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Abstract We investigate the effect of the hyperscaling vio-
lation on the holographic superconductors. In the s-wave
model, we find that the critical temperature decreases first
and then increases as the hyperscaling violation increases,
and the mass of the scalar field will not modify the value of the
hyperscaling violation which gives the minimum critical tem-
perature. We analytically confirm the numerical results by
using the Sturm–Liouville method with the higher order trial
function and improve the previous findings in Fan (J High
Energy Phys 09:048, 2013). However, different from the s-
wave case, we note that the critical temperature decreases
with the increase of the hyperscaling violation in the p-wave
model. In addition, we observe that the hyperscaling violation
affects the conductivity of the holographic superconductors
and changes the expected relation in the gap frequency in
both s-wave and p-wave models.

1 Introduction

The anti-de Sitter/conformal field theory (AdS/CFT) corre-
spondence [1–4], which relates a d-dimensional quantum
field theory with its dual gravitational theory, living in (d+1)

dimensions, has been employed to gain a better understand-
ing of the high Tc superconductor systems from the grav-
itational dual; for reviews, see Refs. [5–8] and references
therein. It was suggested that the instability of the bulk black
hole corresponds to a second order phase transition from
normal state to superconducting state which brings about the
spontaneousU (1) symmetry breaking [9], and the properties
of a (2+1)-dimensional superconductor can indeed be repro-
duced in the (3 + 1)-dimensional holographic dual model

a e-mail: panqiyuan@126.com
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where the AdS black hole geometry corresponds to a rela-
tivistic CFT at finite temperature [10,11]. Since many con-
densed matter systems do not have relativistic symmetry, it is
of great interest to construct the corresponding holographic
superconductor models by using the nonrelativistic version
of the AdS/CFT correspondence. The holographic supercon-
ductors in the Lifshitz black hole spacetime were constructed
in Refs. [12,13] and further investigated in Ref. [14]. It was
observed that the Lifshitz black hole geometry results in dif-
ferent asymptotic behaviors of temporal and spatial compo-
nents of gauge fields than those in the Schwarzschild–AdS
black hole, which brings about some new features of holo-
graphic superconductor models [14]. Considering the holo-
graphic superconductors with Hořava–Lifshitz black holes, it
was found that the holographic superconductivity is a robust
phenomenon associated with asymptotic AdS black holes
and the ratio of the gap frequency to the critical tempera-
ture is a little larger than the one in the relativistic situations
[15]. Holographic superconductor models in the Lifshitz-like
geometry can also be found, for example, in Refs. [16–26].

Recently, the so-called hyperscaling violation metric [27–
31], which can be considered as an extension of the Lifshitz
metric, has received considerable attention due to its poten-
tial applications to the condensed matter physics [32–39].
Besides the anisotropic (Lifshitz) scaling is characterized by
the dynamic critical exponent z > 1 [40], the hyperscal-
ing violation can also be used to describe holographically
the realistic condensed matter systems with scaling proper-
ties going beyond the standard Lorentz scaling at criticality
[41,42]. So it seems to be an interesting study to explore
the effect of the hyperscaling violation on the holographic
superconductors. More recently, the author of Ref. [43] intro-
duced the holographic s-wave superconductors with hyper-
scaling violation and numerically found that the supercon-
ductivity still exists for the hyperscaling violation exponent
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θ = 1. Using the analytical Sturm–Liouville (S-L) method,
which was first proposed in [44,45] and later generalized to
study holographic insulator/superconductor phase transition
in [46,47], it was found that the critical temperature increases
as the hyperscaling violation increases [43]. However, using
the shooting method [10,11] to numerically study these holo-
graphic dual models in the full parameter space, we find that
with the increase of the hyperscaling violation, the critical
temperature decreases first and then increases. Obviously,
the analytical result given in Ref. [43] misses some important
information and does not agree well with our numerical cal-
culation. Thus, we will reinvestigate the holographic s-wave
superconductors with hyperscaling violation in this work.
In addition to giving a more complete picture of how the
hyperscaling violation affects the condensation for the scalar
operator and the conductivity, we will present an interesting
fact that the value of the hyperscaling violation, which gives
the minimum critical temperature, remains unchanged even
we vary the mass of the scalar field. Furthermore, compared
with the second order trial function used in Ref. [43], we will
improve the S-L method by including the higher order terms
in the expansion of the trial function to reduce the dispar-
ity between the analytical and numerical results, and what’s
more, to obtain the analytical results which are completely
consistent with the numerical findings.

Besides the holographic s-wave superconductor model, a
holographic p-wave model can be realized by introducing a
charged vector field in the bulk as a vector order parame-
ter. The authors of Ref. [48] proposed a holographic p-wave
model by adding an SU (2) Yang–Mills field into the bulk,
where a gauge boson generated by one SU (2) generator is
dual to the vector order parameter. Recently, Ref. [49] pre-
sented a new holographic p-wave superconductor model by
introducing a charged vector field into an Einstein–Maxwell
theory with a negative cosmological constant. In the probe
limit, the black hole solution with non-trivial vector field can
describe a superconducting phase and the ratio of the gap
frequency to the critical temperature is given by ωg/Tc ≈ 8,
which is consistent with the s-wave model [50]. When taking
the backreaction into account, a rich phase structure: zeroth
order, first order and second order phase transitions has been
observed in this p-wave model [51–53]. Considering a five-
dimensional AdS soliton background coupled to a Maxwell
complex vector field, in Ref. [54] the authors reconstructed
the holographic p-wave insulator/superconductor phase tran-
sition model in the probe limit and showed that the Einstein–
Maxwell complex vector field model is a generalization of the
SU (2) model with a general mass and gyromagnetic ratio.
Other generalized investigations based on this new p-wave
model can be found, for example, in Refs. [55–61]. Consider-
ing the increasing interest in study of the holographic p-wave
model, we will also extend the study to the holographic p-
wave superconductor with hyperscaling violation, which has

not been constructed as far as we know. We will observe that
the hyperscaling violation has a completely different effect on
the phase transitions for the holographic s-wave and p-wave
superconductors, and the Maxwell complex vector model is
still a generalization of the SU (2) model even in the hyper-
scaling violation geometry. For simplicity and clarity, in this
work we will concentrate on the probe limit where the back-
reaction of matter fields on the spacetime metric is neglected.

The plan of the work is the following. In Sect. 2 we will
briefly review the black hole background with hyperscaling
violation. In Sect. 3 we will explore the effect of the hyper-
scaling violation on the holographic s-wave superconductors.
In Sect. 4 we will discuss the p-wave cases. We will conclude
in the last section with our main results. We will derive, in
Appendix A, the equations of motion for the SU (2) p-wave
superconductors with hyperscaling violation.

2 Black hole solution with hyperscaling violation

In order to study the effect of hyperscaling violation on the
holographic superconductors in the probe limit, we consider
the black hole solution with hyperscaling violation [29,30]

ds2
d+2 = r−2(d−θ)/d

[
−r−2(z−1) f (r)dt2 + dr2

f (r)
+ dx2

i

]
,

(1)

with

f (r) = 1 −
(

r

r+

)d+z−θ

, (2)

where θ is the hyperscaling violation exponent, z is the
dynamical exponent and r+ is the radius of the event horizon.
Obviously, at the asymptotic boundary (r → 0), we have

ds2
d+2 = r−2(d−θ)/d

[
−r−2(z−1)dt2 + dr2 + dx2

i

]
, (3)

which is the most general metric that is spatially homoge-
neous and covariant under the scale transformations

t → αz t, (r, xi ) → α(r, xi ), ds → αθ/dds, (4)

with a real positive number α. The novel feature of this metric
is that the proper distance ds of the spacetime transforms
non-trivially under scale transformations with the exponent
θ , which indicates a hyperscaling violation in the dual field
theory [29,30]. Note that the Hawking temperature of the
black hole is determined by

T = d + z − θ

4πr z+
, (5)

we can find that the thermal entropy, which is proportional
to the area of the black hole, becomes [29]

S ∼ T (d−θ)/z, (6)
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which establishes that θ is the hyperscaling violation expo-
nent. It should be noted that the metric (1) will reduce to
the pure Lifshitz case when θ = 0 and z �= 1, while it will
describe the pure AdS case when θ = 0 and z = 1.

For convenience in the following discussion, we introduce
the coordinate transformation u = r/r+ and rewrite the met-
ric (1) into

ds2
d+2 = (r+u)−2(d−θ)/d

×
[
−(r+u)−2(z−1) f (u)dt2 + r2+

f (u)
du2 + dx2

i

]
,

(7)

with f (u) = 1 − ud+z−θ . Considering the validity of the
solution and the requirement of the null energy condition,
we get the constraint [29,30]

d > θ ≥ 0, z ≥ 1 + θ

d
. (8)

In this work, we will set d = 2, z = 2 since we concen-
trate on the effect of hyperscaling violation θ on the holo-
graphic superconductors and compare with the results given
in Ref. [43].

3 S-wave superconductor models with hyperscaling
violation

In Ref. [43], the author constructed the holographic s-wave
superconductors with hyperscaling violation and found that
the critical temperature increases as the hyperscaling viola-
tion increases for the case of z = 2 Lifshitz scaling. Now we
will reinvestigate the effect of the hyperscaling violation on
the holographic s-wave superconductors.

3.1 Condensation and phase transition

In the background of the four-dimensional hyperscaling vio-
lation black hole, we consider a gauge field and a scalar field
coupled via the action

S =
∫

d4x
√−g

(
−1

4
FμνF

μν −|∇ψ−i Aψ |2−m2|ψ |2
)

.

(9)

Taking the ansatz of the matter fields as ψ = ψ(u) and
A = φ(u)dt , we can obtain the equations of motion from the
action (9) for the scalar field ψ and gauge field φ,

ψ ′′ +
(

f ′

f
− 3 − θ

u

)
ψ ′ +

(
r4+u2φ2

f 2 − m2r θ+
u2−θ f

)
ψ = 0,

(10)

φ′′ + 1

u
φ′ − 2r θ+ψ2

u2−θ f
φ = 0, (11)

where the prime denotes the derivative with respect to u.
Obviously, Eqs. (10) and (11) reduce to the ones in the stan-
dard holographic s-wave superconductors with z = 2 Lif-
shitz scaling discussed in [14] when θ → 0. For complete-
ness, we will also present the results for the case θ = 0 in
the following.

In order to get the solutions in the superconducting phase,
we have to count on the appropriate boundary conditions for
ψ and φ. At the event horizon u = 1 of the black hole, the
regularity gives the boundary conditions

ψ ′(1) = −m2r θ+
4 − θ

ψ(1), φ(1) = 0. (12)

At the asymptotic boundary u → 0, the solutions behave like

ψ =
{

ψ4−	r
4−	+ u4−	 + ψ	r	+u	, with 	 = 2 + √

4 + m2 for θ = 0,

ψ0 + ψ	r	+u	, with 	 = 4 − θ for 0 < θ < 2,
(13)

φ = ρ + μ ln u . (14)

According to the gauge/gravity duality, 	 is the conformal
dimension of the scalar operator ψ	 = 〈O〉 dual to the bulk
scalar field, μ and ρ are interpreted as the chemical poten-
tial and charge density in the dual field theory, respectively.
Just as in Refs. [14,43], we will impose boundary condition
ψ4−	 = 0 and ψ0 = 0 since we focus on the condensate for
the operator 〈O〉.

3.1.1 Numerical investigation

Using the shooting method [10,11], we can solve numerically
the equations of motion (10) and (11) by doing an integration
from the horizon out to the boundary even if the hyperscaling
violation exponent θ is fractional. Interestingly, from Eqs.
(10) and (11) we can get the useful scaling symmetry and
induced transformation of the relevant quantities,

ψ → α−θ/2ψ, φ → α−2φ,

ψ	 → α−(	+ θ
2 )ψ	, μ → α−2μ, (15)

which can be used to build the invariant and dimensionless
quantities in the following calculation.

Changing the hyperscaling violation θ , we present in
Fig. 1 the condensate of the scalar operator 〈O〉 as a func-
tion of temperature for the fixed masses of the scalar field
m2r θ+ = 0 (left) and m2r θ+ = −3 (right). It is found that, for
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Fig. 1 The condensate of the scalar operator 〈O〉 as a function of tem-
perature for the fixed masses of the scalar field m2r θ+ = 0 (left) and
m2r θ+ = −3 (right). In each panel, the three lines correspond to differ-

ent values of the hyperscaling violation, i.e., θ = 0 (red), 1.0 (black,
and dashed) and 1.9 (blue), respectively

Table 1 The critical temperature Tc obtained by the numerical shoot-
ing method with the chosen various values of the hyperscaling violation
θ and scalar mass m2r θ+ for the scalar operator 〈O〉 in the holographic
s-wave superconductor models with hyperscaling violation. It is inter-

esting to note that the mass of the scalar field will not modify the value of
the hyperscaling violation θ∗ ≈ 0.6, which gives the minimum critical
temperature

θ 0 0.5 0.6 0.7 1.0 1.5 1.9

m2r θ+ = 0 0.0229931μ 0.0229413μ 0.0229385μ 0.0229387μ 0.0229604μ 0.0230883μ 0.0233101μ

m2r θ+ = −1 0.0253991μ 0.0251925μ 0.0251835μ 0.0251853μ 0.0252606μ 0.0256748μ 0.0264006μ

m2r θ+ = −2 0.0289432μ 0.0283204μ 0.0282962μ 0.0283004μ 0.0284872μ 0.0295178μ 0.0314512μ

m2r θ+ = −3 0.0351935μ 0.0330971μ 0.0330311μ 0.0330385μ 0.0334913μ 0.0361219μ 0.0420384μ

all cases considered here, the scalar operator 〈O〉 is single-
valued near the critical temperature and the condensate drops
to zero continuously at the critical temperature. By fitting
these curves, we see that for small condensate there is a square
root behavior,

〈O〉 ∼ (1 − T/Tc)
1/2, (16)

which is typical of second order phase transitions with the
mean field critical exponent 1/2 for all values of θ . The
behaviors of the condensate for the scalar operator 〈O〉 show
that the holographic s-wave superconductors still exist even
in the background of the hyperscaling violation black hole.

In order to obtain the effect of the hyperscaling violation
on the critical temperature Tc, we give the critical tempera-
ture Tc for the scalar operator 〈O〉 when we fix the masses
of the scalar field m2r θ+ = 0, −1, −2, and −3 for differ-
ent hyperscaling violation exponent θ in Table 1. For the
same mass of the scalar field, it is clear that with the increase
of the hyperscaling violation θ , the critical temperature Tc
decreases first and then increases, which is different from
the result obtained in Ref. [43] where the critical tempera-
ture was shown to increase almost linearly when θ increases.
Obviously, from Table 1, we find that there exists a mini-

mum value of the critical temperature at θ∗ ≈ 0.6 for the
fixed mass of the scalar field, which implies that the higher
hyperscaling violation makes it harder for the condensation
to form in the range 0 ≤ θ < θ∗ but easier in the range
θ∗ < θ < 2. Interestingly, we observe that the mass of the
scalar field will not alter the value of θ∗. It should be noted
that how the hyperscaling violation works in the holographic
s-wave superconductors is still an open question.

3.1.2 Analytical understanding

Using the S-L method [44,45], Fan analytically explored the
effect of the hyperscaling violation on the s-wave supercon-
ducting transition temperature and found that the critical tem-
perature increases with the increase of hyperscaling violation
[43]. Obviously, the analytical result given in Ref. [43] is
not in agreement with our numerical calculation and some
important information is missing. We will improve the S-L
method to get an analytical result which is consistent with
the numerical calculation.

At the critical temperature Tc, the scalar field ψ = 0.
Thus, near the critical point the equation of motion (11) for
the gauge field φ reduces to
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φ′′ + 1

u
φ′ = 0. (17)

Considering the boundary condition (12) for φ, we can get
the solution to Eq. (17),

φ(u) = λr−2+c ln u, (18)

where we have set λ = μr2+c with the radius of the horizon
at the critical point r+c.

Defining a trial function F(u) which matches the bound-
ary behavior (13) for ψ

ψ(u) ∼ 〈O〉r	+u	F(u), (19)

with the boundary conditions F(0) = 1 and F ′(0) = 0, from
Eq. (10) we can obtain the equation of motion for F(u)

(QF ′)′ + Q
(
U + λ2V

)
F = 0, (20)

with

Q(u) = u2	+θ−3 f,

U (u) = 	 f ′

u f
+ 	(	 + θ − 4)

u2 − m2r θ+
u2−θ f

,

V (u) =
(
u ln u

f

)2

. (21)

According to the S-L eigenvalue problem [62], we can deduce
that the eigenvalue λ minimizes the expression

λ2 =
∫ 1

0 Q
(
F ′2 −UF2

)
du∫ 1

0 QV F2du
. (22)

Using Eq. (22) to compute the minimum eigenvalue of λ2,
we can get the critical temperature Tc for different hyperscal-
ing violation θ and mass of the scalar field m2r θ+ from the
following relation:

Tc = 4 − θ

4πλmin
μ. (23)

Before going further, we would like to make a comment.
Considering the boundary conditions of F(u), i.e., F(0) = 1
and F ′(0) = 0, people usually assume the trial function to
be

F(u) = Fa(u) = 1 − au2, (24)

with a constant a, just as done in Ref. [43]. It should be
noted that this assumption works well in most cases [44,45,
63–76]. Unfortunately, using this trial function in our case,
we find that the analytical results are not in agreement with
the numerical calculation and some important information is
missing. To solve this problem, we choose the trial function
by including the higher order of u such as the third order trial
function

F(u) = Fab(u) = 1 − au2 + bu3, (25)

with two constants a and b. We prefer (25) over (24) because
it gives a better estimate of the minimum of (22), which
means that the analytical results are much closer to the numer-
ical findings, and more importantly, it can correctly reveal the
influence of the hyperscaling violation on the critical temper-
ature Tc.

As an example, we will calculate the case for the fixed
mass of the scalar field m2r θ+ = −3 with the chosen value
of the hyperscaling violation θ = 1.5. If we choose the trial
function (24), we have

λ2 = λ2
a = 0.5 − 0.785714a + 0.490385a2

0.0137786 − 0.0147955a + 0.00459295a2 ,

(26)

whose minimum is λ2 = 30.4899 at a = 0.477530. Accord-
ing to Eq. (22), we can easily obtain the critical temperature
Tc = 0.036029μ. Changing the trial function into the form
(25), we arrive at

λ2 = λ2
ab

= 0.5 − 0.785714a + 0.490385a2 − 0.983333ab + 0.705357b + 0.508824b2

0.0137786 − 0.0147955a + 0.00459295a2 − 0.00750497ab + 0.0114973b + 0.00312254b2 , (27)

whose minimum is λ2 = 30.3335 at a = 0.913984 and
b = 0.403370. Hence the critical temperature reads Tc =
0.0361217μ. Comparing with the analytical result from the
trial function Fa(u), we find that this value is much closer to
the numerical result Tc = 0.0361219μ given in Table 1 and
the difference between the analytical and numerical values
is 0.0004 %! In Fig. 2, we plot the trial function Fa(u) =
1 − au2 (green) and Fab(u) = 1 − au2 + bu3 (red) as a
function of u when λ2 attains its minimum for the fixed mass
of the scalar field m2r θ+ = −3 and hyperscaling violation
θ = 1.5, which clearly shows the difference between these
two trial functions.

Extending the analytical investigation to the holographic
s-wave superconductors with hyperscaling violation in the
full parameter space (8), we can get the critical temperature
Tc with various masses of the scalar field m2r θ+ and hyper-
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Fig. 2 The trial function Fa(u) = 1 − au2 (green) and Fab(u) =
1 − au2 + bu3 (red) as a function of u when λ2 attains its minimum for
the fixed mass of the scalar fieldm2r θ+ = −3 and hyperscaling violation
θ = 1.5

scaling violation θ for the scalar operator 〈O〉. To see the
dependence of the analytical results on the hyperscaling vio-
lation more directly and compare with Fig. 3 of Ref. [43], we
exhibit the critical temperature Tc as a function of the hyper-
scaling violation θ for the fixed masses of the scalar field
m2r θ+ = 0 (left) and m2r θ+ = −3 (right) in Fig. 3. We also
present the numerical results obtained by using the shooting
method in order to compare with the analytical results. Obvi-
ously, compared with the trial function Fa(u), the third order
trial function Fab(u) can indeed be used to further improve
the analytical results and reduce the disparity between the
analytical and numerical results. Furthermore, in contrast to
the trial function Fa(u), which only tells us that the critical
temperature Tc increases with the increase of hyperscaling
violation θ , the third order trial function Fab(u) can be used
to give the analytical results which are completely consistent
with the numerical findings. Thus, we conclude that we can
still count on the S-L method with the higher order trial func-

tion F(u) to analytically study the effect of the hyperscaling
violation on the holographic s-wave superconductors.

Now we are in a position to study the critical phenomena
of the holographic s-wave superconductors with hyperscaling
violation. Since the condensation for the scalar operator 〈O〉
is so small when T → Tc, we can expand φ(u) in 〈O〉 as

φ(u) = λr−2+ ln u + r−2+ Aχ(u) + · · · , (28)

where we have introducedA = r2	+θ+ 〈O〉2 and the boundary
conditions χ(1) = 0 and χ ′(1) = 0 [44,45]. Thus, substi-
tuting the functions (19) and (28) into (11), we can get the
equation of motion for χ(u)

(uχ ′)′ = 2λu2	+θ−1F2 ln u

f
. (29)

Making integration of both sides of Eq. (29), we have

(uχ ′)|u→0 = λC = −λ

∫ 1

0

2u2	+θ−1F2 ln u

f
du. (30)

From Eqs. (18) and (28), near u → 0 we can arrive at

μ = λr−2+ + r−2+ A(uχ ′)|u→0, (31)

which leads to

〈O〉 = 1√C

(
4πTc
4 − θ

) 2	+θ
4

(
1 − T

Tc

) 1
2

. (32)

Obviously, Eq. (32) is valid for all cases considered here. For
example, for the case of θ = 1.5 with m2r θ+ = −3, we have
〈O〉 = 0.269906(1 − T/Tc)1/2 when a = 0.913984 and
b = 0.403370, which agrees well with the numerical calcu-
lation by using the shooting method. Especially, for the case
of θ = 0 with m2 = −3, we obtain 〈O〉 = 0.249154(1 −
T/Tc)1/2 when a = 1.64069 and b = 0.911971, which is
in good agreement with the numerical result given in [14].
Since the hyperscaling violation and mass of the scalar field

m2rθ 0

0.0 0.5 1.0 1.5 2.0
0.0222

0.0224

0.0226

0.0228

0.0230

0.0232

θ

T c
μ

m2rθ 3

0.0 0.5 1.0 1.5 2.0
0.030

0.032

0.034

0.036

0.038

0.040

0.042

θ

T c
μ

Fig. 3 The critical temperature Tc as a function of the hyperscaling
violation θ with fixed masses of the scalar field m2r θ+ = 0 (left) and
m2r θ+ = −3 (right) in the holographic s-wave superconductors with
hyperscaling violation. The three lines from top to bottom correspond

to the results obtained by the numerical calculation (black) and from the
analytical S-L method by using the trial function F(u) = 1−au2 +bu3

(red) and F(u) = 1 − au2 (green), respectively
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Fig. 4 Conductivity of the holographic s-wave superconductors with
hyperscaling violation for the fixed masses of the scalar field and differ-
ent values of the hyperscaling violation. In each panel, the blue (solid)

line and the red (dashed) line represent the real part and imaginary part
of the conductivity σ(ω), respectively

will not alter Eq. (32) except for the prefactor, we can repro-
duce the expression (16) near the critical point by using the
analytical S-L method. It shows that the holographic s-wave
superconducting phase transition with hyperscaling violation
is of the second order and the critical exponent of the sys-
tem always takes the mean-field value 1/2. The hyperscaling
violation will not influence the result.

3.2 Conductivity

In [43], it was found that a gap opens in the real part of the
conductivity in the holographic s-wave superconductor mod-
els with hyperscaling violation, which indicates the onset of
superconductivity. Considering that the author only concen-
trated on the case of the hyperscaling violation θ = 1.0, we
will vary θ to discuss the effect of the hyperscaling violation
on the conductivity.

Assuming that the perturbed Maxwell field has a form
δAx = Ax (u)e−iωtdx , we obtain the equation of motion for
Ax , which can be used to calculate the conductivity

A′′
x +

(
f ′

f
− 1

u

)
A′
x +

(
r4+ω2u2

f 2 − 2r θ+ψ2

u2−θ f

)
Ax = 0.

(33)

For different hyperscaling violation exponents, the ingoing
wave boundary condition near the horizon is given by

Ax (u) ∼ (1 − u)−
iω

4πT , (34)

and the general behavior in the asymptotic region (u → 0)
can be written as

Ax = A(0)
x + A(1)

x r2+u2. (35)

Thus, we can obtain the conductivity of the dual supercon-
ductor by using the gauge/gravity duality [10,11,43]

σ = −2i A(1)
x

ωA(0)
x

. (36)

For different values of the hyperscaling violation θ , one can
obtain the conductivity by solving the Maxwell equation
numerically. We still focus on the case for the fixed scalar
masses m2r θ+ = 0 and m2r θ+ = −3 in our discussion.

In Fig. 4 we plot the frequency dependent conductivity of
the holographic s-wave superconductors with hyperscaling
violation by solving the Maxwell equation (33) numerically
for θ = 0, 1.0, and 1.9 with m2r θ+ = 0 and m2r θ+ = −3 at
temperatures T/Tc ≈ 0.15. In each panel, the blue (solid)
line and red (dashed) line represent the real part and imagi-
nary part of the conductivity σ(ω), respectively. For all cases
considered here, we find a gap in the conductivity which is
parameterized by the gap frequency ωg . Defining ωg by the
minimum of |σ | [50], we observe that with the increase of
the hyperscaling violation θ , the gap frequency ωg becomes
larger. Also, for increasing hyperscaling violation, we have
larger deviation from the value ωg/Tc ≈ 8, especially for the
case of m2r θ+ = 0. This shows that the hyperscaling viola-
tion really affects the conductivity of the holographic s-wave
superconductors and change the ratio in the gap frequency
ωg/Tc ≈ 8, which was claimed to be universal in [50].
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4 P-wave superconductor models with hyperscaling
violation

Since the hyperscaling violation has the interesting effect
on the holographic s-wave superconductors, which greatly
improves the previous findings in Ref. [43], it seems worth-
while to consider the influence of the hyperscaling violation
on the holographic p-wave superconductors which has not
been constructed as far as we know.

4.1 Condensation and phase transition

Working in the probe limit, we will construct the p-wave
holographic superconductor models with hyperscaling vio-
lation via the Maxwell complex vector field model [49,51]

S =
∫

d4x
√−g ×

(
−1

4
FμνF

μν − 1

2
ρ†

μνρ
μν

−m2ρ†
μρμ + iqγρμρ†

ν F
μν

)
, (37)

where the strength ofU (1) field Aμ is Fμν = ∇μAν −∇ν Aμ

and the tensor ρμν is defined by ρμν = Dμρν − Dνρμ with
the covariant derivative Dμ = ∇μ−iq Aμ.m and q represent
the mass and charge of the vector field ρμ, respectively. Since
we will consider the case without external magnetic field, the
parameter γ , which describes the interaction between the
vector field ρμ and gauge field Aμ, will not play any role.

Just as in Refs. [49,51], we will adopt the following ansatz
for the matter fields:

ρνdxν = ρx (u)dx, Aνdxν = φ(u)dt, (38)

where we can set ρx to be real by using the U (1) gauge
symmetry. Thus, from the solution (7) for d = 2, z = 2 and
action (37), we can get the equations of motion for the vector
hair ρx and gauge field φ

ρ′′
x +

(
f ′

f
− 1

u

)
ρ′
x +

(
r4+u2φ2

f 2 − m2r θ+
u2−θ f

)
ρx = 0 , (39)

φ′′ + 1

u
φ′ − 2r2+ρ2

x

f
φ = 0, (40)

where the prime denotes the derivative with respect to u.
Without loss of generality, we have scaled q = 1 as in Ref.
[49]. Comparing the above two equations of motion with Eqs.
(A3) and (A4) for the holographic p-wave superconductors
with hyperscaling violation in the SU (2) Yang–Mills system
constructed in the appendix, we can find that the two sets

of equations of motion are the same if we set m2r θ+ = 0 and
rescale the field by ρx (u) = ψ(u)/

√
2 in Eqs. (39) and (40).

Thus, in this sense, the complex vector field model is still a
generalization of the SU (2) Yang–Mills model in the holo-
graphic superconductors with hyperscaling violation, which
supports the argument given in [54].

We will impose the appropriate boundary conditions for
ρx (u) and φ(u) to get the solutions in the superconducting
phase. Interestingly, we observe that φ has the same boundary
conditions just as in Eq. (12) for the horizon u = 1 and Eq.
(14) for the boundary u → 0. But for the vector field ρx , we
find at the horizon

ρ′
x (1) = −m2r θ+

4 − θ
ρx (1), (41)

and at the asymptotic boundary

ρx =
{

ρ
(2−	)
x r2−	+ u2−	 + ρ

(	)
x r	+u	, with 	 = 1 + √

1 + m2 for θ = 0,

ρ
(0)
x + ρ

(	)
x r	+u	, with 	 = 2 for 0 < θ < 2,

(42)

where ρ
(2−	)
x (or ρ

(0)
x ) and ρ

(	)
x are interpreted as the source

and vacuum expectation value of the vector operator Jx in
the dual field theory according to the gauge/gravity duality,
respectively. In this work, we will impose the boundary con-
dition ρ

(2−	)
x = 0 (or ρ

(0)
x = 0) since we require that the

condensate appears spontaneously.
We will count on the shooting method [10,11] to solve

numerically the equations of motion (39) and (40) in this
section. In the following calculation, we will use the scaling
symmetry from the equations of motion and induced trans-
formation of the relevant quantities, i.e.,

ρx → α−1ρx , φ → α−2φ,

ρ(	)
x → α−(1+	)ρ(	)

x , μ → α−2μ, (43)

to build the invariant and dimensionless quantities.
In Fig. 5, we present the condensate of the vector operator

〈Jx 〉 as a function of temperature for different hyperscaling
violation exponents θ with fixed masses of the vector field
m2r θ+ = 0 (left) andm2r θ+ = 5/4 (right) in the holographic p-
wave superconductor model. Obviously, the behavior of each
curve for the fixed θ and m2r θ+ agrees well with the holo-
graphic superconducting phase transition in the literature,
which shows that the black hole solution with a non-trivial
vector field can describe a superconducting phase. Similar to
the s-wave case in Fig. 1, it is observed that, for all cases con-
sidered here, the vector operator 〈Jx 〉 is single-valued near
the critical temperature and the condensate drops to zero con-
tinuously at the critical temperature. Fitting these curves, we
obtain a square root behavior for the small condensate

〈Jx 〉 ∼ (1 − T/Tc)
1/2, (44)
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Fig. 5 The condensate of the vector operator 〈Jx 〉 = ρ
(	)
x as a function

of temperature for the fixed masses of the vector field m2r θ+ = 0 (left)
and m2r θ+ = 5/4 (right). In each panel, the three lines from bottom to

top correspond to increasing hyperscaling violation, i.e., θ = 0 (red),
1.0 (black and dashed), and 1.9 (blue), respectively
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Fig. 6 The critical temperature Tc obtained by the numerical method as a function of the hyperscaling violation θ with fixed masses of the vector
field m2r θ+ = 0 (left) and m2r θ+ = 5/4 (right) in the holographic p-wave superconductors with hyperscaling violation

which means that the phase transition belongs to the second
order and the critical exponent of the system takes the mean-
field value 1/2.

In order to show the effect of the hyperscaling viola-
tion on the critical temperature Tc in the holographic p-
wave superconductors, in Fig. 6 we plot the critical tem-
perature Tc as a function of the hyperscaling violation θ

with fixed masses of the vector field m2r θ+ = 0 (left) and
m2r θ+ = 5/4 (right). We find that the critical temperature
Tc for the vector operator 〈Jx 〉 with the fixed vector field
mass decreases as the hyperscaling violation θ increases,
which implies that the higher hyperscaling violation makes
it harder for the condensation to form in the full parame-
ter space (8). Obviously, this behavior is different from that
seen for the holographic s-wave superconductors with hyper-
scaling violation in Fig. 3, where the critical temperature Tc
decreases first and then increases as the hyperscaling vio-
lation increases. Thus, we argue that, although the underly-
ing mechanism remains mysterious, the hyperscaling vio-
lation has completely different effect on the critical tem-

perature for the s-wave and p-wave superconductor phase
transitions.

4.2 Conductivity

In order to calculate the conductivity, we will consistently
turn on the perturbation of Ay only and assume the form of
the perturbed Maxwell field δAy = Ay(u)e−iωtdy, which
leads to the equation of motion

A′′
y +

(
f ′

f
− 1

u

)
A′
y +

(
r4+ω2u2

f 2 − 2r2+ρ2
x

f

)
Ay = 0. (45)

Considering the ingoing wave boundary condition near the
horizon

Ay(u) ∼ (1 − u)−
iω

4πT , (46)

and the behavior in the asymptotic region (u → 0)

Ay = A(0)
y + A(1)

y r2+u2, (47)
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Fig. 7 Conductivity of the holographic p-wave superconductors with
hyperscaling violation for the fixed masses of the vector field and differ-
ent values of the hyperscaling violation. In each panel, the blue (solid)

line and red (dashed) line represent the real part and imaginary part of
the conductivity σ(ω), respectively

we can express the conductivity as [10,11]

σ = −2i A(1)
y

ωA(0)
y

. (48)

We still choose the masses of the vector field m2r θ+ = 0 and
m2r θ+ = 5/4 in our calculation.

Solving the Maxwell equation (45) numerically for θ = 0,
1.0, and 1.9 withm2r θ+ = 0 andm2r θ+ = 5/4 at temperatures
T/Tc ≈ 0.15, we present the frequency dependent conduc-
tivity of the holographic p-wave superconductors with hyper-
scaling violation in Fig. 7. Similar to the s-wave case in Fig. 4,
for all cases considered here, we observe that the conductiv-
ity develops a gap with the gap frequency ωg and the larger
deviation from the value ωg/Tc ≈ 8 as the hyperscaling
violation θ increases. Therefore, we conclude that the higher
hyperscaling violation results in the larger deviation from the
universal value ωg/Tc ≈ 8 [50] for the gap frequency in both
s-wave and p-wave holographic superconductor models.

5 Conclusions

We have investigated the holographic superconductors with
hyperscaling violation in the probe limit, which may help to
understand the condensed matter materials with scaling prop-
erties going beyond the standard Lorentz scaling at criticality.
In the s-wave (scalar field) model, different from the findings
as shown in Ref. [43] that the critical temperature increases as
the hyperscaling violation increases for the case of z = 2 Lif-
shitz scaling, we found that the critical temperature decreases

first and then increases with the increase of the hyperscaling
violation, which implies that the increase of the hyperscal-
ing violation makes the condensation of the scalar operator
harder for small θ but easier for large θ . Interestingly, the
mass of the scalar field will not modify the value of the hyper-
scaling violation θ∗ ≈ 0.6, which gives the minimum critical
temperature. We improved the S-L method by including the
higher order terms in the expansion of the trial function to
confirm our numerical results and argued that, compared with
the second order trial function used in Ref. [43], the higher
order trial function can indeed be used to give the analytical
results which are completely consistent with the numerical
findings. However, the story is completely different if we
extend the investigation to the p-wave (vector field) model.
In contrast to the s-wave model, we observed in the p-wave
case that the critical temperature decreases as the hyperscal-
ing violation increases, which tells us that the higher hyper-
scaling violation makes it harder for the vector condensation
to form in the full parameter space. Thus, we concluded that,
although the underlying mechanism remains mysterious, the
hyperscaling violation has a completely different effect on
the phase transitions for the holographic s-wave and p-wave
superconductors. On the other hand, it should be noted that
the Maxwell complex vector model is still a generalization of
the SU (2) model even in the hyperscaling violation geome-
try. Moreover, we pointed out that the hyperscaling violation
affects the conductivity of the holographic superconductors
and the higher hyperscaling violation results in the larger
deviation from the universal value ωg/Tc ≈ 8 for the gap
frequency in both s-wave and p-wave models. The extension
of this work to the fully backreacted spacetime would be
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interesting since the backreaction provides richer physics in
the holographic superconductor models. We will leave this
for further study.
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Appendix A: Equations of motion for SU(2) p-wave
superconductors with hyperscaling violation

In this appendix, we will construct the holographic p-wave
superconductor models with hyperscaling violation by con-
sidering an SU (2) Yang–Mills action [48]

S =
∫

d4x
√−g

(
− 1

4ĝ2 F
a
μνF

aμν

)
, (A1)

where ĝ is the Yang–Mills coupling constant and Fa
μν =

∂μAa
ν − ∂ν Aa

μ + εabc Ab
μA

c
ν is the SU (2) Yang–Mills field

strength. The Aa
μ are the components of the mixed-valued

gauge fields A = Aa
μτ adxμ, where τ a are the three gen-

erators of the SU (2) algebra with commutation relation
[τ a, τ b] = εabcτ c, and εabc is the totally antisymmetric ten-
sor with ε123 = +1.

We will take the ansatz of the gauge fields as [48]

A(u) = φ(u)τ 3dt + ψ(u)τ 1dx, (A2)

where we regard the U (1) symmetry generated by τ 3 as
the U (1) subgroup of SU (2) and the gauge boson with
nonzero component ψ(u) along x-direction is charged under
A3
t = φ(u). From the gauge/gravity duality, φ(u) is dual to

the chemical potential and ψ(u) is dual to the x-component of
some charged vector operator 〈Jx 〉 on the boundary. The con-
densation of ψ(u) will spontaneously break the U (1) gauge
symmetry and induce a phase transition, which can be inter-
preted as a p-wave superconductor phase transition in the
boundary field theory.

From the Yang–Mills action (A1) and the solution (7) for
d = 2, z = 2, we have the following equations of motion:

ψ ′′ +
(

f ′

f
− 1

u

)
ψ ′ + r4+u2φ2

f 2 ψ = 0, (A3)

φ′′ + 1

u
φ′ − r2+ψ2

f
φ = 0, (A4)

where the prime denotes the derivative with respect to u.
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