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Abstract The study of the Brownian motion of a charged
particle in electric and magnetic fields has many important
applications in plasma and heavy ions physics, as well as in
astrophysics. In the present paper we consider the electro-
magnetic radiation properties of a charged non-relativistic
particle in the presence of electric and magnetic fields, of
an exterior non-electromagnetic potential, and of a friction
and stochastic force, respectively. We describe the motion of
the charged particle by a Langevin and generalized Langevin
type stochastic differential equation. We investigate in detail
the cases of the Brownian motion with or without memory
in a constant electric field, in the presence of an external har-
monic potential, and of a constant magnetic field. In all cases
the corresponding Langevin equations are solved numeri-
cally, and a full description of the spectrum of the emit-
ted radiation and of the physical properties of the motion
is obtained. The power spectral density of the emitted power
is also obtained for each case, and, for all considered oscillat-
ing systems, it shows the presence of peaks, corresponding
to certain intervals of the frequency.

1 Introduction

The stochastic motion of particles in different physical sys-
tems, and under the influence of various forces, is a funda-
mental area of research in plasma physics, astronomy, con-
densed matter physics, and biology [1,2]. In particular, the
motion and the radiation of charged particles play a key role
in the understanding of the nuclear fusion processes in the
tokamak plasmas. In the presence of an external electric field,
in a fully ionized plasma, electrons with energies higher than
certain critical values of the energy are continuously acceler-
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ated at very high energies. These electrons are called runaway
electrons [3].

The study of runaway electrons, and in particular of their
radiation, represents a field of great importance in different
areas of research such as astronomy, accelerators, or nuclear
fusion [4–6].

An important physical problem in plasma and fusion
physics is the anomalous transport in a magnetically confined
plasma in a region where the magnetic surfaces are destroyed
[7]. One of the basic methods in the study of the anomalous
transport is based on the analogy between the transport prob-
lem and the random walk or Brownian motion theory [7,8].
For this case, the starting point is the equation of motion of
a charged test particle, feeling the action of a magnetic field
and of interparticle collisions. The latter are represented by a
random force and the equation of motion becomes a stochas-
tic differential equation, the Langevin equation [7–11]

d2�r
dt2 = �F

[
�r(t), �̇r(t), t

]
+ �η(t), (1)

where �F[�r(t), �̇r(t), t] is the systematic (“average”) force
acting on the article, and �η(t) is a random force model-
ing the effects of the interparticle collisions. The anoma-
lous transport in plasmas is usually attributed to the mag-
netic fluctuations in a very strong “basic” magnetic field
�Bo, which undergoes small fluctuations in a perpendicular
direction.

The Langevin equation Eq. (1) gives a correct physical
and statistical description of the random Brownian motion
only in the large time limit. This requires that the consid-
ered time intervals must be large enough as compared to the
characteristic relaxation time of the velocity autocorrelation
function [11]. The description of the dynamics of a homo-
geneous system without restriction on a time scale can be
realized by generalizing the Langevin equation. This gener-
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alization implies the introduction of a systematic force term
with an integral kernel, which substitutes the simple friction
term [12]. From a physical point of view the convolution
term describes the memory, or the retardation effects. From
an astrophysical point of view such a term can be used to
model the stochastic oscillations of the accretion disks [13]
in the presence of colored noise [14,15].

The study of the Brownian motion of charged particles
in magnetic fields based on the Langevin equations with the
dynamic friction proportional to the particle velocity was ini-
tiated in [16], where the diffusion of ions in plasma across
the magnetic field, with the stochasticity arising from the
fluctuations of the electric field was considered. In this work
the mean square displacement was found in the limit of long
times. These studies were further extended in [17,18], where
it was shown that for a special symmetry of the dynamical
friction matrix for Larmor periods of the order of the relax-
ation time across the magnetic field the diffusion takes place
as an ordinary Brownian motion, uninfluenced by the pres-
ence of the external magnetic field. The investigation of the
Brownian motion of charged particles in stochastic magnetic
fields via the use of the Langevin and generalized Langevin
equation has become an active field of research with many
potential applications in astrophysics, plasma physics, and
condensed matter [19–24]. The electromagnetic radiation in
small-scale random magnetic fields (jitter radiation) and its
spectrum, as well as the supplementary acceleration pro-
duced by the random variations of the Lorentz force were
considered in [25–33].

An interesting phenomenon that was studied recently indi-
cates the presence of long-time tails and resonant peaks, in
the equilibrium and nonequilibrium correlation functions for
the velocity of the Brownian particle as described by the gen-
eralized Langevin equation [34]. In [35–37] it was pointed
out that resonant stochastic behavior with a single peak and
multi-peaks can be found in PSD curves of the stochastically
oscillating accretion disks, described by both standard and
generalized Langevin equations.

It is the purpose of the present paper to consider the elec-
tromagnetic radiation of charged, non-relativistic particles,
in stochastic motion under the effect of some random exte-
rior forces, in the presence of electric and magnetic fields,
of an external non-electromagnetic potential, and interacting
with the environment by means of interparticle collisions,
described as a friction force. To describe the motion of the
particle we use the Langevin equation, describing the non-
relativistic motion of a Brownian particle. Due to the friction
force, the particles in Brownian motion lose energy to the
medium, but simultaneously gain energy from the random
kicks of the external environment, modeled by the random
force, as well as from the external non-electromagnetic, elec-
tric and magnetic fields. The electromagnetic power emitted
by the particles is proportional to the square of its acceler-

ation, which can be computed directly from the Langevin
equation.

In our study we compute the electromagnetic radiation
for four physical models. The first case we investigate is the
Brownian motion of a charged particle in a constant electric
field (case I). Therefore the Langevin equation contain three
force terms, the friction force, the electric force, and an exter-
nal stochastic force. We obtain the stochastic power emitted
by the particle, as well as the corresponding power spectral
density. As a second case we consider the Brownian motion
of a particle in a harmonic potential (case II). The emitted
electromagnetic power as well the power spectral density is
obtained. For the case of a charged particle with memory in
a harmonic potential, described by the generalized Langevin
equation, we present the displacement, velocity distribution,
the electromagnetic power, and the power spectral density
(case III). Finally, a full analysis of the Brownian motion of
a charged particle in a constant magnetic field is presented
(case IV), including the computation of the electromagnetic
emitted power, and of the power spectral density. In all cases
we obtain the total emitted electromagnetic power, as well as
its statistical properties, from the numerical solution of the
Langevin equation.

The present paper is organized as follows. In Sect. 2 we
introduce the Langevin equation describing the motion of
a charged particle in electric and magnetic fields, and in
an external, non-electromagnetic potential, and we present
the basic relation for the stochastic power emitted during
the motion. In Sect. 3 we consider in detail the numerical
algorithms and the solutions of the Langevin and general-
ized Langevin equations describing the Brownian motion of
a charged particle in a constant electric field, in an exterior
harmonic potential, and in a constant magnetic field, respec-
tively. We discuss and conclude our results in Sect. 4.

2 Stochastic equation of motion of charged particles
and the numerical algorithm for solving the Langevin
equations

The equation of motion of a charged particle with mass m,
charge Ze, and velocity �v in electric �E(t) and magnetic field
�B(t) fields, experiencing damping and random acceleration
is given by [7–11]

d�v
dt

= Ze �E(t)+ Ze

mc

[
�v(t) × �B(t)

]
−ν�v(t)+∇V+�η(t), (2)

where ν is an effective collisions frequency, −ν�v(t) is the
damping term, and V is an external potential, corresponding
to the presence of non-electromagnetic forces. Equation (2) is
a stochastic differential equation, known as the A-Langevin
equation [7–10]. Generally, there are two stochastic functions
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in the A-Langevin equation: the stochastic electric and mag-
netic fields, �E(t) and �B(t), and the random acceleration, η(t).
To close the system of equations, the stochastic properties of
these functions should be defined. Generally, one assumes
that both are Gaussian processes, which means that the first
and the second order correlation functions provide a complete
statistical description of these functions [7]. However, in the
following we consider the case in which all the stochastic
effects, coming from the electric or magnetic fields, or from
the random medium, can be encoded in the stochastic accel-
eration term η(t). Therefore in the present analysis we keep
only one stochastic term in the Langevin equations.

For the random acceleration �η(t) we chose first the white-
noise approximation, i.e.,

〈
η(t)i

〉
= 0,

〈
η (t1)

i η (t2)
j
〉
= Aδi jδ (t1 − t2) . (3)

The equilibrium thermal velocity vth is related to the colli-
sion frequency ν and value A as v2

th = (A/2)ν. This relation
is valid for charged particles in a magnetic field as well, since
equilibrium thermal velocity is not affected by the Lorenz
force.

An extension of the Langevin equation Eq. (2) was pro-
posed by Kubo [12], with the dynamical friction becoming
frequency dependent. The generalized Langevin equation in
the presence of electric and magnetic fields is given by

d�v
dt

= Ze �E(t) + Ze

mc

[
�v(t) × �B(t)

]

−
∫ t

0
γ

(
t − t ′

) �v(t ′)dt ′ + ∇V + �η(t), (4)

where the friction function γ (t − t ′) represents now the
retarded effect of the frictional force.

The total electromagnetic power P emitted by a moving
charge is, in the non-relativistic limit [38],

P = 2

3

(Ze)2

c3 �a2, (5)

where �a = d�v/dt is the acceleration of the particle. By tak-
ing into account that for a charged particle moving in a mag-
netic field the acceleration is given by Eq. (2), we obtain for
the total electromagnetic power emitted by the stochastically
moving particle the expression

P = 2

3

(Ze)2

c3

{
Ze �E(t) + Ze

mc

[
�v(t) × �B(t)

]

−ν�v(t) + ∇V + �η(t)

}2

, (6)

where �v(t) is obtained as a solution of Eq. (2). If the motion
of the charged particle in stochastic motion can be described

by the generalized Langevin equation Eq. (4), then the elec-
tromagnetic power emitted by the particle is given by

P = 2

3

(Ze)2

c3

{
Ze �E(t) + Ze

mc

[
�v(t) × �B(t)

]

−
∫ t

0
γ (t − t ′)�v(t ′)dt ′ + ∇V + �η(t)

}2

. (7)

An important physical and statistical parameter is the
steady-state mean autocorrelation function of the emitted
electromagnetic power by the particle in Brownian motion,
and which is defined as

CPP
(
t̃
) = lim

t→∞
〈
P(t)P

(
t + t̃

)〉
. (8)

The Fourier transform of the mean autocorrelation func-
tion is called the power spectral density (PSD) of the power.

In the following we will consider the numerical solu-
tions of the Langevin equations Eqs. (2) and (4), respectively
[39,40]. In order to obtain the numerical solutions we intro-
duce a set of dimensionless coordinates (θ, q, V,W, �̄, L),
where θ represents the dimensionless time, q the dimension-
less displacement, V the dimensionless velocity, W is the
dimensionless frequency, �̄ is the dimensionless Larmor fre-
quency, and L is the dimensionless power, respectively.

Due to their definition (detailed in the following sec-
tions for each case), these dimensionless parameters quantify
the relative influence of deterministic parameters versus the
amplitude of the noise in the system. Results will generally be
discussed as a function of these parameters, thus one should
keep in mind that the influence of the noise amplitude is
embedded in them.

The results and discussions of the numerical simulations
are grouped into three categories:

1. direct results, which are the dimensionless displacement
q(θ) and the velocity V (θ),

2. the luminosity (emitted power) L(θ), representing an
indirect result but which can be at least qualitatively
directly compared with observations, and

3. statistical characteristics, used to compare between dif-
ferent results and between different parameter sets char-
acterizing the physics of the system. We considered meth-
ods and approaches commonly used by astronomers to
analyze observational data [41,42]:

(a) the statistical characteristics of the (simulated) light
curve; the mean μ provides information as regards
the injected energy, the standard deviation σ provides
information as regards the dispersion of data with
respect to the mean value, the skewness s is an indi-
cator of the lack of symmetry of the distribution of
values, with a positive skewness indicating a distribu-
tion with a long right tail, while a negative skewness
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indicates a distribution with a long left tail, and the
kurtosis κ measures the concentration of data around
the peak and in the tails versus the concentration in
the flanks, with a normal distribution having κ = 3;

(b) what is called first order statistics, i.e., based on auto-
correlation of the data; we will discuss the PSD,
obtained by taking the Fourier transform of the
ensemble averaged correlation function of L(θ); in
cases where it is appropriate, we discuss also the
possible appearance of quasi-periodic oscillations
(QPOs) which we characterize in terms of their qual-
ity factor Q (also sometimes called coherence of
oscillation). Q is defined as the ratio between the fre-
quency f0 at which the maximum of the peak occurs
and the width of the peak at half-maximum inten-
sity; generally, in astronomical nomenclature, if Q
is very large, the oscillation is strictly periodic, if Q
decreases toward the value 2, the feature represents
a QPO and if Q < 2 the signal is usually labeled
noise [42]. There is not one single number or even
set of numbers that can be used to fully character-
ize a PSD of a light curve coming from a source with
non-periodic, non-deterministic behavior; thus a very
important component of PSD analysis is the visual
inspection of the PSD curve.

All results are obtainedaftermediationover103 stochastic
realizations, and all PSDs were computed starting from a
baseline of 103 timesteps.

3 Electromagnetic radiation of charged particles
in stochastic motion

In the present section we consider the properties of the elec-
tromagnetic radiation emitted by charged particles in random
media, whose equations of motion are given by Langevin or
generalized Langevin type equations. In particular, we ana-
lyze the total emitted power, and the power spectrum for
charged particles in Brownian motion in the presence of an
electric field, in Brownian motion in the presence of a har-
monic potential, for charged particles obeying a generalized
Langevin type equation with memory, and for the stochastic
motion of particles in constant magnetic fields.

3.1 Radiation of a charged particle in Brownian motion
in the presence of an electric field

3.1.1 Equations and physics

The simplest possible stochastic motion of a charged particle
with Z = 1 and mass m is the one-dimensional Brownian
motion in the presence of an external electric field, �E �= 0,

in the absence of a magnetic field �B = 0. In the following
we restrict or analysis to the case of the constant electric
field, �E = constant. The random motion of the particle is
described by the Langevin equation

dv

dt
= eE − νv + ξA(t). (9)

To treat ξA as a random acceleration we must consider
an ensemble of systems, and define the random acceleration
through its ensemble averages [9],

〈ξA(t)〉 = 0, 〈ξA (t1) ξA (t2)〉 = A

dt
δ (t1 − t2) . (10)

Due to the ensemble interpretation, the velocity v and the
position x of the particle are stochastic variables. According
to the central limit theorem, they should both have Gaus-
sian distributions in the steady state [11]. The variances of
these distributions are independently known, for the x distri-
bution should obey the diffusion law, and the velocity distri-
bution should be Maxwell–Boltzmann. Thus we must have
〈x2〉 = 2Dt , and m〈v2〉 = KBT , where D is the diffusion
coefficient, and T the absolute temperature [7,11]. By cal-
culating these variances via the Langevin equation, we can
relate the parameters c0 = A/dt and ν to physical properties.
Hence we have c0/2mν = kBT , and ν = kBT/mD [7,11].

3.1.2 The energy balance equation

We define the average kinetic energy of the particle as

EK = m

2
〈v2〉. (11)

Multiplying both sides of the Langevin equation Eq. (9) by
mv we obtain

m

2

d

dt
v2 + mνv2 = mevE + mvξA. (12)

Taking the average of the above equation we obtain

d

dt
EK = 〈mvξA〉 − 2νEK , (13)

where we have assumed that E = constant, and 〈v〉 = 0. In
Eq. (13) the term 〈mvξA〉 represents the average work done
on the system, while the term −2νEK gives the rate of the
energy dissipation, which, for a charged particle, is due to the
electromagnetic radiation. Therefore we obtain the relation

〈P〉 = 2

3

e2

c3 〈a2〉 = 2νEK . (14)

The average work done on the system can be obtained as
〈mvξA〉 = mc0/2, and therefore the energy balance equation
becomes
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d

dt
EK = mc0

2
− 2νEK , (15)

with the general solution given by

EK (t) = mc0

4ν

(
1 − e−2νt

)
. (16)

In the limit of large times, limt→∞ EK (t) = mc0/4ν =
constant, and therefore we obtain for the average of the emit-
ted electromagnetic radiation the expression

〈P〉 = mc0

2
= m2νkBT . (17)

3.1.3 Numerical approach and simulated light curves

The differential equations are brought to a dimensionless
form, by the following transformations:

• dimensionless time: θ = νt ; ν = 1/τ , where ν is the
collision frequency in Brownian motion;

• dimensionless displacement: q = x
(
Aτ 3

)−1/2
;

• dimensionless velocity V = v/vT , where vT = √
Aτ ;

• dimensionless acceleration ad = √
τ/c0 ≡ dV/dθ ;

• dimensionless emitted power P̄ = 3
2

τc3

(Ze)2c0
P ≡ a2

d ;

• dimensionless electric field Ē = Ee
√

τ/c0.

The dimensionless equation describing the motion of a
Brownian particle in a constant electric field is

dV (θ)

dθ
= −V (θ) + Ē + ξ̄A(θ), (18)

where

〈
ξ̄A(θ)

〉 = 0,
〈
ξ̄A (θ1) ξ̄A (θ2)

〉 = 1

dθ
δ (θ1 − θ2) . (19)

We shall continue to denote the dimensionless emitted
power by L(θ) and interpret it as the luminosity produced by
a charged particle in Brownian motion.

To produce the numerical solution for the displacement,
velocity and radiation pattern, Eqs. (18)–(19) and

V (θ) = dq

dθ
; ad(θ) = dV

dθ
; L(θ) = a2

d(θ), (20)

are used, together with a first order Euler scheme. The vari-
ables are discretized in the usual manner, the dimensionless
timestep θ is discretized in units of h, such that θn = nh,
where n is an integer number. Accordingly, all the other vari-
ables depending on θ become, e.g., V (θ) = V (nh) ≡ Vn .

For example, for the velocity, the discretized equation

Vn+1 − Vn
h

= −Vn + Ē + ψn (21)

becomes, in update form,

Vn+1 = Vn + h(−Vn + Ē + ψn), (22)

whereψn is a number drawn at each timestep fromN (0, h−1),
where N (μ, σ 2) is a normal distribution of mean μ and vari-
ance σ 2.

The initial conditions are q(0) = ad(0) = 0 and V (0) =
V0. For the purpose of studying the case when one injects a
high energetic electron into a distribution of plasma versus
what happens the case when one introduces a thermalized
electron, two regimes of initial velocities will be considered:
V0 ∼ 103 and V0 ∼ 1 respectively.

To summarize, we obtain numerical solutions for the
variables {q, V, L}, where the parameter space is given by
{Ē, V0}. For consistency, dθ = h = 0.01 throughout.

The power emitted by a charged particle in stochastic one-
dimensional motion in a constant electric field is represented,
for two distinct sets of initial conditions, in Fig. 1; for compar-
ison purposes, also included is the solution to Eq. 18 without
noise (i.e., ξ̄A = 0).

For the motion of a charged particle in a constant elec-
tric field, subjected to a friction force proportional to the
velocity, we expect that the amount of radiated energy is and
increasing function of the input energy; the influence of the
input energy is considered here either by modifying |E |, or
by modifying the initial conditions. The expected behavior
is indeed recovered by our simulations, as can be seen both
in Fig. 1 and by consulting the column 3 of Table 1. For
the parameter space considered in this work, it can be seen
that adding a noise component is enough not only to bal-
ance loss by friction, but in fact to dramatically increase the
energy output of the system (Fig. 1). It thus becomes apparent
that the energy radiated in this context is due to the energy
received by the electron as random kicks in its Brownian
motion. So, when it comes to mean values of the LC vector,
they are higher than for the noiseless case and it is not as
easy to discriminate between those corresponding to differ-
ent values of the electric field. The random kicks play a very
efficient role in homogenizing the behavior of the charged
particle.

3.1.4 Statistical characteristics of results

The statistical characteristics (here and elsewhere in the
paper) are based on a baseline of 103 timesteps, even if for
presentation purposes we show only portions of the data vec-
tor. Table 1 contains numerical values for the points in the
parameter space covered by our simulations. These numeri-
cal values may be used to discriminate between different light
curves as follows: it is noticed that the mean value increases
with the value of the electric field (consequence of increas-
ing energy injection), i.e. both values for E ∈ {−7, 7} are
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Fig. 1 Dimensionless power L emitted by a charged particle in
stochastic motion in a constant electric field. The solution of the noise-
less differential equation is included. The colors are for different val-
ues of Ē ∈ {±7,±5, 1}, corresponding to e > 0 and e < 0, respec-
tively. The terms “thermal” and “explosive” refer to initial conditions of

V0 = 0.1 and V0 = 100, respectively. For the thermal case with noise,
the curves have been multiplied by 10−2 for presentation purposes. For
the thermal case without noise, the lower curve is for Ē = 1, the next
two are for Ē = ±5 and the following two for Ē = ±7

higher than for E = 1, but the value for which the charge
has the same sign as the applied electric field is larger. Also,
the (overall) mean is always higher by approximately 6 %
for the explosive initial conditions (ICs) than for the thermal
ICs. However, ICs have a dramatic effect on the dispersion,
as expected. The standard deviation increases by 300 % for
the explosive ICs. Also dramatic is the effect on the skewness
and kurtosis, as can be noticed from the values in the last two
columns. Note that for the thermal case, the skewness and
kurtosis have values very close to their theoretical values for
a Gaussian process, i.e. 0 and 3, respectively.

At this point a comment is in order regarding the appro-
priateness of studying curves such as the LC for the explo-
sive case by means of these statistical characteristics. When
studying the behavior of systems, one usually uses data which
has been cleaned for the transitory part, i.e., data produced
by the system in equilibrium. This is unfeasible in astron-
omy and astrophysics from at least two points of view:
astronomers do not have the luxury of observing many differ-
ent realizations of an identically prepared system and some
of the most interesting physics in astrophysics is the one
pertaining to the transitory state. Characteristics such as the
skewness and kurtosis can clearly offer at least an idea of the
nature of the source.

For the case of a charge moving in a constant electric field
while subjected to relatively small Brownian kicks (recall
that Ē may be interpreted as the ratio between the influence
of the electric energy with respect to the energy injected
by Brownian motion) the PSDs are generally flat curves
(Fig. 2), reflecting the fact that the noise content is trivial.
Also included is the PSD of the noiseless counterpart. The
actual value of the Ē free parameter has little importance
for both the qualitative and quantitative look of the PSD in
both initial condition cases. There is no feature in the PSD

which indicates a characteristic frequency nor features that
look like QPOs, but this is what we would expect for this
case.

3.2 Radiation of a charged particle in a harmonic external
potential

3.2.1 Equations and physics

The Langevin equation for the one-dimensional motion of
a charged particle with mass m and charge e in a harmonic
potential with natural frequency ω0 is given by

d2x

dt2 + ν
dx

dt
+ ω2

0x = ξB, (23)

where the stochastic force ξB has the properties

〈ξB(t)〉 = 0, 〈ξB (t1) ξB (t2)〉 = B

dt
δ (t1 − t2) . (24)

The total energy per unit mass of the charged particle in
the harmonic potential is given by

E = 1

2
v2 + 1

2
ω2

0x
2. (25)

For the variation of the energy of the particle we obtain,
with the use of Eq. (23), the expression

dE

dt
= P = ξB

dx

dt
− ν

(
dx

dt

)2

= 2

3

e2

c3 a
2. (26)
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Fig. 2 Log–log representation of the PSD corresponding to the
stochastic motion of a charged particle in a constant electric field. The
colors are for different values of Ē ∈ {±7,±5, 1}, corresponding to
e > 0 and e < 0, respectively. The terms “thermal” and “explosive”

refer to initial conditions of V0 = 0.1 and V0 = 100, respectively. For
the cases without noise, the lower curve is for Ē = 1, the next two are
for Ē ± 5 and the following two for Ē ± 7

3.2.2 Numerical approach and light curve

The same dimensionless variables are again used, together
with

• dimensionless frequency: W = ω0τ , where ω0 is the
frequency of an external harmonic potential.

The dimensionless form of the Langevin differential equa-
tion Eq. (23) becomes

d2q(θ)

dθ2 + dq(θ)

dθ
+ W 2q(θ) = ξ̄B(θ), (27)

where

〈
ξ̄B(θ)

〉 = 0,
〈
ξ̄B (θ1) ξ̄B (θ2)

〉 = 1

dθ
δ (θ1 − θ2) . (28)

In the absence of the external stochastic force, ξ̄B(θ) ≡ 0,
the general solution of Eq. (27) with initial conditions q(0) =
q0 and dq/dθ |θ=0 = q̇0 is given by

q(θ) = e−θ/2

√
1 − 4W 2

[
(2q̇0 + q0) sinh

(
1

2
θ
√

1 − 4W 2

)

+
√

1 − 4W 2q0 cosh

(
1

2
θ
√

1 − 4W 2

)]
. (29)

The physical characteristics of the particle motion depends
on the sign of the quantity 1 − 4W 2. If 1 − 4W 2 < 0, the
particle will oscillate at the natural damped frequency ω =√

4W 2 − 1/2.
The same numerical algorithm as in Sect. 3.1.3 is

employed, i.e., we discretize the equations and implement an
Euler scheme for the update equations. We obtain numerical

solutions for the variables {q, V, P}, where the parameter
space is given by { W, V0}.

The time variation of the electromagnetic radiation emit-
ted by a charged particle in stochastic motion in a harmonic
potential is represented in Fig. 3; the noiseless counterpart is
given in Fig. 4.

For the motion of a charged particle, undergoing friction in
an external potential, we would expect that the light curve is a
sinusoidal-like curve, with the amplitude decreasing in time.
This indeed can be seen in Fig. 4. Naturally, since the friction
remains constant, the position of the peaks depends on the
value of W ; also, the mean value of the LC is an increasing
function of W , as more energetic electrons emit more energy
when subjected to otherwise identical conditions; this can
be seen in column 3 of Table 2. When the noise is turned on
(Fig. 3), the random kicks are very efficient at homogeneizing
the behavior of the charged particle for the thermal case: there
is little difference between the LCs for W 2 varying across 3
orders of magnitude. However, in the explosive case there is a
clear difference between LCs produces by variousW 2 values.
The two sources of energy injection other than the noise are
in this case large enough to leave a visible signature in the LC.

3.2.3 Statistical analysis of results

Table 2 contains the analysis of the statistical characteristics
for the case of a charged Brownian particle, with friction, in
a harmonic potential of dimensionless equivalent frequency
W . As expected, the mean value of the power output increases
as W 2 increases and is larger consistently for a larger energy
input through the different ICs. In the case of the disper-
sion, while for the thermal case the change is of ≈3.4 % for
different values of W , in the explosive case, the dispersion
changes by ≈140 % for different values of W . The skewness
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Fig. 3 Dimensionless power L emitted by a charged particle in stochastic motion in a harmonic external potential of dimensionless frequency W 2.
The terms “thermal” and “explosive” refer to initial conditions of V0 = 1 and V0 = 50, respectively
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Fig. 4 Dimensionless power L emitted by a charged particle in motion in a harmonic external potential of dimensionless frequency W 2. The terms
“thermal” and “explosive” refer to initial conditions of V0 = 1 and V0 = 50, respectively

is pronounced for the thermal case, but rather constant with
varying W . For the explosive case, the skewness is almost
zero for W 2 = 1, but increases by two order of magnitude
for W 2 = 5.

A technical note regarding the reading of the PSD, namely
the clarification of the meaning of a feature appearing at
log f = x ; the calculation of the PSD is based on taking the
correlation between the values of the LC j timesteps apart.
When calculating the associated frequency, one has to take
into account that we meshed the temporal axis in quanta of
h = 0.01, such that in fact the value x in the PSD corresponds
to a period T = 102−x . Conversely, if one expects periodicity
with some period τ = 2π/ω, then the connection between ω

and x is given by x = 2 − log(2π/ω).
Since the motion is periodic, we expect that the PSDs,

presented in Figs. 5 and 6, respectively, will display well-
defined peaks at the frequencies corresponding to W . This
can be seen in Fig. 6; for W 2 ∈ (0.01, 10), the quantity
log f =∈ (0.2, 1.7). One can see that the theoretical behav-

ior is indeed recovered by the simulations. When the noise
is turned on, these general features characterizing the LC are
recovered in the PSD as well. For both IC cases, the power
is greater than for the noiseless case and generally greater
for the explosive conditions; different values of W 2 produce
clear signatures in the PSD of the explosive LC. The PSD
contains no new feature brought on by noise, but the existing
peaks are widened, as one would expect from the interaction
with a heath bath.

3.3 The case of the generalized Langevin equation

3.3.1 Equations and physics

In the presence of a colored noise, which accounts for
the general memory and retarded effects of the frictional
force, and on the fluctuation-dissipation theorems, the motion
of a charged particle in a harmonic potential is described
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Fig. 5 Log–log representation of the PSD as a function of frequency of the radiation emitted by a charged particle in stochastic motion in a harmonic
potential of dimensionless frequency W 2. The terms “thermal” and “explosive” refer to initial conditions of V0 = 1 and V0 = 50, respectively

0.5 1.0 1.5 2.0

3

2

1

0

log f

lo
g

PS
D

Thermal initial conditions, noiseless

W2 10

W2 7

W2 5

W2 2

W2 1

W2 0.5

W2 0.2

W2 0.1

W2 0.01

0.5 1.0 1.5 2.0

4

5

6

7

log f

lo
g

PS
D

Explosive initial conditions, noiseless

W2 10

W2 7

W2 5

W2 2

W2 1

W2 0.5

W2 0.2

W2 0.1

W2 0.01

Fig. 6 Log–log representation of the PSD as a function of frequency of the radiation emitted by a charged particle in motion in a harmonic potential
of dimensionless frequency W 2. The terms “thermal” and “explosive” refer to initial conditions of V0 = 1 and V0 = 50, respectively

by the generalized Langevin equation, which in the one-
dimensional case can be written as

d2x

dt2 +
∫ t

0
γ (t − t ′)dx(t ′)

dt ′
dt ′ + ω2

0x = ξC (t), (30)

where

γ (t) = α

τd
exp {−t/τ } , (31)

〈ξC (t)ξC (t ′)〉 = 1

β
γ (t − t ′). (32)

The time variation of the total energy of the harmoni-
cally oscillating charged particle with motion described by
the generalized Langevin equation is given by

dE

dt
= P = ξC

dx

dt
− dx

dt

∫ t

0
γ (t − t ′)dx(t ′)

dt ′
dt ′ = 2

3

e2

c3 a
2.

(33)

3.3.2 Numerical approach and light curve

For the case of the generalized Langevin equation Eq. (30),
in addition to the other dimensionless quantities discussed in
Sects. 3.1.3 and 3.2.2, we define

• dimensionless friction amplitude: ᾱ = ατ ;
• dimensionless friction kernel: γ̄ (θ) = ᾱe−θ ;
• dimensionless correlation amplitude for the stochastic

force C1 = αν/β(νvT )−2.

The dimensionless equation becomes

d2q

dθ2 +
∫ θ

0
γ̄ (θ − θ ′) dq

dθ ′ dθ ′2 + W 2q = ξ̄C (θ), (34)

where

〈ξ̄C (θ)ξ̄C (θ ′)〉 = C1e
θ ′−θ . (35)

This type of equation is solved by rewriting it as a set of
two coupled equations, with the help of an auxiliary dimen-
sionless variable Z(θ)

d2q

dθ2 + W 2q = Z(θ), (36)

dZ

dθ
= −Z − ᾱ

dq

dθ
+ ηC (θ), (37)

where

〈ηC (θ)ηC (θ ′)〉 = C̄δ(θ − θ ′), (38)
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C̄ = 2ᾱv−2
T β−1 and Z(0) is drawn from a distribution with

〈Z2(0)〉 = 0.5C̄, (39)

for each realization of the stochastic process.
The equations for Z and q are solved by a second order

Runge–Kutta procedure based on the algorithm developed
in [40]. The update form of the equations is

qn+1 = qn + Vnh + 1

2
h2(−�2qn + Zn), (40)

Vn+1 = Vn + h(−�2qn + Zn)

+1

2
h2(−�2Vn − Zn − ᾱVn) + c2, (41)

Zn+1 = Zn + h(−Zn − ᾱVn)

+h2

2
(Zn + ᾱVn + ᾱ�2qn − ᾱZn) + c1 − c2, (42)

where c1 = x and c2 = h(x/2 + y/(2
√

3)), with x, y ∈
N (0, C̄), drawn at each timestep.

We obtain numerical solutions for the variables {q, V, P},
where the parameter space is given by { W, V0} and we set ᾱ

and C̄ to some fixed values.
The dimensionless displacement and velocities of the

stochastic motion with memory of the charged particle are
presented in Figs. 7 and 8. The electromagnetic power emit-

ted by the particle is shown in Figs. 9, 10, and 11; each of
the figures includes the noiseless counterpart.

For the case of a charged particle moving in an external
potential, while undergoing friction with memory, we expect
LCs with a sinusoidal-like appearance while the amplitude
is decreasing in time; also, the means and period depend on
the W 2 parameter. When the friction is constant, we see that
for W 2 < 1 the emission is friction dominated, while for
W 2 > 1 the emission is oscillation dominated. If W 2 is kept
fixed and the friction kernel amplitude ᾱ is varied, it is seen
(Fig. 11 and Table 4) that the mean value of the LC is an
increasing function of ᾱ. This might be a consequence of the
fact that a larger memory kernel means that more energy is
stored in the system (Fig. 12).

When the noise is turned on, the overall energy injected,
and thus emitted by the charged particle is increased. When
W 2 is kept constant, there is a point in parameter space in
which the system switches from friction dominated to noise
dominated, as can be seen in Fig. 11 right, upper group of
LCs.

3.3.3 Statistical analysis of results

Tables 3 and 4 contain the analysis of the statistical charac-
teristics for the case of a charged Brownian particle, with a
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Fig. 7 Dimensionless displacement q of a charged particle in stochastic motion described by the generalized Langevin equation with exponential
friction kernel, with ᾱ = 5. The terms “thermal” and “explosive” refer to initial conditions of V0 = 1, C̄ = 10 and V0 = 50, C̄ = 100 respectively
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Fig. 8 Dimensionless velocity of a charged particle in stochastic motion described by the generalized Langevin equation with exponential friction
kernel, with ᾱ = 5. The terms “thermal” and “explosive” refer to initial conditions of V0 = 1, C̄ = 10 and V0 = 50, C̄ = 100, respectively
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Fig. 9 Dimensionless electromagnetic power L emitted by a charged
particle in stochastic motion described by the generalized Langevin
equation with exponential friction kernel, with ᾱ = 5. The terms “ther-
mal” and “explosive” refer to initial conditions of V0 = 1, C̄ = 10
and V0 = 50, C̄ = 100, respectively; the variable parameter is

W 2 ∈ {0.0005, 0.01, 0.02, 0.05, 0.07}, but it is seen not to have a big
effect on the energy output. Both the noise and the noiseless cases
included. For presentation purposes, the light curves for the case with
noise were multiplied by 10−3 (thermal) and by 10−2 (explosive)
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Fig. 10 Dimensionless electromagnetic power L emitted by a charged
particle in stochastic motion described by the generalized Langevin
equation with exponential friction kernel, with ᾱ = 0.5. The terms
“thermal” and “explosive” refer to initial conditions of V0 = 1,
C̄ = 10 and V0 = 50, C̄ = 100 respectively; the variable parame-

ter is W 2 ∈ {5, 10, 15, 20, 25}; the amplitude is an increasing function
of W . Both the noise and the noiseless cases included. For presentation
purposes, the light curves for the case with noise were multiplied by
10−3 (thermal) and by 10−2 (explosive)

memory friction kernel, in a harmonic potential of dimen-
sionless equivalent frequency W . As for the other cases, the
mean value of the emitted power is larger in the case of explo-
sive conditions, in this case by two orders of magnitude; it
varies, within the same ICs, by approximately 3 % for the
thermal case and by approximately 4 % for the explosive
case. The same comment can be made about the dispersion,
The novelty here is that the skewness and kurtosis vary very
little with the change of ICs; they significantly depart from
their corresponding Gaussian values.

The very interesting consequence is seen clearer in the
PSD: since for W 2 = 0.0005 the value of log f = −0.44,
than the new feature appearing in the PSD (Fig. 16) is a
signature of the memory existent in the system, due to the
friction kernel. The position of the peak shifts as ᾱ increases,

thus as the amplitude of the memory increases, the motion
becomes correlated over longer timespans. When the noise
is turned on, the PSDs for W 2 > 1 (Fig. 13 compared with
Fig. 14) are adequate to fully see the effects of the various
influences present in the system; for this set of W 2, the value
of log f ∈ 1.55, 1.90, which cannot be seen as such in either
of the plots. However, there is a feature for smaller values of
log f , and the position of this feature moves to the right as
W 2 increases. When W 2 is constant and the friction varies
(Fig. 15) the position of the additional peak stays roughly the
same as the noiseless case; however, the height of the peak
becomes larger. We infer that this happens because, due to the
memory of the friction, the system is not efficient in instant
radiation of its energy, and a correlation appears, overwriting
the expected periodicity and producing a new one.
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Fig. 11 Dimensionless electromagnetic power L emitted by a charged
particle in stochastic motion described by the generalized Langevin
equation with exponential friction kernel, with W 2 = 0.0005. The
terms “thermal” and “explosive” refer to initial conditions of V0 = 1,
C̄ = 10 and V0 = 50, C̄ = 100, respectively; the variable parameter

is ᾱ ∈ {0.1, 1, 10, 15, 100, 200, 500}; the amplitude is an increasing
function of ᾱ. Both the noise and the noiseless cases are included. For
presentation purposes, the light curves for the case with noise were
multiplied by 10−1 (thermal)
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Fig. 12 Log–log representation of the PSD of a charged particle in
stochastic motion described by the generalized Langevin equation
with exponential friction kernel, with ᾱ = 5. The terms “thermal”
and “explosive” refer to initial conditions of V0 = 1, C̄ = 10 and

V0 = 50, C̄ = 100, respectively; the variable parameter is W 2 ∈
{0.0005, 0.01, 0.02, 0.05, 0.07}. Both the noise and the noiseless cases
are included; for presentation purposes, the noiseless group has been
moved up the vertical axis by 6 units (thermal) and 3 units (explosive)
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Fig. 13 Log–log representation of the PSD of a charged particle in
stochastic motion described by the generalized Langevin equation with
exponential friction kernel, with ᾱ = 0.5. The terms “thermal” and

“explosive” refer to initial conditions of V0 = 1, C̄ = 10 and V0 = 50,
C̄ = 100, respectively
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Fig. 14 Log–log representation of the PSD of a charged particle in motion described by the generalized Langevin equation with exponential friction
kernel, with ᾱ = 0.5. The terms “thermal” and “explosive” refer to initial conditions of V0 = 1, C̄ = 10 and V0 = 50, C̄ = 100, respectively
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Fig. 15 Log–log representation of the PSD of a charged particle in stochastic motion described by the generalized Langevin equation with variable
exponential friction kernel ᾱ and W 2 = 0.0005; left initial conditions of V0 = 1, C̄ = 10; right initial conditions of V0 = 50, C̄ = 100
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Fig. 16 Log–log representation of the PSD of a charged particle in motion described by the generalized Langevin equation with variable exponential
friction kernel ᾱ and W 2 = 0.0005; left initial conditions of V0 = 1, C̄ = 10; right initial conditions of V0 = 50, C̄ = 100

3.4 Radiation pattern from stochastic particle motion
in a constant magnetic field

3.4.1 Equations and physics

The equation of motion of a charged particle in a mag-
netic field in the presence of a stochastic force �ξ D(t) and
of interparticle collisions, generating a force proportional
to the particle velocity, is given by the Langevin type
equation [19]

d�v
dt

= Ze

mc

[
�v(t) × �B

]
− ν�v(t) + �ξ D(t) (43)

where

〈
ξ D
i (t) ξ D

j (t ′)
〉
= D

dt
δi j (t − t ′). (44)

where i, j = x, y and, the constant magnetic field is oriented
along the z direction,

�B = Bẑ, B = constant. (45)
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3.4.2 Numerical approach and simulated light curves

In addition to the other dimensionless quantities discussed in
Sect. 3.1.3, we define a

• dimensionless magnetic frequency: �̄ = �τ = B0
Ze
mc τ .

For the case of stochastic motion in a constant magnetic
field described by Eq. (43), the equation is split into compo-
nents and afterwards made dimensionless as

dX

dθ
= Vx ; dVx

dθ
= �̄Vy − Vx + ξ̄x (θ), (46)

dY

dθ
= Vy; dVy

dθ
= −�̄Vx − Vy + ξ̄y(θ), (47)

dZ

dθ
= Vz; dVz

dθ
= −Vz + ξ̄z(θ), (48)

where

〈
ξ̄i (θ) ξ̄ j (θ

′)
〉 = 1

dθ
δi j (θ − θ ′). (49)

In the case of the motion in a deterministic magnetic field,
with ξ̄x (θ) = ξ̄y(θ) ≡ 0, the solution of the equation of
motion of the charged particle in the constant magnetic field
is given by

Vx (θ) = e−θ
[
Vx (0) cos

(
�̄θ

) + Vy(0) sin
(
�̄θ

)]
, (50)

Vy(θ) = e−θ
[
Vy(0) cos

(
�̄θ

) − Vx (0) sin
(
�̄θ

)]
, (51)

X (θ) = X (0) + e−θ

�̄2 + 1
×

{ [
Vx (0)�̄ − Vy(0)

]
sin

(
�̄θ

)

−
[
Vx (0) + Vy(0)�̄

]
cos

(
�̄θ

) }
, (52)

Y (θ) = Y (0) + e−t

�̄2 + 1

{ [
Vx (0) + Vy(0)�̄

]
sin

(
�̄θ

)

+ [
Vx (0)�̄ − Vy(0)

]
cos

(
�̄θ

) }
. (53)

The solution {X,Y, Vx , Vy} to Eqs. (46), (47) in the pres-
ence of the stochastic noise was obtained by employing the
method of [19]. More precisely, we used their Eq. (16) suit-
ably adapted for the dimensionless case. For {Z , Vz} an Euler
scheme as the one described in Sect. 3.1.3 was used.

The acceleration producing the radiation pattern was
obtained:

a2
d,n = a2

x,n + a2
n,y + a2

z,n, (54)

where

ax,n+1 = ax,n + h(�̄Vy,n − Vx,n + ψx ), (55)

ay,n+1 = ay,n + h(−�̄Vx,n − Vy,n + ψy), (56)

az,n+1 = az,n + h(−Vz,n + ψz), (57)

with ψ j ∈ N (0, h−1) at each timestep. The displacement
of the charged particle in stochastic motion is presented in
Fig. 17, while the 3D velocity is shown in Fig. 18. The power
emitted during the random motion in the constant magnetic
field is depicted in Fig. 19 and noiseless counterpart is shown
in Fig. 20.

Although the motion of the particle is periodic, the obser-
vational signature will not exhibit periodicity. A simple cal-
culation for the noiseless case (Eqs. (50) and (51)) shows
that the contribution to the LC from the x and y directions,
a2
x + a2

y = e−2θ (1 + �̄2) is obviously not periodic. So there
is a very clear difference between the observational signa-
ture of a charged particle moving in an external harmonic
potential (previous two cases) and that of a charged particle
moving in a constant magnetic field.
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Fig. 17 Displacement of a charged particle in Brownian motion in a constant magnetic field with dimensionless Larmor frequency �̄ = 10, for
thermal initial conditions V0x = V0y = V0z = 0.2 (left figure), and for explosive initial conditions, V0z = 103, V0x = V0y = 0 (right figure)
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Fig. 18 Velocity of a charged particle in Brownian motion in a magnetic field with dimensionless frequency �̄ = 10, for thermal initial conditions
V0x = V0y = V0z = 0.2 (left figure), and for explosive initial conditions, V0z = 103, V0x = V0y = 0 (right figure)
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Fig. 19 Dimensionless power L emitted by a charged particle in Brow-
nian motion in a constant magnetic field. The terms “thermal” and
“explosive” refer to initial conditions V0x = V0y = V0z = 0.2, and

V0x = V0y = V0z = 100, respectively. For presentation purposes, the
curves corresponding to �̄ > 1 were multiplied by 10
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Fig. 20 Dimensionless power L emitted by a charged particle in motion in a constant magnetic field. The terms “thermal” and “explosive” refer
to initial conditions V0x = V0y = V0z = 0.2, and V0x = V0y = V0z = 100, respectively

The motion of a charged particle in a constant magnetic
field while undergoing friction is expected to produce a light
curve with an intensity which is decaying in time, with mean
value depending on the energy injected in the system, through

the IC and the value of the magnetic field. This is indeed
recovered in Fig. 20 and column 3 of Table 5. When a
noise component is turned on, the energy level is generally
enhanced and thus in this parameter space it seems that the

123



160 Page 16 of 20 Eur. Phys. J. C (2016) 76 :160

0.5 1.0 1.5 2.0

10

15

20

25

30

log f

lo
g

PS
D

Thermal initial conditions

12

10

7

5

2

0.2

0.1

0.01

0.5 1.0 1.5 2.0

10

15

20

25

30

35

log f

lo
g

PS
D

Explosive initial conditions

12

10

7

5

2

0.2

0.1

0.01

Fig. 21 Log–log representation of the PSD of the electromagnetic power emitted by a charged particle in Brownian motion in a constant magnetic
field. The terms “thermal” and “explosive” refer to initial conditions of V0x = V0y = V0z = 0.2 and V0x = V0y = V0z = 100, respectively
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Fig. 22 Log–log representation of the PSD of the electromagnetic power emitted by a charged particle in motion in a constant magnetic field. The
terms “thermal” and “explosive” refer to initial conditions of V0x = V0y = V0z = 0.2 and V0x = V0y = V0z = 100, respectively

energy radiated from charged particles generally comes from
the random kicks these particles are subjected to.

3.4.3 Statistical analysis of results

Table 5 contains the analysis of the statistical characteristics
for the case of a charged Brownian particle undergoing fric-
tion in a magnetic field. Even in the case of thermal injection,
there is a dramatic increase in the mean power output with
little variation of the dimensionless Larmor frequency �̄. In
the explored parameter space, for fixed magnetic energy con-
tent, the power output does not significantly change even if
the emission occurs following an explosion. This insensitiv-
ity on ICs for fixed �̄ can also be seen for the dispersion
and for the kurtosis. The skewness, however, changes sign,
although generally keeping the same absolute value to within
a few percent.

Since, as argued above, no periodicity is expected in the
LC, the PSD for the noiseless case is featureless (Fig. 22).

When the noise is turned on, the PSD is still generally smooth
and the effect of the noise is seen in the overall increase of
power at all frequencies (Fig. 21). The numerical value of �̄

influences the spectral power, i.e., the relative influence of
the power for a fixed frequency grows with growing �̄.

4 Discussions and final remarks

In the present paper we have considered the radiation prop-
erties of charged particles in Brownian motion. To model
the electromagnetic emissivity properties of the particles we
have adopted the Langevin and the generalized Langevin
equation, respectively, which give a full description of the
particle-external environment system. In order to solve the
Langevin equations we have adopted a numerical approach,
based on the use of some numerical integrators. Due to the
stochastic, random distribution of the physical parameters of
the particles, complex radiation patterns can be generated in
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the presence of some random forces generated by the particle
environment. In particular we have found that for specific
oscillation frequencies some peaks are present in the PSD
curves of the emitted electromagnetic radiation for charged
Brownian particles moving in external harmonic potentials.
The presence of resonant stochastic peaks in the PSD of the
energy emission can be used to explain astrophysical obser-
vations. For example, in [36,37] it was shown that the simu-
lated PSD curves of luminosity for stochastically oscillating
general relativistic disks [13–15,41] have the same profile
as the observed PSD of black hole X-ray binaries in the
low-hard state. Hence resonant effect in the accretion disk
oscillations may provide an alternative interpretation of the
persistent low-frequency quasi-periodic oscillations in astro-
physical systems. The stochastic electromagnetic radiation
model, representing an interplay between deterministic and
stochastic processes, including resonance phenomena, could
also be used to explain strongly peaked astrophysical effects
in black hole-binary systems.

Quasi-periodic oscillations (QPOs) are a commonly
occurring phenomenon in astrophysical observations, with
many kHz QPOs detected in the light curves of neutron stars
and black hole sources [44]. Since the orbital frequencies of
high frequency QPOs lie in the range of orbital frequencies
of geodesics just few Schwarzschild radii outside the central
massive source [45]. This observation strongly suggest that
the QPOs could be related to the orbital motion of particles
in an accretion disk [46]. An interesting theoretical model
explaining the QPO properties is the Abramowicz–Kluzniak
resonance model [47], which starts from pointing out the
importance of the observed 3:2 frequency ratio, and that the
commensurability of frequencies may be a clear signature
of the existence of resonance in the astrophysical system.
From observational point of view the fact that for kHz QPOs
the frequencies scale with 1/M , where M is the mass of the
central object, provide a strong support to the idea that they
are due to orbital oscillations [45]. By adopting the above
approach it follows that from a mathematical point of view
QPOs can be modeled by analyzing the time evolution of per-
turbed nearby Keplerian geodesics, which can be described
by the equations [45]

z̈(t) + ωθ z(t) = f [ρ(t), z(t), r0, θ0] , (58)

ρ̈(t) + ωrρ(t) = g [ρ(t), z(t), r0, θ0] , (59)

where z(t) and ρ(t) denotes the small deviations from the
circular orbit (r0, θ0), ωθ and ωr are the epicyclic frequen-
cies, while the functions f and g describe the couplings
between particle motion and external perturbations. How-
ever, the astrophysical model described by Eqs. (58) and (59)
does not take into account the complexity of the processes
taking place in the central regions of accretion disks, like,
for example, the Magneto-Rotational Instability induced tur-

bulence. Therefore a stochasticized version of Eqs. (58) and
(59) was proposed in [45], with the evolution of the pertur-
bations described by the stochastic equations

z̈(t) + ωθ z(t) − f [ρ(t), z(t), r0, θ0] = σzβ(t), (60)

ρ̈(t) + ωrρ(t) = g [ρ(t), z(t), r0, θ0] , (61)

where σz is a constant, while β(t) is a continuous Gaus-
sian white-noise process, with zero mean, and unit variance,
respectively. In this model the noise term acts only along the
vertical direction. By using the above equations it is possible
to show that the presence of the stochastic noise can trigger
the appearance of resonances in the epicyclic oscillations of
nearly Keplerian disks [45]. From a mathematical point of
view Eqs. (60) and (61) are similar to the oscillation equa-
tions considered in the present paper, without the dissipation
term included. Hence the present approach may allow the
study of more general QPO models, in which the complex
physical behavior of the central region of the accretion disks
may be modeled by stochastic differential equations involv-
ing dissipative and memory effects.

For cases II and III, preliminary calculations show that
aside from the qualitative similarity to observational QPO
signatures, some of the peaks have a Q factor which is larger
than 2, but not much; however, the “industry” of accurate
and un-debatable calculation of Q factors from nontrivial,
multi-peaks PSD is beyond the purpose of this paper and we
reserve it for future work.

We point out that in the parameter space considered in this
paper, there was no additional feature in the PSDs calculated
for cases where there was no reason to expect periodicity, i.e.
the first and last. When there was a periodic behavior embed-
ded in the system, the complex interplay between noise, fric-
tion, memory and a harmonic potential lead to the appearance
of a new feature in the PSD, with QPO characteristics.

Another possible astrophysical application of the models
developed in the present paper can be related to the study of
the properties of the Gamma Ray Bursts (GRBs). GRBs are
very powerful, sudden, and short cosmic gamma-ray emis-
sions, from astrophysical sources situated at cosmological
distances. The typical energy fluxes in GRBs range from
10−5 to 5 × 10−4 erg cm−2, while the time intervals during
which the gamma-ray emissions take place are of the order of
10−2 to 103 s [48,49]. Non-thermal photons are also observed
in GRB explosions, and their presence is usually explained by
either synchrotron emission, or inverse Compton scattering
by relativistic electrons in strong magnetic fields [49]. The
electrons, obeying a power-law distribution, are assumed to
have been accelerated to relativistic energies in the shocks
generated in the optically thin regions of the matter outflow-
ing from the explosion center. A possible alternative to the
synchrotron radiation model for explaining the non-thermal
radiative properties of GRBs is represented by the jitter radi-
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ation model. In this model the radiation originates from rel-
ativistic electrons accelerated in strong stochastic magnetic
fields [30–33]. On the other hand the physical characteristics
of the radiation in stochastic magnetic fields, or a turbulent
cosmic medium, can be studied by using the Langevin equa-
tion description, together with the numerical methods devel-
oped in the present approach to the problem of the radiation
emission by charged particles in Brownian motion. There-
fore the theoretical models introduced in the present paper
may contribute to a better understanding of the astrophysical
processes taking place during the main explosive phase, or
during the afterglow of the GRB explosions.

The astrophysical implications of the methods and results
obtained in our theoretical and numerical analysis will be
explored in detail in a future publication. In the present paper
we have only presented some basic theoretical tools that can
be used for the in-depth modeling and comparison of the
astrophysical observations of stochastically varying luminos-
ity sources with the theoretical predictions of the physical
models.
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Appendix A: Tables with the statistical characteristics of
the stochastic Light Curves

See Tables 1, 2, 3, 4, and 5.

Table 1 Value of statistical characteristics for the LC in case I as a
function of the parameter space

V0 Ē μ σ s κ

0.1 −7 10,039.963 460.881 0.181 3.072

0.1 −5 10,053.522 456.594 0.025 3.029

0.1 1 10,020.254 437.080 0.148 3.341

0.1 5 10,061.864 450.921 0.107 2.894

0.1 7 10,073.099 438.762 0.104 3.103

100 −7 10,654.364 1880.597 4.144 24.983

100 −7 10,604.786 1817.379 3.991 24.165

100 −7 10,550.766 1617.566 4.360 32.368

Table 1 continued

V0 Ē μ σ s κ

100 −7 10,500.008 1523.748 4.689 39.015

100 −7 10,508.306 1459.364 4.461 35.469

Noiseless

0.1 −7 2.581 8.060 4.750 33.520

0.1 −5 1.331 4.152 4.717 32.855

0.1 1 0.042 0.135 5.814 57.154

0.1 5 1.233 3.880 4.980 38.296

0.1 7 2.443 7.678 4.937 37.396

100 −7 583.976 1806.001 4.481 28.260

100 −5 563.045 1746.772 4.565 29.863

100 1 502.714 1578.482 4.907 36.750

100 5 464.543 1474.446 5.236 43.853

100 7 446.072 1424.988 5.442 48.475

Table 2 Value of statistical characteristics for the LC in case II as a
function of the parameter space

V0 W 2 μ σ s κ

1 0.01 10,042.336 546.597 −6.165 115.429

1 0.1 10,054.237 564.972 −5.573 101.853

1 0.2 10,035.968 549.911 −6.043 112.473

1 0.5 10,072.870 549.593 −6.017 114.444

1 1 10,097.764 560.838 −5.767 106.647

1 2 10,131.502 552.469 −6.092 114.488

1 5 10,279.330 579.003 −5.555 100.956

1 7 10,363.076 568.170 −6.005 112.241

1 10 10,512.427 582.914 −5.848 107.347

50 0.01 10,187.129 625.712 −1.113 26.376

50 0.1 10,190.245 648.480 −0.705 24.113

50 0.2 10,212.970 632.853 −0.964 26.154

50 0.5 10,280.704 737.837 −0.095 16.833

50 1 10,332.067 768.806 0.035 15.000

50 2 10,523.102 1029.668 1.294 9.830

50 5 11,072.753 1869.612 2.621 10.729

50 7 11,449.823 2499.379 2.830 11.413

50 10 12,057.341 3478.019 3.056 12.653

Noiseless

1 0.01 0.052 0.155 3.884 18.647

1 0.1 0.056 0.161 3.686 16.945

1 0.2 0.061 0.168 3.481 15.245

1 0.5 0.076 0.194 2.999 11.451

1 1 0.102 0.244 2.613 8.574

1 2 0.153 0.358 2.559 8.089

1 5 0.314 0.738 2.952 10.930

1 7 0.428 1.004 3.092 12.130

1 10 0.607 1.415 3.192 13.120

50 0.01 129.378 387.101 3.884 18.647
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Table 2 continued

V0 W 2 μ σ s κ

50 0.1 140.609 402.425 3.686 16.945

50 0.2 153.130 420.912 3.481 15.245

50 0.5 190.936 484.290 2.999 11.451

50 1 254.382 608.915 2.613 8.574

50 2 383.218 894.795 2.559 8.089

50 5 786.035 1846.235 2.952 10.930

50 7 1069.036 2511.187 3.092 12.130

50 10 1517.157 3538.026 3.192 13.120

Table 3 Value of statistical characteristics for the LC in case III as a
function of the parameter space

V0 W 2 μ σ s κ

ᾱ = 5

1, C̄ = 10 0.0005 4358.459 958.759 −1.989 6.657

1, C̄ = 10 0.01 4465.579 988.686 −2.113 6.944

1, C̄ = 10 0.02 4398.845 968.181 −2.096 6.886

1, C̄ = 10 0.05 4493.401 978.447 −2.128 7.147

1, C̄ = 10 0.07 4291.154 939.824 −2.083 7.055

50, C̄ = 100 0.0005 443,242.296 99,867.551 −1.902 6.319

50, C̄ = 100 0.01 459,093.604 102,252.455 −1.919 6.599

50, C̄ = 100 0.02 436,537.988 90,562.257 −2.300 8.035

50, C̄ = 100 0.05 444,968.159 93,650.477 −2.279 7.937

50, C̄ = 100 0.07 434,342.677 93,998.582 −2.068 7.114

ᾱ = 5, Noiseless

1, C̄ = 10 0.0005 0.249863 0.587454 2.96388 10.9935

1, C̄ = 10 0.01 0.248641 0.583183 2.95912 10.976

1, C̄ = 10 0.02 0.243824 0.565613 2.93701 10.8897

1, C̄ = 10 0.05 0.24739 0.578728 2.95391 10.9564

1, C̄ = 10 0.07 0.241584 0.557079 2.92469 10.8387

50, C̄ = 100 0.0005 624.658 1468.63 2.96388 10.9935

50, C̄ = 100 0.01 621.604 1457.96 2.95912 10.976

50, C̄ = 100 0.02 609.559 1414.03 2.93701 10.8897

50, C̄ = 100 0.05 618.474 1446.82 2.95391 10.9564

50, C̄ = 100 0.07 603.96 1392.7 2.92469 10.8387

ᾱ = 0.5

1, C̄ = 10 5 28,182.484 9477.725 −1.122 4.151

1, C̄ = 10 10 35,063.365 12,108.226 −0.823 3.370

1, C̄ = 10 15 39,347.932 13,571.939 −0.711 3.324

1, C̄ = 10 20 41,565.638 15,284.847 −0.538 2.825

1, C̄ = 10 25 41,892.573 15,589.830 −0.432 2.786

50, C̄ = 100 5 2.826×106 950,773.090 −1.063 3.928

50, C̄ = 100 10 3.595×106 1.223×106 −0.915 3.459

50, C̄ = 100 15 3.940×106 1.408×106 −0.706 2.964

50, C̄ = 100 20 4.041×106 1.465×106 −0.612 2.900

50, C̄ = 100 25 4.084×106 1.433×106 −0.580 3.020

Table 3 continued

V0 W 2 μ σ s κ

ᾱ = 0.5, Noiseless

1, C̄ = 10 5 0.050 0.112 2.994 11.216

1, C̄ = 10 10 0.337 0.506 2.761 11.279

1, C̄ = 10 15 1.049 1.214 1.947 7.182

1, C̄ = 10 20 2.110 2.108 1.471 5.094

1, C̄ = 10 25 3.410 3.154 1.155 3.960

50, C̄ = 100 5 124.436 280.137 2.994 11.216

50, C̄ = 100 10 842.511 1265.895 2.761 11.279

50, C̄ = 100 15 2623.710 3035.262 1.947 7.182

50, C̄ = 100 20 5276.062 5269.579 1.471 5.094

50, C̄ = 100 25 8524.133 7884.123 1.155 3.960

Table 4 Value of statistical characteristics for the LC in case III as a
function of the parameter space

V0, C̄ ᾱ μ σ s κ

W 2 = 0.0005

1, C̄ = 10 0.1 4452.572 718.951 −3.622 17.589

1, C̄ = 10 1 4577.085 916.024 −2.086 8.367

1, C̄ = 10 10 4435.546 1005.919 −1.968 6.368

1, C̄ = 10 15 4599.580 1012.180 −2.366 8.127

1, C̄ = 10 100 4424.343 995.141 −2.421 8.460

1, C̄ = 10 200 4514.335 996.517 −2.477 8.899

1, C̄ = 10 500 4695.090 1041.969 −2.245 7.958

50, C̄ = 100 0.1 452,685.721 75,615.100 −3.432 16.364

50, C̄ = 100 1 451,849.363 90,594.726 −2.111 8.218

50, C̄ = 100 10 442,090.501 93,866.607 −2.187 7.421

50, C̄ = 100 15 440,222.821 98,208.836 −2.127 7.217

50, C̄ = 100 100 474,725.014 88,159.804 −2.350 9.286

50, C̄ = 100 200 480,350.123 73,293.850 −3.041 14.721

50, C̄ = 100 500 536,340.269 110,262.146 1.258 12.969

W 2 = 0.0005, noiseless

1, C̄ = 10 0.1 0.004 0.002 −0.032 1.776

1, C̄ = 10 1 0.050 0.090 1.732 4.473

1, C̄ = 10 10 0.500 1.223 3.314 13.870

1, C̄ = 10 15 0.749 1.859 3.456 15.229

1, C̄ = 10 100 4.987 12.685 3.741 18.352

1, C̄ = 10 200 10.000 25.454 3.764 18.644

1, C̄ = 10 500 25.984 64.768 3.700 18.143

50, C̄ = 100 0.1 9.848 4.744 −0.032 1.776

50, C̄ = 100 1 124.678 226.067 1.732 4.473

50, C̄ = 100 10 1249.205 3056.254 3.314 13.870

50, C̄ = 100 15 1873.456 4647.519 3.456 15.229

50, C̄ = 100 100 12,468.011 31,713.427 3.741 18.352

50, C̄ = 100 200 24,999.333 63,633.987 3.764 18.644

50, C̄ = 100 500 64,959.634 161,919.880 3.700 18.143
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Table 5 Value of statistical characteristics for the LC in case IV as a
function of the parameter space, with V0 = V0x = V0y = V0z

V0 �̄ μ σ s κ

0.2 0.01 39,538.069 2221.934 −6.763 104.863

0.2 0.1 39,490.746 2221.552 −6.776 104.661

0.2 0.2 39,882.646 2216.489 −7.045 109.728

0.2 0.5 41,854.708 2555.013 −5.864 77.840

100 0.01 40,903.815 3139.004 3.193 15.363

100 0.1 41,111.709 3201.374 3.157 15.350

100 0.2 41,480.206 3299.796 3.253 15.552

100 0.5 43,466.002 3480.511 3.422 16.877

0.2 2 996,437.802 156,456.780 −3.687 17.663

0.2 5 77,822.854 8091.585 −3.923 22.470

0.2 7 272,634.688 40,580.606 −3.515 16.681

0.2 10 511,739.362 77716.362 −3.695 18.258

0.2 12 1.412×106 220,092.720 −3.711 18.108

100 2 1.072×106 152,658.316 4.066 20.932

100 5 82,831.353 9374.825 3.464 15.763

100 7 303,399.185 42,014.278 3.465 15.890

100 10 555,533.183 80,155.312 3.730 17.473

100 12 1.520×106 242,972.915 3.470 15.893

Noiseless

0.2 0.01 0.006 0.018 3.905 18.841

0.2 0.1 0.006 0.018 3.905 18.841

0.2 0.2 0.006 0.019 3.905 18.840

0.2 0.5 0.007 0.021 3.904 18.836

100 0.01 1512.647 4544.336 3.905 18.841

100 0.1 1522.646 4574.348 3.905 18.841

100 0.2 1552.947 4665.295 3.905 18.840

100 0.5 1765.054 5301.922 3.904 18.836

0.2 2 0.410 1.231 3.901 18.808

0.2 5 0.022 0.067 3.902 18.817

0.2 7 0.107 0.321 3.901 18.810

0.2 10 0.204 0.612 3.901 18.809

0.2 12 0.588 1.764 3.901 18.808

100 2 102,515.879 307,700.036 3.901 18.808

100 5 5552.679 16,670.272 3.902 18.817

100 7 26,763.379 80,333.032 3.901 18.810

100 10 51,004.179 153,090.473 3.901 18.809

100 12 146,957.346 441,088.678 3.901 18.808
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