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Abstract We reinvestigate how generic off-diagonal cos-
mological solutions depending, in general, on all space-
time coordinates can be constructed in massive and f-
modified gravity using the anholonomic frame deformation
method. New classes of locally anisotropic and (in-) homo-
geneous cosmological metrics are constructed with open
and closed spatial geometries. By resorting to such solu-
tions, we show that they describe the late time accelera-
tion due to effective cosmological terms induced by non-
linear off-diagonal interactions, possible modifications of
the gravitational action and graviton mass. The cosmolog-
ical metrics and related Stiickelberg fields are constructed
in explicit form up to nonholonomic frame transforms of
the Friedmann-Lamaitre—Robertson—Walker (FLRW) coor-
dinates. The solutions include matter, graviton mass, and
other effective sources modeling nonlinear gravitational and
matter field interactions with polarization of physical con-
stants and deformations of metrics, which may explain dark
energy and dark matter effects. However, we argue that it
is not always necessary to modify gravity if we consider
the effective generalized Einstein equations with nontrivial
vacuum and/or non-minimal coupling with matter. Indeed,
we state certain conditions when such configurations mimic
interesting solutions in general relativity and modifications,
for instance, when we can extract the general Painlevé—
Gullstrand and FLRW metrics. In a more general context,
we elaborate on a reconstruction procedure for off-diagonal
cosmological solutions which describe cyclic and ekpyrotic
universes. Finally, open issues and further perspectives are
discussed.
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1 Introduction

The “ekpyrotic” and “new ekpyrotic” mechanisms and cyclic
models have been elaborated as alternatives to standard big
bang inflationary cosmology [2—5]. Another alternative came
from the idea that the graviton may have a nontrivial mass as
was proposed by Fierz and Pauli [1]. For recent reviews and
related f(R) modifications and cosmological models, in gen-
eral, with non-minimal coupling and dilaton—brane cosmol-
ogy, local anisotropies and/or effective modeling of massive
gravity, see, respectively, [6—12] and [13—18]. The modern
version of a ghost-free (bimetric) massive gravity theory was
made in a series of papers (recent reviews can be found in
[19]): developing generic nonlinear versions of the Fierz—
Pauli theory, the so-called vDVZ discontinuity problem was
solved via the Vainshtein mechanism [20-22] (avoiding the
discontinuity by going beyond the linear theory). There are
also more recent approaches based on the DGP model [23-
26]. During a long time, no solution was found for another
problem with ghosts because at nonlinear order in massive
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gravity there appears a sixth scalar degree of freedom as a
ghost. This problem was considered in a paper by Boulware
and Deser [27,28] together with similar issues related to the
effective field theory approach.

A considerable amount of work has been made in order to
understand the implications and find possible applications of
such ghost-free models. The most substantial progress was
made when de Rham et al. showed how to eliminate the scalar
mode and Hassan and Rosen provided a complete proof for
a class of bigravity/bimetric gravity theories; see [29-33].
In such approaches, the second metric describes an effective
exotic matter related to massive gravitons and does not suffer
from a ghost instability to all orders in a perturbation theory
and away from the decoupling limit.

It is important to mention that the first black hole solu-
tions in a nonlinear massive theory were found in the context
of high-energy physics and for off-diagonal and/or higher
dimensions generalizations [34,35]. A general decoupling of
the generalized Einstein equations can be proven following
the anholonomic frame deformation methods, AFDM, [36—
44]. Here we also note that the possibility that the graviton has
anonzero mass /i results not only in fundamental theoretical
implications but gives rise to straightforward phenomenolog-
ical and cosmological consequences. For instance, a gravi-
tational potential of Yukawa form, Ne’f”/ r, results in the
decay of gravitational interactions at scales r > /ff], and
such an effect may result in the accelerated expansion of
the Universe. In this way, a massive gravity theory, MGT,
provides alternatives to dark energy and, via effective polar-
izations of the fundamental physical constants, may explain
certain dark matter effects. We can treat this as a result of
generic off-diagonal nonlinear interactions. Recently, vari-
ous cosmological models derived for ghost-free (modified)
massive gravity and bigravity theories have been elaborated
and studied intensively [6—10,45-51].

The goal of this work is to construct generic off-diagonal
cosmological solutions in MGT and state the conditions when
such configurations are modeled equivalently in general rel-
ativity (GR). It extends the later variant of [52,53] with new
results and more details of the proofs of the results, construct-
ing exact solutions and providing a further analysis of results
and speculation on the reconstruction mechanism.

As a first step, we consider off-diagonal deformations of
a “prime” cosmological solution taken in a general Painlevé—
Gullstrand (PG) form, when the Friedman—Lamaitre—Robert-
son—Walker (FLRW) can be recast for well-defined geomet-
ric conditions. Such constructions are performed in Sect. 2.

At the second step, the “target” metrics will be gener-
ated so as to possess one Killing symmetry (or other non-
Killing symmetries) and depend on timelike and certain (or
all) spacelike coordinates. In general, such off-diagonal solu-
tions come with a local anisotropy and inhomogeneities for
effective cosmological constants and polarizations of other
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physical constants and coefficients of cosmological metrics,
which can be modeled both in MGT and GR. We consider
the method of constructing generic off-diagonal cosmologi-
cal solutions in Sect. 3.

Then (the third step), we shall emphasize and speculate
on the importance of off-diagonal nonlinear gravitational
interactions for elaborating cosmological scenarios when
dark matter and dark energy effects can be explained by
anisotropic polarizations of vacuum and/or de Sitter like con-
figurations. We provide examples of off-diagonal solutions
with solitonic configurations; see Sect. 4.

A reconstruction mechanism for off-diagonal cosmologi-
cal solutions with modified gravity and/or massive graviton
effects is elaborated in Sect. 5. Finally, we conclude the paper
in Sect. 6.

2 Equivalent modeling of f-modified and massive
gravity theories

We shall work with MGTs modeled on a pseudo-Riemannian
spacetime V with physical metricg = {g,,,,} and fiducial met-
rics. On massive gravity, see for a review [19] and on geo-
metric methods in gravity and constructing exact solutions,
see Refs. [36—44]. In addition to well-known approaches
with diadic and tetradic (vierbein) variables, we shall work
with nonholonomic manifolds where certain classes of frame
transforms can be adapted to preserve a chosen splitting of
the nonlinear and linear connection structures into some stan-
dard components (for instance, defining the Levi-Civita, LC,
connection), and we shall deal with distortion tensors which
can be fixed to be zero if additional constraints are imposed.

Using different nonholonomic frame variables, the action
for our model can be written in two forms:

1 s i m
S=1er Su*\/1gup] [f(R) — U Kap) + L]
(1)
su*\/1gap|l f(R) + ™LI. )

- 167

In the above formulas, the physical/geometrical objects with
a hat and/or written in boldface form are considered for a
conventional 2 + 2 splitting when the two dimensional hor-
izontal, h, and the two dimensional vertical, v, coordinates
are labeled (respectively) in the form u® = (x', y%), oru =
(x,y), with indices i, j, k,... = 1,2 and a, b, ... = 3, 4.
The scalar curvature R is for the LC-connection V.

We write R for the scalar curvature for an auxiliary (canon-
ical) connection D uniquely determined by two conditions:

1. it is metric compatible, ﬁg =0, and
2. the h- and v-torsions are zero (but there are nonzero 7 — v
components of the torsion 7 completely determined by
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g) for a conventional splitting
N: TV=hV @V,

with local coefficients of the so-called nonlinear connec-
tion structure, the N-connection structure, denoted in the
form N = {Nih }.

General frame transforms can be parameterized in the
form e, = A"‘(;(u)E)ar, where the matrix A“D:
degenerate in a finite, or infinite region of V and 9, =
a/ u”. Using such A"‘O:, we can always re-define the geomet-
ric and physical object with respect to a class of N-adapted
(dual) bases,

is non-

ey = (¢ =0; — Nihab’ eq =05 = a/aya) and
ef = (¢/ = dx', e’ = dy® + N dy"), 3)

which are nonholonomic (equivalently, anholonomic)

because, in general, relations of type
eq.ep —egey = W/ Py

are satisfied for certain nontrivial anholonomy coefficients
WD}ZB (u). The Einstein summation rule on repeated indices
will be applied if the contrary is not stated.

The connection D allows us to decouple the field equations
in various gravity theories and construct exact solutions in
very general forms. Here we note that the distortion relation
from the LC-connection,

is uniquely determined by a distorting tensor Z completely
defined by 7 and (as a consequence for such models) by
(g, N). The main idea of the AFDM [36—44] is to use Dasan
auxiliary [for the (pseudo-) Riemannian spacetimes] and/or
(with nonholonomically induced torsion) connection, which
definitely allows us to decouple gravitational field equations
for very general conditions with respect to N -adapted frames;
see (3). We cannot perform such a decoupling in general form
if we work from the very beginning with the data (V, d,/),
but there are proofs that this is possible for (ﬁ, ey; g, N).
Having constructed integral varieties (for instance, locally
anisotropic and/or inhomogeneous cosmological ones), we
can impose additional nonholonomic (non-integrable con-
straints) when ﬁ\?zo — Vand R — R, where R is the
scalar curvature of V, and it is possible to extract exact solu-
tions in GR.!

The MGTs with actions of type (1) generalize the so-called
modified f(R) gravity and the ghost-free massive gravity

! There will also be considered left and right upper/lower indices as
labels for some geometric/physical objects.

[29-33]. We shall follow some conventions from [51]. Units
will be used where i = ¢ = 1 and the Planck mass M p;
is defined via M%,[ = 1/87 G, with 4D Newton constant
G. We write su* instead of d*u because N-elongated dif-
ferentials are used as in (3). A model can be specified by
the corresponding constants, dynamical physical equations,
and their solutions in the corresponding variables. It will be
assumed that 2 = const is the mass of the graviton. For
LC-configurations, we can fix conditions of type
o 2 .
F(R) — —U(g,w, Kep) = f(R),

or f(R)= f(R), or f(R) =R, 4)

which depend on the type of models we elaborate and on what
classes of solutions we want to construct. Such conditions can
be very general ones for arbitrary frame transforms and N-
connection deformations. We emphasize that it is possible to
find solutions in explicit form 1f we choose the coefficients
{N“} and the local frames for D When R = const in such
forms that 9, f(R) (BRf) X Og R = 0, but, in general,
do f(R) # 0.

The equations of motion for our nonholonomically mod-
ified massive gravity theory can be written

o~ o~

Oz Ry (R)guv + 12Xy = MpP Ty, )

l\)l'—‘

where M p; is the Planck mass, R wv 18 the Einstein tensor
for a pseudo-Riemannian metric g,,,, and D T,y is the stan-
dard matter energy-momentum tensor. We note that in the
above formulas, for D — V, we get ﬁw — Ry, with a
standard Ricci tensor R, for V. Such limits give rise to the
original modified massive gravity models, but it is impor-
tant to find some generalized solutions and only at the end to
consider additional assumptions on the limits and nonholo-
nomic constraints. It should be emphasized that the effective
energy-momentum tensor X, in (5) is defined by the poten-
tial of the graviton U = Uy + a3U3 + alds, where a3 and o4
are free parameters. The quantities U, U3 and Uy are certain
polynomials entailing the traces of some other polynomials

v
of a matrix K, = 4§, — (N/ g ! 2>u for a tensor determined
by the four Stiickelberg fields ¢~ as

Suv = 0u 004 . ©)

when n,, = (1,1, 1, —1). A series of arguments presented
in [51] (geometrically, we can consider corresponding non-
holonomic frame transforms and nonholonomic variables)
prove that the parameter choice oz = (¢ — 1)/3, 04 =
(a® — o + 1)/12 is useful for avoiding potential ghost insta-
bilities. By frame transforms, we can fix

X =a g, @)

@ Springer
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By explicit computations, we can prove that for the con-
figurations (7), de Sitter solutions with an effective cosmo-
logical constant are possible, for instance, for an ansatz of
PG type,

ds® = U(r, D)[dr + /T (r, ndt]” + & (d6>
+sin? 0dg?) — V2(r, )dt>. ®)

In the above formula, spherical coordinates are used labeled
in the form u? = (x! = r,x2 =0, y> = ¢, y* = 1), where
the function f takes non-negative values and the constant
a@ = a/(e + 1) and € = +1. We can consider bimetric
configurations [determined as solutions of the system (5),
(6), and (7)] with Stiickelberg fields parameterized in the
unitary gauge as ¢* = r and ¢L = riil, 92 = a2, ¢3 =
ri3, where a three dimensional (3D) unit vector is defined
as 7 = (mL = sin @ cos ¢, n% = sin 6 sin @, 7> = cos 0).

First we note that any PG metric of type (8) defines solu-
tions both in GR and in MGT. For instance, we can extract
the de Sitter solution, in the absence of matter, and obtain
standard cosmological equations with a FLRW metric, for a
perfect fluid source

T/w = [p(t)+p(t)]uuuv+l7(t)guv, )

whereu,, = (0, 0, 0, —V) can be reproduced for the effective
cosmological constant *Tx = /12 /a. Secondly, it is also pos-
sible to express metrics of type (8) in a familiar cosmological
FLRW form (see formulas (23), (24), and (27) in [51]).
Finally, in this section, we note that off-diagonal deforma-
tions of such solutions can be constructed for different classes
of zero graviton mass and/or massive theories and various f-
modifications; see examples in [36—44] and [34,35].

3 Generating off-diagonal cosmological solutions

We now make the crucial assumption that our Universe can
be described by inhomogeneous cosmological metrics with
Killing symmetry on 93 = 9, and, in general, cannot be diag-
onalized by coordinate transforms. As a matter of principle,
we can consider dependencies on all spacetime coordinates,
but this requires more cumbersome computations; see the
examples in Refs. [36—44]. Inhomogeneities and anisotropies
can be very small, but it is important to find certain classes of
general solutions for generic nonlinear systems and impose at
the end certain homogeneity and high symmetry conditions
by selecting the corresponding subclasses of generation and
integration functions. Up to general classes of frame trans-
forms, we can consider the ansatz

ds? = n1(r, 0)§1(r)dr* + na(r, 0)§2(r)d6?
+0? (1,0, 0. ){n3(r, 0, 1)

@ Springer

x h3(r, 0)[de + ni(r, 0)dx' 1 + na(r, 0, ha(r, 6, 1)
x [dt + (w; (x5, 1) + b (x))dx' 12} (10)

The values 7, are called “polarization” functions, where w
is the so-called “vertical”, v, conformal factor.

For metrics (10), we can consider off-diagonal N-
coefficients labeled N/ (xk, y4), where (for parameteriza-
tions corresponding to this class of ansatz)

N =ni(r,0) and N} =w;(x*, 1) + b ("),

The data for the “primary” metric are

810r) = U? — ha(b))?, g2(r) = @22,

hy = &*r?sin’ 0, hy = /| fU% = V2|,
Wy = €/ fU?/hg, by = 0,7, =0, (11)

when the coordinate system is fixed in such a way that the
values f, U, V in (8) resultin a coefficient | depending only
onr.

Using nonholonomic frame transforms, we can parame-
terize the energy momentum sources (9) and the effective
equation (7) in the form

1

YT = ——(T% + a«~'X9%)
P om0 F P
1
=—— ("T+a Hs%=("T + “1)8%, (12)
M3, 037) P P

for constant values Y := M;,Z(a,;f)—l T and Y =
M;,Z(aﬁf)—la—l, with respect to N-adapted frames (3). In
general, such sources are not diagonal and may depend on
all spacetime coordinates. Our assumption is that we pre-
scribe a distribution with one Killing symmetry in a moment
of time and then find the further evolution with respect to
certain classes of nonholonomic frames. We emphasize that
fixing such N-adapted parameterizations we can decouple
the gravitational field equations in MGTs and construct exact
solutions in explicit form.

Let us outline in brief the decoupling property of the grav-
itational and matter field equations in GR and various gen-
eralizations/modifications studied in detail in Refs. [36—44].
That anholonomic frame deformation method (AFDM) can
be applied for the decoupling, and for constructing solutions
of the MGT field equations (5) with any effective source
parameterized in the form (12); see details in Refs. [36—44]).

We label the target off-diagonal metrics as g = (g; =
ni8i,ha = nafza, Nj‘f) with coefficients determined by the
ansatz (10). In these formulas, there is no summation on
the repeating indices. We shall use short-hand notations for
the partial derivatives: 91 = ¥*, oy = ¥/, 3¢ = ¢¥°,
and d4¢y = y*. Computing the N-adapted coefficients of
the Ricci tensors, when 1’?\11 = ﬁ%, 1”?\% = Il?\j, Rsx, and Ruy
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are not trivial, we write (5) as a system of nonlinear partial

differential equations (PDEs):

Yo+ =2("Y + ¢), (13)
¢*h% = 2h3ha(" Y + ),

n* +ynf =0, Bw; —a; =0,

hw = npw® + wrow®, (14)

for
§=n|—3 (1 |h3|3/2>*
=In|————|, y:=|In ,
V| h3hyl |74]
o = 2h3 l¢? - 2]’l3¢ .

In the above formulas, we take the system of coordinates and
the polarization functions to be fixed for configurations with
grl=g = ¥ and nonzero values ¢* and i}

We can extract solutions for the LC-configurations with
zero torsion if the coefficients of metrics are subjected to
additional conditions:

wl* = €; ln\/l h4|,e,~ In |h3| = 0,
aiwj' =8jw,- andn?‘:O. (16)

Step by step, the system of nonlinear PDEs (13)—(16) can
be integrated in a general form for any w constrained by a
system of linear first order equations (14); see details in [36—
44]. The explicit solutions are given by quadratic elements:

2.2
ds? = OO ax)? 4+ @x 4
4(mY 1 @)
o q)* 2 2 B ~ N
hsldg + (3 n) dxk1? — ﬁmm T Ndx' 2,

a7)
for any

® =, (3;0)* =9, w; +; = 9, d/d* = §; A.

We can construct exact solutions even if such conditions are
not satisfied, i.e. the zero torsion conditions are not stated or
there are given certain sources in non-explicit form. So, the
AFDM can be applied to generate both off-diagonal metrics
and nonholonomically induced torsions. There are various
physical arguments for what type of generating/ integration
functions and sources we have to choose in order to con-
struct realistic scenarios for acceleration of the Universe and
observable dark energy/dark matter effects.

Coming back to the properties of general solutions, we
note that we can generate new classes of solutions for arbi-
trary nontrivial sources, ™Y + Y # 0, and generating
functions, ® (x,7) := ¢? and ny = dn(x'). The resulting
target metrics are generic off-diagonal and cannot be diago-
nalized via coordinate transforms in a finite spacetime region
because, in general, the anholonomy coefficients Wo’:ﬂ for (3)

are not zero (we can check this by explicit computations).
The polarization n-functions from (17) are

m=e"/g1.m=e"/8r.n3 = D*/4 (Y + ),
na = (@9)2/("T + “1)®°. (18)

We conclude that prescribing any generating functions
<f>(r, 0,t), n(r,0), w(r,0, ¢, t) and sources "Y, *Y and
then computing A(r, 0,1), we can transform any PG (and,
similarly, FLRW) metric § = (g;, fza , W;, 11;) in MGT and/or
GR into new classes of generic off-diagonal exact solutions
depending on all spacetime coordinates. Such metrics define
Einstein manifolds in GR with effective cosmological con-
stants determined by ™Y + *Y. With respect to N-adapted
frames (3) the coefficients of the metric encode contributions
from massive gravity, determined by 7Y, and matter fields,
included in Y.

We also note that it is possible to provide an “alterna-
tive” treatment of (17) as exact solutions in MGT. In such a
case, we have to define and analyze the properties of fidu-
cial Stiickelberg fields ¢ and the corresponding bimetric
structure resulting in target solutions g = (g;, hq, N9).

Let us analyze the primary configurations related to

P = (¢t = a(v)pa"at, ¢ = a(v)pa~ 72, §* = 7,

when the corresponding prime PG-metric ¢ is taken in FLRW
form,

ds®> = a*(dp? /(1 — Kp?) + p?(d6? + sin® 6d¢?)) — dt°.

A corresponding fiducial tensor (6) is computed,
2

X vduldu® = 27 [d,o2 + p%(dH?* + sin® 0d¢?)

~2
+ 2Hpdpdt — <% — Hzpz) dt2:| ,
K?a

where the coefficients and coordinates are re-defined in the
formr — p =ar/a(r)andt — t = «t,for K =0, +1; «
is an integration constant; H := dIna/dt and the local
coordinates are parameterized in the form xt = 0, x2 =
0.y =0, yt=r.

In the next step, for a target metric g = g4g and frames
e, = efag, we write

b
o = eo?e,séﬂaﬁ = [g,;; NN ga N"ah“b} :

Nihap hap
for e — |:eii Né’eba] .
0 e,
The values
8ij = eige]‘én%ﬁ = eV'8;; = diagln; &1, has

B , , -
= ¢ ¢, nap = diaglnahal, N} = 0 n, N} = o A

@ Springer
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are related algebraically to the data (18) resulting in off-
diagonal solutions (17). Then, to work out the target” Stiick-

elberg fields, we compute ¢>“ =e N ¢>“ with e’} w - these being

inverse to ea , and the fiducial tensor
_ © v _ o B
Lap = (€,07) (g )Ny = €q €5 Lap.

If the prime value 3, carries information as regards the
two constants x¥ and @, a target tensor ¥, is associated
to off-diagonal solutions and encodes data about generating
and integration functions and via superpositions on possible
Killing symmetries, on various integration constants. Similar
constructions were elaborated for holonomic and nonholo-
nomic configurations in GR; see [54-56].

In the framework of MGT, the two cosmological solutions
& and g related by nonholonomic deformations? are charac-
terized, respectively, by the two invariants

Iogé = éaﬂ 80(;5&8/3&;& and Iaﬁ = gaﬂea¢%ﬁ¢é'

The tensor /%2 does not contain singularities because there
are no coordinate singularities on the horizon for the PG
metrics. It should be emphasized that the symmetry of X,
is not the same as that of 3 v and the singular behavior of | O
depends on the class of generating and integration functions
we chose for constructing a target solution g.

In GR, MGTs, and/or Einstein—Finsler gravity theories
[36—44], off-cosmological solutions of type (17) were found
to generalize various models of Biachi, Kasner, Godel, and
other universes. There are known locally anisotropic black
holes and wormholes, in general, with solitonic background
solutions; see [34,35,57-59]. For instance, Bianchi type
anisotropic cosmological metrics are generated if we impose
the corresponding Lie algebra symmetries on the metrics. It
was emphasized in [51] that “any PG-type solution in gen-
eral relativity (with a cosmological constant) is also a solu-
tion to massive gravity.” Such a conclusion can be extended
to a large class of generic off-diagonal cosmological solu-
tions generated by effective cosmological constants but it is
not true, for instance, if we consider nonholonomic deforma-
tions with nonholonomically induced torsion like in metric
compatible Finsler theories.

Finally, we note that the analysis of cosmological per-
turbations around an off-diagonal cosmological background
is not trivial because the fiducial and reference metrics do
not respect the same symmetries. Nevertheless, fluctuations
around de Sitter backgrounds seem to have a decoupling
limit, which implies that one can avoid potential ghost insta-

2 These solutions involve not only frame transforms but also deforma-
tion of the linear connection structure when at the end there are imposed
additional constraints for a zero torsion.

@ Springer

bilities if the parameter choice is considered both for diago-
nal and off-diagonal cosmological solutions; see the details in
[60,61]. This special choice also allows us to have a structure
X,v ~ guv at least in N-adapted frames when the massive
gravity effects can be approximated by effective cosmolog-
ical constants and exact solutions in MGT, which are also
solutions in GR.

4 Examples of off-diagonal solutions with solitonic
configurations

We now consider three examples of off-diagonal cosmo-
logical solutions with solitonic modifications in MGT and
(with alternative interpretation) GR. Two and three dimen-
sional solitonic waves are typical nonlinear wave configu-
rations which can be used for generating spacetime metrics
with Killing, or non-Killing, symmetries and can be charac-
terized by additional parametric dependencies and solitonic
symmetries. Moving solitonic configurations can mimic var-
ious types of modified gravity dark energy and dark matter
effects with a nontrivial gravitational vacuum, polarization of
constants and additional nonlinear diagonal and off-diagonal
interactions of the gravitational and matter fields.

4.1 One soliton solutions

We shall for simplicity work with a nonlinear radial (soli-
tonic, with a left s-label) generating function,

® = Sd(r, 1) = 4arctan ¢4 " TVDHI0, (19)

and with w = 1, we construct a metric
s &)2

————h3(r, 0)dg?
F(mr + ey B e

ds? = eV "0 (dr? + do?) +
@) o
————————hy(r, t)[dt + (9, A)dr]*. (20)
(mY 4+ @) sp2
In this metric, for simplicity, we fixed n(r, 9) = 0 and con-
sider thatA(r 1) is defined as a solution of * * /5 =5, A
and h, are given by PG-data (11). The generating function
(19), where ol = (1-— vz)’1 for constants ¢, go, v, is just a
1-soliton solution of the sine—-Gordon equation
sC‘I’)** _ sd’)u +sin sd’) —0.
For any class of small polarizations with n, ~ 1), we can
assume that the source (Y + *Y) is polarized by *®~2
when h3 ~ h3 and hy ~ hy(*®*)2/ Sd~* with an off-
diagonal term 9, A, resulting in a stationary solitonic uni-
verse. If we consider (81@‘)’1 = 2 in(12), we can model
f-interactions of type (1) via off-diagonal interactions and
“gravitational polarizations”.
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In the absence of matter, ™Y = 0, the off-diagonal
cosmology is completely determined by *Y when S
transforms /& into an anisotropically polarized/variable mass
of solitonic waves. Such configurations can be modeled if
"Y<L CYT. MY > 4T, we generate cosmological mod-
els determined by a distribution off matter fields when contri-
butions from massive gravity come with a small anisotropic
polarization. For a class of nonholonomic constraints on ®
and ¥ (which may be not of solitonic type), when the solu-
tions (20) are of type (10) with n, ~ 1 and n;, w; ~ 0, we
approximate PG-metrics of type (8).

Hence, by an appropriate choice of generating functions
and sources, we can model equivalently modified gravity
effects, massive gravity contributions or matter field con-
figurations in GR and MGT interactions. For well-defined
conditions, such configurations can be studied in the frame-
work of some classes of off-diagonal solutions in Einstein
gravity with effective cosmological constants.

4.2 Three dimensional solitonic anistoropic waves

More sophisticated nonlinear gravitational and matter field
interactions can be modeled both in MGTs and GR if we con-
sider more general classes of solutions of effective Einstein
equations.

For instance, off-diagonal solitonic metrics with one
Killing symmetry can be generated, for instance, if we take
instead of (19) a generating function * Cb(r, 6, t) which is a
solution of the Kadomtsev—Petivashvili, KdP, equations [62],

:Exfb//—i—(xfb*—l— scb s&)0+esd’>ooo)o =0,

when solutions induce a certain anisotropy on 6.3 In the dis-
persionless limit, ¢ — 0, we can assume that the solutions
are independent on 6 and determined by Burgers’ equation,

s(i)*+ s(i) s(i)o —=0.

Such solutions can be parameterized and treated similarly
to (20) but with, in general, a nontrivial term (dg X)d@ after
hy, where S/ Sd* = A® and @’/ $d* = A’. Similar
metrics were constructed for Dirac spinor waves and soli-
tons in anisotropic Taub-NUT spaces and in five dimensional
brane gravity which can be encoded and classified by the cor-
responding solitonic hierarchies and geometric invariants;
see [57-59]. Here we proved that AFDM can be extended
to generate inhomogeneous off-diagonal cosmological soli-
tonic solutions in various MGTs.

3 In a similar form, we can construct various types of vacuum gravita-
tional 2D and 3D configurations characterized by solitonic hierarchies
and related bi-Hamilton structures, for instance, of KdP equations with
possible mixtures with solutions for 2D and 3D sine—Gordon equations
etc; see for the details Refs. [57-59].

4.3 Solitonic waves for a nontrivial vertical conformal
v-factor

The cosmological solutions we look for also come with three
dimensional solitons but for a v-factor asin (10). For instance,
we consider solitons of KdP type, whenw = w(r, ¢, t), when

x1=r,x2=¢9,y3=<p,y4=t,for

+ 0% + (00 + @ @° + €**®)* = 0. (21)

In the dispersionless limit, ¢ — 0, we can take the solutions
to be independent on the angle ¢ and to be determined by
Burgers’ equation,

o +ow® =0.
The conditions (14) impose the additional constraint
elw=ao"+w 0,0 +ni@r 0o =0.

In the system of coordinates when @’ = 0, we can fix w, = 0
and ny = 0. For any arbitrary generating function with LC-
configuration, ®(r, 6, t), we construct exact solutions,

d20?

d 2 — v (r,0) d 2 d92
S e (dr-+ )+—4(mT~|—“‘T)

h3(r, 0)dg?

51252
G yOT G olde + 6, Ddr. (22)
(MY 4+ 2Y) P2
which are generic off-diagonal and depend on all spacetime
coordinates. Such stationary cosmological solutions come
with polarizations on the two angles 6 and ¢. Nevertheless,
the character of the anisotropies is different for metrics of
type (20) and (22). In the third class of metrics, we obtain
a Killing symmetry on 9, only in the limit ® — 1, but in
the first two such a symmetry exists generically. For (22),
the value ® is not necessarily a solitonic one which can be
used for additional off-diagonal modifications of solutions
and various types of polarizations.

We can provide a physical interpretation of (22) which is
similar to (20) if the generating and integration functions are
chosen to satisfy the conditions ny ~ 1 and n;, w; ~ 0. We
approximate the PG-metrics of type (8).

In a particular case, we can use a conformal v-factor which
is a 1-solitonic one, i.e.

® — w(r, 1) = 4arctan 27~V +90,

where 02 = (1 — 1)2)’1 and constants ¢, go, v, define a 1-
soliton solution of the sine—Gordon equation,

0™ — w* +sinw = 0.

Such a soliton propagates in time along the radial coordinate.
We conclude that solitonic waves may mimic both particle

type configurations as dark matter and encode certain hidden

dark energy and off-diagonal gravitational and matter field

interactions.

@ Springer
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5 Reconstruction mechanism for off-cosmological
solutions

We now consider a reconstruction mechanism with distin-
guished off-diagonal cosmological effects [36—44] by gen-
eralizing some methods elaborated for f(R) gravity in [6—
10]. The main idea was to present the MGT actions (with
zero or nonzero gravitational mass) as sums of actions in GR
and certain effective ideal fluid contributions with parameters
defined by nontrivial jt and f-deformations. The reconstruc-
tion method was developed for such formulations as lead to a
cosmology with cyclic evolution. Then it was proven that the
ekpyrotic scenario may also be realized for MGTs and that
it is possible to reconstruct models of f(R) gravity which
induce a little rip cosmology.

In our approach, we work with cosmological generic
off-diagonal metrics and generalized connections. We can
always choose such generating functions and parameters of
solutions so that off-diagonal contributions are small, and the
torsion is constrained to be zero, beginning at a certain fixed
moment of time. Nevertheless, we cannot neglect for such
classes of solutions possible nonlinear effects determined by
generating functions and effective sources resulting in diag-
onalized modifications. MGTs were elaborated as realistic
alternatives for a unified description of inflation with dark
energy when cosmological scenarios encode information on
various massive and zero-mass gravitational modes. A cru-
cial question is if and how such constructions have to be elab-
orated for generic off-diagonal cosmological spaces. This is
not only a geometric problem for generalizing the reconstruc-
tion formalism for inhomogeneous and locally anisotropic
cosmological theories. It is connected to a very important
question of equivalent modeling of cosmological scenarios
for different MGTs in the framework of GR with nonholo-
nomic and off-diagonal nonlinear interactions.

Any cosmological solution in massive, MGT, and/or GR
parameterized in the form (10) [in particular, as (20) and (22)]
can be encoded into an effective functional (4) when

~ G2 -~ o~
f_Tuzf(R)s R‘ﬁ_>V=R~

This allows us to work as in MGT; the conditions 9, f (ﬁ) =
0if R = const simplify the computations substantially. Nev-
ertheless, the contributions of the parameter /i and effective
potential I/ are included as functional dependencies of f and
R.ForD — V, we get nonlinear modifications both in diag-
onal and off-diagonal terms of the cosmological metrics.

The starting point of our approach is to consider a prime
flat FLRW like metric

ds* = a®>()[(dx")? + (@xH* + (dy*)?] — dr?,

@ Springer

where 7 is the cosmological time. In order to extract a mono-
tonically expanding and periodic cosmological scenario, we
parameterize In |a(t)| = Hot 4+ a(t) for the periodic function
at+1)=la cos(2mt/t), where 0 < Ya < Hy. Our goal
is to prove that such a behavior is encoded into off-diagonal
solutions of type (20)—(22).

We write FLRW like equations with respect to N-adapted

(moving) frames (3) for a generalized Hubble function H,
3H? = 8mrp and 3H? +2e4H = —8mp.
Using variables with 9, f (1’3\)| R—cons: = 0, we can consider
a function H () whene4 H = 9; H = H*. It should be noted
that the approximation e4 — 0, is considered “at the end”
(after a class of off-diagonal solutions was found for a nec-
essary type connection, which allowed one to decouple the
equations) and the generating functions and effective sources
are constrained to depend only on 7. The energy-density and
pressure of an effective perfect fluid are computed thus:

I 1
o= @m | @rH! (5f<R> + 3He4(3Rf)) - 3e4H]

=@m7! Bﬁln\/rﬂf?)l‘]*}

- -
1. [ =
= @87)" ! dz1n |TU+f(R)| 3H*:| ,

[ 1
p=-@m"@rf)! <§f(R) +2Hey (3R f) +e4e4(3Rf)> +e4H]

= (8m)~! aﬁln\/ﬁJr H*]

i 5
ORIn\[I U+ f(B)I+ H" | (23)

We emphasize that, in general, such values are defined with
respect to nonholonomic frames. The effect of nonlinear
deformations encoding physical data (&, U, f, I/Q\) is pre-
served also in diagonal contributions for e4 — 9;.

The equation of state, EoS, parameter for the effective
dark fluid encoding MGTs parameters is defined by

= @80

7 Bu+ f(R +2H 5]

RS _
&F EuU+ f(R) - 6H* ]
(24)

) )

p +2H*)
w = — =
0 —6H*0

The corresponding EoS is
p=-p—Qm)"'H".

U(t) is computed, for simplicity, for a configuration of “tar-
get” Stiickelberg fields ¢“/ =el ;L @Y, and the solution found
is, finally, modeled by generating functions with dependen-
cies on z. The components of ¢>“/ are computed with respect
to N-adapted frames.
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Taking a generating Hubble parameter H(t) = Hpt +
Hi sin wt, for w = 27 /T, we can recover the modified action
for the oscillations of an off-diagonal (massive) universe (see
similar details in [6-10]),

f(R(t)) = 6wH, /dt[w sinwt — 4 cos wt (Hy + Hj sin wt)]
H .
x exp[Hot + — sin wt].
w

Here we note that we cannot analytically make an inversion
to find an explicit form R, or any nonholonomic deformation
to R with respect to general N -adapted frames. Nevertheless,
we can prescribe any values of constants Hy and H; and of
o and compute the effective dark energy and dark matter
oscillating cosmology effects for any off-diagonal solution
in massive gravity and/or effective MGT, GR. To extract the
contributions of jt we can fix, for instance, f(]’?\) =R= R,
and using (1) and (2) we canrelate f (R(¢)) and the respective
constants to certain observable data in cosmology.

The MGT theories studied in this work encode, for respec-
tive nonholonomic constraints, the ekpyrotic scenario, which
can be modeled similarly to f(R) gravity. A scalar field is
introduced into the usual ekpyrotic models in order to repro-
duce a cyclic universe, and such a property exists if we
consider off-diagonal solutions with massive gravity terms
and/or f-modifications. The main idea is to develop the
reconstruction techniques for the scalar—tensor theory using
the AFDM, with nonholonomic off-diagonal metric and lin-
ear connection deformations. Working with general classes
of off-diagonal cosmological solutions, the problem is to state
the conditions for generating and integration functions when
a corresponding ekpyrotic scenario will “survive” for certain
constraints and in the respective limits.

Let us consider a prime configuration with energy-density
for pressureless matter g,,; for radiation and anisotropies we
take, respectively, g, and p,. k is the spatial curvature of
the universe and for the target effective energy-density p we
have (23). A FLRW model can be described by

m r o K

3H2=871|:Z—3+%+Z—6—a—2+,0].

We generate an off-diagonal/massive gravity cosmological
cyclic scenario containing a contracting phase by solving the
initial problems if w > 1; see (24). A homogeneous and
isotropic spatially flat universe is obtained when the scale
factor tends to zero and the effective f-terms (massive gravity
and off-diagonal contributions) dominate over the rest. In
such cases, the results are similar to those in the inflationary
scenario. For recovering (25), the ekpyrotic scenario occurs
and mimics the observable universe for 1 ~ 7 /2w in the
effective EoS parameter

(25)

w~ —1+sinwt/3wH] cos? wt > 1.

This allows us to conclude that in massive gravity and/or
using off-diagonal interactions in GR, cyclic universes can
be reconstructed in such forms that the initial, flatness, and/or
horizon problems can be solved. We can compute possible
locally anisotropic and inhomogeneous small contributions
for self-consistent models with nonholonomic frames.

In the diversity of off-diagonal cosmological solutions
which can be constructed using the above presented methods,
there are cyclic ones with singularities of the type of a big
bang/big crunch behavior. This is still a largely unexplored
area both as regards the geometric methods of construct-
ing exact solutions of PDEs and recovering procedures for
certain “preferred” fundamental physical objects compatible
with the experimental data. Choosing necessary types of gen-
erating and integration functions, we can avoid singularities
and elaborate models with a smooth transition. Using the pos-
sibility to generate nonholonomically constrained f-models
with equivalence to certain classes of solutions in massive
gravity and/or off-diagonal configurations in GR, we can
study in this context, following methods in [6—10,36-44],
big rip and/or little rip cosmology models. In this case the
phantom energy-density is modeled by off-diagonal inter-
actions. We note that such nonsingular models for the dark
energy were proposed as alternatives to ACDM cosmologies,
[63-65]. Using the corresponding classes of the generating
functions, we can reproduce the scenarios with a phantom
scalar modeling a little rip in the framework of AFDM and
nonholonomic MGTs. We omit such considerations in this
article (see a summary of such a construction and further
developments in [52,53]).

6 Conclusions

In this paper we deal with new classes of cosmological off-
diagonal solutions in massive gravity with flat, open, and
closed spatial geometries. These solutions can be systemat-
ically constructed for various types of modified gravity the-
ories, MGTs, and in general relativity, GR. We applied an
advanced geometric technique for decoupling the field equa-
tions and constructing exact solutions in massive and zero
mass f (R) gravity, theories with nontrivial torsion, nonholo-
nomic constraints to GR, and possible extensions on (co)
tangent Lorentz bundles. The so-called anholonomic frame
deformation method, AFDM, was elaborated during the last
15 years in our work [36—44,57-59], where a number of
examples of off-diagonal solutions and new applications in
gravity and modern cosmology were considered.

A very important property of such generalized classes of
cosmological solutions is that they depend, in general, on all
spacetime coordinates via generating and integration func-

@ Springer
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tions and constants. They describe certain models of inho-
mogeneous and locally anisotropic cosmology with a physi-
cal meaning and possible physical implications that are less
clear [13-18]. After some classes of solutions were con-
structed in the most general form, we can impose at the end
additional nonholonomic constraints, cosmological approx-
imations, extract configurations with a prescribed spacetime
symmetry, and/or a dependence on certain mass parame-
ters; and we can consider asymptotic conditions, etc. Thus,
our solutions can be used for elaborating homogeneous and
isotropic cosmological models with an arbitrary spatial cur-
vature, to study generalized Killing and non-Killing sym-
metries, with possible nonholonomically deformed (super-)
symmetries [34,35,54-56] and to study the “non-spherical”
collapse models of the formation of cosmic structure such as
stars and galaxies (see also [51]).

Another aspect of the AFDM is that if we work only with
cosmological scenarios for diagonalizable metrics, there are
possibilities to discriminate the massive gravity theory from
the f-gravity and/or GR. For diagonal metrics depending
on a time like coordinate, we can formulate mathematical
cosmology problems for certain nonlinear systems of ordi-
nary differential equations with general solutions depend-
ing on integration constants. Identifying such a constant, for
instance, with a graviton mass parameter, we do not have
many possibilities to mimic a number of similar effects in
GR for different MGTs. Following only such a “diagonal”
approach, we positively have to modify the GR theory in
order to explain the observational data in modern cosmol-
ogy and elaborate realistic quantum models of massive grav-
ity.

We now discuss a new and important feature of the
off-diagonal anisotropic configurations, which allows us to
model cosmic accelerations and massive gravity and/or dark
energy and dark matter effects as certain effective Einstein
spaces. Having integrated such a system of nonlinear partial
differential equations, PDEs, for a large class of such solu-
tions, we can ask such questions as: Maybe we do not need
to modify radically the GR theory but only to extend the con-
structions to off-diagonal solutions and nonholonomic sys-
tems and try to apply this in modern cosmology? Could we
explain observational data in modern cosmology via non-
linear diagonal and/or off-diagonal interactions with non-
minimal coupling for matter and/or different phases of mas-
sive and zero mass gravity? This is a quite complicated the-
oretical and experimental problem and the main goal of this
and our recent papers cited in Refs. [36-44,52,53] was to
analyze such constructions from the viewpoint of massive
gravity theory when off-diagonal effects can be alternatively
explained by other types of gravity theories.

The reconstruction procedure for cosmological models
with non-minimally coupled scalar fields evolving on a flat
FLRW background and in different MGTs was studied in

@ Springer

[6-12]. In this work, we elaborated a reconstruction method
for the massive gravity theory which admits an effective off-
diagonal interpretation in GR and f-modified gravity with a
cyclic and an ekpyrotic universe solution. We concluded that
the expansion can be around the GR action even if we admit
a nontrivial effective torsion. For zero torsion constraints,
it is possible to construct off-diagonal cosmological models
keeping the approach in the framework of the GR theory.
We further investigated how our results indicate that theo-
ries with massive gravitons, with possible f-modified terms
and off-diagonal interactions, may lead to more complicated
scenarios of cyclic universes. Following such nonlinear (off-
diagonal) approaches, the ekpyrotic (little rip) scenario can
be realized without the need to introduce additional fields (or
modifying gravity) but only in terms of massive gravity or
GR. Another interesting construction can be related to the
reconstruction of scenarios of f(R) and massive gravity the-
ories leading to little rip universes both in locally anisotropic
and isotropic variants. Finally, we note that the dark energy
for little rip models present an example of non-singular phan-
tom cosmology.
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