dependence on the back-
ground ϕi and fluctuation field ξ i is expressed in a more
explicit way when written in terms of one-particle irreducible
vertices (A.4) and the propagators ((A.3) with n = 2). For
instance, the connected three- and four-point functions are
expressed in terms of the one-particle irreducible vertices as

=

(A.5)

+

⎛
⎜⎜⎝ + two other permutations

⎞
⎟⎟⎠=

(A.6)

The convention of putting a minus sign in (A.4) makes all the
terms on the right-hand side of the above and higher order
equations appear with a plus sign.

B Functional flows

We provide here some important identities and flow equations
used throughout the text. We start with the flow equation for
the effective action (1.1) in the compact notation

∂t� = 1
2G

mn Ṙnm . (B.1)

The flow of the one-particle irreducible one-point function
follows trivially by differentiating this equation with respect
to the classical fluctuating field ξ̄ i ,

∂t�;i = − 1
2G

mp �;i pq Gqn Ṙnm = − 1
2G

qn ṘnmG
mp�;i pq

= − 1
2 (GṘG)qp�;i pq . (B.2)

Taking the second derivative we arrive at

∂t�;i j = − 1
2 (GṘG)qp�;i j pq + 1

2G
qm�; jmnG

nr ṘrsG
sp�;i pq

+ 1
2G

qm ṘmnG
nr�; jrsGsp�;i pq

= − 1
2 (GṘG)qp�;i j pq + (GṘG)pqGmn�;i pm�; jqn

= − 1
2 (GṘG)qp

[
�;i j pq + 2Gmn�;i pm�; jqn

]
. (B.3)

It is easy to generalize this to one-particle irreducible n-point
functions by successive differentiation with respect to ξ̄ i .
Another useful ingredient is the flow of the expectation value
of an arbitrary operator O . This can be computed as follows
by simply referring to the definition of expectation values,
based on the weight and integral measure, in (2.1):

∂t 〈O〉 = − 1
2 〈ξ · Ṙ ·ξ O〉 + 1

2 〈ξ · Ṙ ·ξ〉〈O〉 − J̇ ·(〈ξ O〉 − ξ̄〈O〉) + 〈Ȯ〉
= − 1

2 〈ξ · Ṙ ·ξ O〉 + 1
2 〈ξ · Ṙ ·ξ〉〈O〉

+δ�̇/δξ ·(〈ξ O〉 − ξ̄ 〈O〉)
+ξ̄ · Ṙ ·〈ξ O〉 − ξ̄ · Ṙ ·ξ̄ 〈O〉 + 〈Ȯ〉

= − 1
2 〈ξ · Ṙ ·ξ O〉 + 1

2 (〈ξ · Ṙ ·ξ〉 − ξ̄ · Ṙ ·ξ̄ ) 〈O〉
+δ�̇/δξ ·(〈ξ O〉 − ξ̄ 〈O〉)
+ξ · Ṙ ·〈ξ O〉 − 1

2 ξ̄ · Ṙ ·ξ̄ 〈O〉 + 〈Ȯ〉
= − 1

2 〈ξ · Ṙ ·ξ O〉 + 1
2G

i j Ṙ ji 〈O〉
+δ�̇/δξ ·(〈ξ O〉 − ξ̄ 〈O〉)
+ξ · Ṙ ·〈ξ O〉 − 1

2 ξ̄ · Ṙ ·ξ̄ 〈O〉 + 〈Ȯ〉, (B.4)

where in the second line we have used the middle equation
in (2.6). The first and second ξ -derivatives of 〈O〉 are also
easily computed,

〈O〉;i = −(δ Jj/δξ
i ) 〈ξ j O〉 + (δ Jj/δξ

i ) ξ̄ j 〈O〉
= Gi j (〈ξ j O〉 − ξ̄ j 〈O〉) (B.5)

〈O〉;i j = �;i jk(〈ξ kO〉 − ξ̄ k〈O〉) − Gi j 〈O〉
+GimG jn(〈ξmξnO〉 − ξ̄m〈ξnO〉
−ξ̄n〈ξmO〉 + ξ̄m ξ̄n〈O〉). (B.6)

Comparing (B.6) and (B.8) makes it tempting to compute the
contraction

− 1
2 (GṘG)i j 〈O〉;i j
= − 1

2 (GṘG)i j�;i jk(〈ξ kO〉 − ξ̄ k〈O〉) + 1
2G

i j Ṙ ji 〈O〉
− 1

2 Ṙmn(〈ξmξnO〉−ξ̄m〈ξnO〉−ξ̄n〈ξmO〉+ξ̄m ξ̄n〈O〉)
= �̇;k(〈ξ kO〉− ξ̄ k〈O〉) + 1

2G
i j Ṙ ji 〈O〉

− 1
2 (〈ξ ·R ·ξO〉− 2ξ̄ ·R ·〈ξO〉 + ξ̄ ·R ·ξ̄〈O〉), (B.7)
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with the aid of which the desired flow equation follows:

∂t 〈O〉 = 〈Ȯ〉 − 1
2 (GṘG)i j 〈O〉;i j (B.8)

The second term on the right-hand side can therefore be inter-
preted as the commutator of t-differentiation and the averag-
ing process, acting on O .

C Explicit formulas for the exponential parametrization

In Sect. 5 we emphasized the importance of the exponen-
tial parametrization. Once the way the total field is split is
specified, one can find an explicit formula for δξ i or equiv-
alently for ξ i, j in (2.15). For this purpose, we need to refer
to the explicit expression for the total field in terms of the
background and the dynamical field,

φi = ϕi + ξ i −
∞∑

n=2

1

n! �i
i1i2...in (ϕ) ξ i1 . . . ξ in ,

�i
i1i2...in+1

≡ ∇i1�
i
i2...in+1

, n ≥ 2, (C.1)

where the covariant derivative is defined with the connection
�k
i j itself and is taken with respect to lower indices only.

If we now make a variation δϕi in the background field,
the variation δξ i in the fluctuations must be made in such
a way as to leave φi untouched. So taking the derivative of
(C.1) with respect to ϕi , keeping φi fixed, we find

0 = δij + ξ i, j −
∞∑

n=2

1

n! �i
i1i2...in (ϕ) ∂ j (ξ

i1ξ i2 . . . ξ in )

−
∞∑

n=2

1

n! ∂ j�
i
i1i2...in (ϕ) ξ i1 . . . ξ in . (C.2)

This identity is valid in any coordinate system, in particular
in normal coordinates the second term can be replaced with
∇jξ

i and the third term vanishes, so it simplifies to

0
∗= δij + ∇jξ

i −
∞∑

n=2

1

n! ∂ j�
i
i1i2...in (ϕ) ξ i1 . . . ξ in , (C.3)

where

∂ j�
i
i1i2(ϕ)

∗= 2

3
R i
j (i1 i2)

(ϕ),

∂ j�
i
(i1i2i3)

(ϕ)
∗= 1

2
∇(i1 R

i
| j |i2 i3)

(ϕ), . . . (C.4)

and a star on the equation means that the identity is valid only
in normal coordinates. Substituting these into (C.3) we get
a tensor identity in normal coordinates, so it is valid in any
coordinate system. We can therefore write

ξ i, j = −δij − �i
jk ξ k + 1

3
R i
jk l ξ

kξ l

+ 1

12
∇k R

i
jl n ξ kξ lξn + . . . (C.5)

From this expression one can identify the first few coeffi-
cients in (2.15):

C j
i = −δ

j
i ,C

j
i,m = −�

j
im,C j

i,mn = 1

3
R j
i(m n),

C j
i,mnk = 1

12
∇(m R j

|i |n k), . . . (C.6)
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