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Abstract In this work, I present exact cosmological solu-
tions from Wesson’s induced matter model applied to a
general 5D metric in f (R, T ) theory of gravity. The non-
conservation of the energy-momentum tensor, predicted by
f (R, T ) theory, allows the derivation of a relation that
describes the time evolution of the extra coordinate, revealing
its compactification. It is shown that such a compactification
could induce the effects of an accelerated expansion in the
observable universe.

1 Introduction

Nowadays the most popular cosmological model is the
�CDM (� is for cold dark matter) model, which is directly
extracted from Einstein’s general relativity. It assumes,
through the Friedmann–Robertson–Walker metric, that the
universe is homogeneous and isotropic; therefore its expan-
sion is described by a scale factor dependent on time only.
To match the cosmological observations as supernovae Ia
[1,2] and baryon acoustic oscillations [3,4], the universe in
the �CDM model needs to be filled by an exotic compo-
nent, named “dark energy” (DE), which makes its expan-
sion accelerate. Such an exotic component of the universe
is mathematically described by the cosmological constant �

inserted “by hand” in the Einstein’s field equations (FEs)
of general relativity. Physically, the acceleration would be
caused by the existence of a quantum vacuum energy, with
negative equation of state (EoS) p ∼ −ρ, with p and ρ

representing the pressure and energy density of the uni-
verse, respectively. However, there is a huge discrepancy
between the quantum vacuum energy values obtained from
cosmology [5] and from particle physics [6]. Such a dis-
crepancy raises uncertainties in the physical interpretation
of �. These uncertainties along with the coincidence prob-
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lem, the dark matter problem, missing satellites, the hier-
archy problem, and other shortcomings (see [7] and refer-
ences therein) lead to the formulation of alternative gravita-
tional models, from which new cosmological scenarios are
obtained.

A proposal of changing standard gravity is through the
consideration of extra dimensions. The Kaluza–Klein (KK)
gravitational model (see [8] for a broad review) proposes the
universe is empty in five dimensions (5D). It unifies gravi-
tation and electromagnetism, through the application of the
cylindrical condition – the annulment of all derivatives with
respect to the extra dimension – and is considered a low-
energy limit of superstring theories [9].

Cosmological models derived from KK theory are contin-
uously presented in the literature. Recently, in [10] there was
proposed a dynamic � model under KK cosmology. Solu-
tions of such an approach are in accordance with the observed
features of an accelerating universe. In [11], a KK cosmology
in which polytropic gas DE is interacting with dark matter has
been studied. Solutions which describe the matter-dominated
universe in the far past and the DE-dominated era at late times
were obtained. In [12], a KK model is taken to study the
role of the extra dimension in the expansion of the universe.
Conditions for the accelerated expansion of the universe are
derived.

KK theories usually admit compactified extra dimensions.
In fact, compactification is the only mechanism able to
explain the apparent 4D nature of the universe in KK grav-
ity. However, it is common to see such a compactification as
an imposed feature of KK cosmological models (see, among
many others, [13–15]) instead of a natural characteristic of
the extra coordinate evolution. I will present, in this work,
a relation between the extra space-like coordinate and time,
and such a relation will reveal, in a natural form, the shrinking
of the extra coordinate.

Although highly uncommon, some other cosmological
models have also predicted the shrinking of the extra coor-
dinate, instead of imposing it. For instance, recently, such a
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feature was obtained and it was shown that it yields a free of
singularity expanding universe [16].

Another trouble with compactification is that one cannot
impose it arbitrarily on whichever dimensions one likes. The
combination of the four non-compactified dimensions space-
time plus the compactified fifth coordinate must be a solution
of the higher-dimensional Einstein’s FEs. Moreover, both
cylindrical condition and compactification requirement are
not necessarily satisfied in many KK models [17].

A innovative form of physically interpreting KK gravi-
tational model, which will be applied in the present work,
was brought up in [18,19], for which the properties of mat-
ter of the usual 4D universe (i.e., density and pressure) are
regarded as the extra parts – due to the extra dimension – of
the 5D Einstein’s FEs for vacuum (recall that in KK theory,
the 5D universe is empty), namely, the Wesson induced mat-
ter model (IMM). In fact, Wesson has shown that a 5D theory
does not necessarily need an explicit energy-momentum ten-
sor [20]; the extra terms of the 5D Einstein tensor may work
as an induced energy-momentum tensor.

The IMM application has generated some important
features on extra-dimensional cosmology. For instance, in
[21] the Friedmann–Robertson–Walker cosmological mod-
els were interpreted as being purely geometrical in origin
while in [22,23] the IMM was applied to 5D anisotropic
models. In [24], the author has obtained dark matter and cos-
mic acceleration in 4D as induced effects of a matter free 5D
bulk. Furthermore, the IMM was extended to curved spaces
in [25]. Such an extension has opened a number of possi-
ble applications for the theory, as a pre-big bang collapsing
scenario, which was explored by the authors.

Another important reference on the subject of accelerated
cosmological models obtained from 5D theories of gravity
was presented in [26], for which the author has considered
the scenario where our observable universe is devised as a
dynamical 4D hypersurface embedded in a 5D bulk space-
time. In this model, the present cosmic acceleration is a nat-
ural consequence of such an embedding.

Modifications on the Einstein FEs are also presented by
assuming the gravitational part of the action is given by a
generic function of the Ricci scalar R (recall that in standard
gravity, such a function is linear in R), contemplating the
f (R) gravity theories [27–29]. f (R) static spherically sym-
metric solutions have been obtained in [30] while solutions
coupled with electromagnetic field can be checked in [31].
Moreover, the authors in [32] have presented solutions from
an extra-dimensional f (R) model.

Recently, a more generic gravity model was proposed, for
which the action depends still on a generic function of R, but
also on a function of T , the trace of the energy-momentum
tensor Tμν , namely, the f (R, T ) theory of gravity [33]. The
present work will propose a cosmological model which uni-
fies KK and f (R, T ) theory. Among the main features of

f (R, T ) theory is the predicted matter–geometry coupling
and the non-conservation of the energy-momentum tensor,
which will be both investigated in this article.

As concerns f (R, T ) cosmological models, in [34] there
was derived a Little Rip model, which reproduces the present
stage of the universe dynamics and presents no singular-
ity in the future in a finite time (i.e., no Big Rip). More-
over, it was shown that the second law of thermodynamics
is always satisfied around such an f (R, T ) Little Rip uni-
verse. In [35], an axially symmetric space-time was consid-
ered in the presence of a perfect fluid source. The energy
conditions in f (R, T ) gravity were studied in [36]. In [37],
the authors have obtained cosmological solutions which
describe a matter-dominated scenario followed by an accel-
erated era. In [38], some cosmological models were recon-
structed from specific forms of f (R, T ) gravity. The authors
in [39] have proposed that the effects of a bulk viscosity in
f (R, T ) gravity may explain the early- and late-time accel-
erations of the universe. Furthermore, it should be stressed
that the authors of f (R, T ) gravity themselves have derived,
from a particular case of the f (R, T ) functional form, i.e.,
f (R, T ) = R + 2 f (T ), a scale factor which predicts an
accelerated expansion for the universe (see Section 3 of [33]).

The points mentioned above, among others found cur-
rently in the literature, make it reasonable to consider
f (R, T ) gravity as a possible alternative to standard grav-
ity’s shortcomings. Once the gravitational part of the action
is generalized, including a general dependence not only on
geometry but also on matter, the new terms of the derived
FEs might be responsible for inducing different dynamical
stages in the universe evolution, including the late-time DE
era and even cosmic inflation [39]. Moreover, as shown in
[38], some functional forms for f (R, T ) may retrieve some
other cosmological models, as the Chaplygin gas model and
quintessence, manifesting the generic aspect of such a the-
ory of gravity, i.e., different cosmological models presented
in the literature may be obtained from some particular cases
of f (R, T ).

My proposal in this work is to extend f (R, T ) theory to a
general 5D KK metric and obtain exact cosmological solu-
tions from the IMM application. One might wonder about the
reason of applying the IMM in order to obtain the cosmo-
logical solutions. As stated above, f (R, T ) gravity predicts
a coupling between geometry, through the dependence of a
function of R and matter, through the dependence of a func-
tion of T . The T dependence of the gravitational lagrangian
in f (R, T ) theory refers the geometrical origin of matter con-
tent in the universe [37]. Meanwhile, the IMM assumes the
matter content of the universe is purely a geometric manifes-
tation of a 5D empty universe. It seems reasonable, then, to
apply the IMM in a 5D version of f (R, T ) theory. Moreover,
from the non-conservation of the energy-momentum tensor,
which is predicted by the theory, I will derive a relation for
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the evolution of the extra coordinate through time. Such a
relation will induct geometrical effects in our 4D observable
universe, resulting an accelerated expansion for high values
of t . The dynamical behavior of the model is explained from
some cosmological parameter calculation.

Note that cosmological models which unify KK and
f (R, T ) theories have already been proposed (see, for
instance, [40–42]). However, none of these references have
treated general KK metrics or obtained naturally a compact-
ified extra dimension, nor have any investigated the non-
conservation of the energy-momentum tensor. All this will
be considered in this article.

The paper is organized as follows: in Sect. 2 I present
a brief review of the usual 4D f (R, T ) gravity and derive
the FEs for such a theory, while in Sect. 3 the 5D f (R, T )

gravity FEs are presented. From such FEs, in Sect. 3.1, I
derive general solutions which depend both on time and the
extra coordinate while in Sect. 3.2, solutions which depend
on time only are presented. In Sect. 4, I derive, from the non-
conservation of the energy-momentum tensor, the evolution
of the extra coordinate through time. It will be shown in
Sect. 4.1, from the calculation of some cosmological param-
eters for the model, that the consequences of such an evolu-
tion in the 4D observable universe are in accordance with
the present accelerated expansion our universe is passing
through. In Sect. 5 I discuss the results obtained in Sects. 3
and 4.

2 f (R, T ) gravity

In [33], Harko et al. have presented the f (R, T ) gravity, a
theory in which the gravitational lagrangian is given by an
arbitrary function of both the Ricci scalar R and the trace T of
the energy-momentum tensor Tμν . Such a dependence on T
may arise from the existence of imperfect fluids or quantum
effects. The variation of the action of the model,

S = 1

16π

∫
f (R, T )

√−gd4x +
∫

Lm
√−gd4x, (1)

with f (R, T ) representing an arbitrary function of R and T ,
g the determinant of the metric gμν with μ, ν assuming the
values 0, 1, 2, 3 and Lm the matter lagrangian density, yields
the following FEs [42]:

Gμν = 8πTμν + λTgμν + 2λ(Tμν + pgμν). (2)

In (2), Gμν is the Einstein tensor and I have assumed
f (R, T ) = R + 2 f (T ) with f (T ) = λT and λ a constant
(note also that throughout this article I will work with units
such that c = G = 1). Remind that such a functional form
for f (R, T ) has been extensively used to obtain f (R, T )

solutions. For instance, in [33], it was shown that such an
assumption yields a scale factor which describes an acceler-
ated expansion for the universe, while in [42,43], solutions
to KK and 5D anisotropic cosmologies have been obtained,
respectively.

By applying the covariant derivative of the energy-
momentum tensor in (2), one obtains

∇μTμν = 2λ

2λ − 8π
∇μ(2Tμν + pgμν), (3)

which reveals the non-conservation of the energy-momentum
tensor predicted by f (R, T ) theory.

Note that from Eq. (3), the motion of massive test particles
in the f (R, T )universe is non-geodesic. Moreover, due to the
coupling between matter and geometry, the theory predicts
an extra acceleration to be always present.

In the next section, I will construct KK f (R, T ) FEs from
the application of the IMM in the 5D version of Eq. (2). Those
will be given in terms of ρ and p, whose solutions will be
presented in Sects. 3.1 and 3.2.

3 5D f (R, T ) field equations and their cosmological
solutions from induced matter model application

As mentioned above, the T -dependence of the lagrangian in
f (R, T ) theory may be induced by exotic imperfect fluids
or quantum effects. From [37], such an induction links with
known and well-accepted proposals, as geometrical curva-
ture inducing matter and the geometrical origin of the matter
content in the universe (see [44] for a broad investigation on
this topic). From this perspective, it seems reasonable and
promising to interpret 5D f (R, T ) gravity from the IMM
[18,19] point of view, since it considers the properties of
matter in the 4D universe, such as density and pressure, as
rising from the extra-dimensional geometrical terms of the
vacuum FEs.

More specifically speaking, the IMM brought up the infor-
mation that an extra-dimensional theory does not need an
explicit energy-momentum tensor [20]. In KK theory, the
universe is considered empty in 5D, i.e., the FEs read

GAB = 0, (4)

with the indices A, B running from 0 to 4. According to
IMM, by discriminating the terms on (4) which depend on
the extra coordinate, those can play the role of an “induced”
energy-momentum tensor.

Let me consider a general KK metric of the form

ds2 = eα(t,l)dt2 − eβ(t,l)(dx2 + dy2 + dz2) − eγ (t,l)dl2.

(5)

Note that in the metric above the scale factors depend not
only on time, but also on the extra coordinate l.
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By considering the metric (5), the application of the IMM
in the 5D version of Eq. (2) yields the following FEs:

3

2

[
β̇γ̇

2
e−α +

(
β ′γ ′

2
− β

′2 − β ′′
)

e−γ

]

= (8π + 3λ)ρ − λp, (6)

α′β̇ + γ̇ β ′ = β̇β ′ + 2β̇ ′, (7)(
β̇γ̇ − α̇γ̇

2
+ γ̇ 2

2
+ γ̈

)
e−α

+
(
−α′β ′− 3

2
β

′2+β ′γ ′−2β ′′+ α′γ ′

2
− α

′2

2
−α′′

)
e−γ

= 2[λρ − (8π + 3λ)p], (8)

− 3

4
(β

′2 + α′β ′)e−γ = λ(ρ − p), (9)

in which I have considered TAB = (ρ,−p,−p,−p, 0) and
dots represent partial derivatives with respect to t , while
primes represent partial derivatives with respect to l. Note
that differently from other IMM applications, f (R, T ) the-
ory shows the 44 term on the rhs of Eq. (4) to be non-null,
as shown in Eq. (9). Although this is non-intuitive, note that
despite the energy-momentum tensor having its fifth compo-
nent null, the effective energy-momentum tensor on the rhs
of Eq. (2) still has terms proportional to T and p.

From [19,22], the IMM application also consists in writing
the time-dependent (time only) FEs

3

4
β̇2e−α + (8π + 3λ)ρ − λp = 0, (10)

(
− α̇β̇

2
+ 3

4
β̇2 + β̈

)
e−α − (8π + 3λ)p + λρ = 0, (11)

3

2

(
− α̇β̇

2
+ β̇2 + β̈

)
e−α + λ(ρ − p) = 0. (12)

Therefore, from Eqs. (6)–(12), note that one can derive cos-
mological solutions for ρ and p which depend on both t and
l, which I will call general solutions, and which depend on
time t only. Below I derive these two kinds of solutions.

3.1 General solutions

In order to solve the model FEs presented above, I will
assume α = 0. Such an assumption can be interpreted merely
as a rescaling of the time coordinate, without any loss of gen-
erality (see [23] for instance). In order to find a solution for
β, let me use the separation of variables method, i.e., let me
take β = TβLβ with Tβ and Lβ respectively representing
functions of t and l only. By integrating (7), one obtains

γ = β + 2ln(Tβ), (13)

for which I assumed the integration constant is null. Note that
in [45], the functional form of the scale factor related to the

extra dimension was also found from an integration of the
scale factor related to the three regular spatial dimensions.
Moreover, from (9) and (12), one is able to write

e−γ = 2
(β̇2 + β̈)

β
′2 . (14)

Note that Eqs. (13)–(14) allow us to find a differential equa-
tion for Tβ and a differential equation for Lβ if ρ and p are
eliminated of the FEs. By plausibly assuming Tβ �= const,
those equations are

T̈β = 0, (15)

L
′2
β − LβL

′′
β = 0. (16)

Therefore, the solution for β is

β = C1te
C2l , (17)

with C1 and C2 being arbitrary constants. Note that solution
(17) predicts a dependence on ln(t) for γ [Eq. (13)]. Such a
behavior was also found in [23] through IMM application in
anisotropic cosmological models.

By using solution (17), the model FEs yield, for the density
of the universe,

ρ = 3C1eC2l

8(4π + λ)t
(C1te

C2l − 2). (18)

The substitution of Eqs. (14) and (18) in (9) yields, for the
pressure of the universe:

p = 3C1eC2l

8λ

[
2C1C

2
2 eh(t,l) + C1teC2l − 2

(4π + λ)t
λ

]
, (19)

with h(t, l) ≡ −C1teC2l + C2l.
Before presenting a new kind of cosmological solutions,

it might be interesting to mention that in order for solution
(18) be physical, C1 must be positive and λ > −4π . Such a
solution will allow negative values for C1 when λ < −4π .

3.2 Time-dependent (time only) solutions

From Eqs. (10)–(12), one is able to write a time (only)-
dependent solution for β (and consequently for the density
and for the pressure of the universe). By manipulating them,
one finds(

24π

λ
+ 9

)
β̇2 +

(
24π

λ
+ 10

)
β̈ = 0, (20)

whose solution is

β =
(

5π + 12

8π + 3λ

)
2λ

3π
ln[(24π2 + 9πλ)t − λC3(24 + 10λ)],

(21)
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with C3 being an arbitrary constant. Equation (21) yields for
the density of the universe

ρ = 2ζ(λ)[(3 − π)λ − 6π2]
[π(24π + 9λ)t − 2λC3(5π + 12)]2 , (22)

with ζ(λ) = 3(5π + 12)λ/(4π + λ). Because of Eqs. (21)–
(22), the time-dependent (time only) solution for the pressure
of the universe is

p = ζ(λ)η(λ)

[π(24π + 9λ)t − 2λC3(5π + 12)]2 , (23)

with

η(λ) = (π + 24)λ3 − 4π(5π − 24)λ2

−2(48π3 + π − 3)λ − 12π2. (24)

Note that in order to guarantee solution (22) to be physical,
λ must be in the range −4π < λ < 0. Such a condition,
besides ensuring a physical solution for ρ in (22), predicts
an accelerated expansion for the universe, since it implies
p < 0 in (23), with the sign of C3 being irrelevant.

According to Sect. 1, in the �CDM cosmological model,
the accelerated expansion of the universe is caused by some
sort of quantum vacuum energy with negative EoS, i.e.,
p < 0. Such a cosmological feature is automatically obtained
above just by requiring solution (22) to be physical.

4 Non-conservation of the energy-momentum tensor
and the time evolution of the extra coordinate

The non-conservation of the energy-momentum tensor in
f (R, T ) theory will have a valuable application in the 5D
case, as will be demonstrated below.

Note that by taking A = B = 0 in the 5D version of Eq.
(3), one has

8π − λ

2λ
ρ̇ + ṗ = 0, (25)

while A = B = 4 yields

p′

p
eγ + (eγ )′ = 0. (26)

The other terms will vanish since ρ and p do not depend on
the coordinates x, y, and z.

Now let me substitute the general solutions (18)–(19) in
(25)–(26). Such a procedure yields the following equations:

C1C2t
√

eh(t,l)+C2l =
√

8π + λ

2(4π + λ)
, (27)

e−h(t,l)+C2l = 4C1C
2
2
(4π + λ)

λ

teC2l

(2 − C2
1 t

2eC2l)
. (28)

By substituting (28) in (27) and solving for l, one obtains

li = 1

C2
{ln[ξi (t)] − ln(t)} (29)

as solutions for l as functions of t , with i = 1 or 2, and

ξ1 =
C1λ −

√
−16C3

1πλt + C2
1λ2 − 2C3

1λ2t

C3
1λ2t

, (30)

ξ2 =
C1λ +

√
−16C3

1πλt + C2
1λ2 − 2C3

1λ2t

C3
1λ2t

. (31)

Figure 1 shows the evolution of the extra coordinate l through
time from Eqs. (29)–(30).

As one can see, Fig. 1 predicts a compactification of the
extra coordinate l through time. This is usually assumed in
KK cosmological models (see, for instance, [13–15]), but
here the non-conservation of the energy-momentum tensor,
which is an important fundamental property of f (R, T ) the-
ories, has revealed such a feature, with no need of prior con-
jectures.

4.1 Cosmological parameters

In this subsection, I will present the time evolution of some
cosmological parameters of the present model. Those will be
derived from the scale factors (13) and (17). However, for the
dependence on l, I will use Eqs. (29)–(30). Such a procedure
allows us to verify the effects that the evolution of the extra
coordinate causes in our 4D observable universe.

Note that because of the exponential in (17), the depen-
dence of the cosmological parameters on C2 will vanish.
Therefore, I will take once again C1 = −1 (as in Fig. 1)
and write the cosmological parameters in terms of λ and t
only.

Fig. 1 Time evolution of l from Eqs. (29)–(30) withC1 = −1,C2 = 1,
and λ = −5π
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Fig. 2 Time evolution of the mean scale factor a with C1 = −1 and
λ = −5π

The mean scale factor a tells us how the expansion of
the universe depends on time. From the general KK metric
presented in Eq. (5), a = (e3βeγ )1/4. Figure 2 shows the
time evolution of a for the present model, which reads

a = e
λ+
(t,λ)

λ2 t t1/2, (32)

with 
(t, λ) ≡ √
λ[λ + 2(8π + λ)t].

Note that, fundamentally, an expanding universe should
have positive time derivatives for a, which is being respected
in Fig. 2.

Note also that Eqs. (29)–(30) have been applied for the
dependence on l in the calculation of a, as was previously
mentioned. The same approach will be applied in the calcu-
lation of the next cosmological parameters.

From the mean scale factor, one is able to obtain the Hub-
ble parameter H = ȧ/a, which relates the recession veloc-
ity of galaxies with their distance through Hubble’s law:
v = H(t)r . From Eq. (32),

H = 2
(t, λ) + λ[(
(t, λ) + 2)t + 2] + 16π t

2λ
(t, λ)t2 . (33)

The evolution of H through time is shown in Fig. 3. One
should note that the plot does not predict negative values for
H , which would be a physical inconsistency in an expanding
universe. Moreover, since H ∝ t−1

H , with tH being the Hub-
ble time, H must decrease with time, which can be observed
in Fig. 3.

In cosmology it is also common to work with the deceler-
ation parameter q = −ä/(ȧH), so that for negative values of
q, the universe expansion is accelerating. Figure 4 shows the
behavior of q through time from Eqs. (32)–(33). Note that
the negative values of q for high values of t are in accordance
with the recent cosmic acceleration predicted in [1,2,5].

Fig. 3 Time evolution of the Hubble parameter H with C1 = −1 and
λ = −5π

Fig. 4 Time evolution of the deceleration parameter q with C1 = −1
and λ = −5π

5 Discussion

In this work I have presented IMM solutions to 5D f (R, T )

theory from a general KK metric in which the coefficients
depend on both time and extra coordinate. The f (R, T ) grav-
ity model depends on a source term, representing the vari-
ation of the energy-momentum tensor with respect to the
metric. Taking into account the covariant divergence of the
energy-momentum tensor, I have obtained an equation for the
evolution of the extra coordinate through time. Such an equa-
tion has revealed, in a natural form, the compactification of
the fifth dimension (it should be noted that the compactifica-
tion of the extra coordinate is usually imposed in KK models
or even in 5D f (R, T ) models [40–42], while here it has been
obtained purely from the application of the non-conservation
of the energy-momentum tensor, predicted by f (R, T ) the-
ories). Furthermore, when the relation l(t) is substituted in
the cosmological parameters of the model, one obtains a pro-
jection of the fifth coordinate evolution in our observable 4D
universe. Such a substitution is in accordance with recent
observations of anisotropies in the cosmic microwave back-
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ground temperature [5], which indicate a negative decelera-
tion parameter for the dynamics of the present universe.

Other applications of IMM have been explored in [22,23].
In these cases, instead of the f (R, T ) theory, the application
was made to 5D anisotropic models. In [22], solutions for
the density and pressure of the universe in Bianchi type-II
scenario presented exponential behavior. Note that solutions
(18)–(19) also present such a feature.

The behavior ρ ∝ t−1 in (18) is not a novelty in extra-
dimensional models. In the Randall–Sundrum braneworld
model [46], which explains the hierarchy problem cited in
Sect. 1, or even in its generalization [47], the existence of
a bulk in which our usual 4D universe (brane) is embedded
yields an attenuation in the time evolution of ρ. Such an
attenuation is predicted from the modified Friedmann equa-
tions. While the standard 4D Friedmann equation predicts a
linear dependence on the matter-energy density (H2 ∝ ρ),
in braneworld models the matter-energy density of the brane
enters quadratically on the equation (H2 ∝ ρ2) (recall that
the Hubble parameter is inversely proportional to the Hubble
time). The present work corroborates, through Eq. (18), the
prediction that extra-dimensional models should present an
attenuation in the time evolution of ρ.

Moreover, in solutions (18)–(19), if one assumes C2 = 0,
note that the dependence on the extra coordinate vanishes.
Such solutions describe a stiff matter dominated scenario,
with EoS p = ρ. Some early universe models indicate that
there may have existed a phase prior to that of radiation in
which our universe dynamics was dominated by stiff mat-
ter (see, for instance, [48,49], the latter being valid for any
number of spatial dimensions). The presence of stiff matter
in cosmological models may explain the baryon asymme-
try and the density perturbations of the right amplitude for
the large scale structure formation in the universe [50,51]. It
may also play an important role in the spectrum of grav-
itational waves generated in the inflation era [52]. These
points shall be carefully investigated and reported in future
works.

In Sect. 3.2, I have derived IMM time-dependent (time
only) solutions from (10)–(12). The same sort of approach
was applied in [19,22]. The relation ρ ∝ t−2 of the �CDM
cosmological model is retrieved in solution (22). Such a
retrieval was also obtained from the IMM application in [23].

In Sect. 4 I have derived a relation between l and t from
the non-conservation of the energy-momentum tensor, which
is a fundamental characteristic of f (R, T ) theories. Such a
relation reveals the compactification of the extra coordinate.
A difficulty with compactification is that it cannot be imposed
indiscriminately on whichever dimensions one likes. This
model predicts compactification (check Fig. 1) instead of
imposing it.

Besides, the functional form of l(t) has revealed a very
substantial feature about the 4D universe dynamics. The sub-

stitution of Eqs. (13), (17), (29), and (30)1 in a = (e3βeγ )1/4

reduces the cosmological parameters of the universe to the
usual 4D space-time. Such a substitution, for which, for the
sake of simplicity I have used the same values forC1 and λ as
used in Fig. 1, has disclosed the recent accelerated expansion
of the observable universe, through a negative deceleration
parameter for high values of t . Such a dynamical behavior
might be interpreted as a geometrical effect obtained from
the shrinking of the extra dimension. Note that in order to
obtain an accelerated expansion, the present model did not
assume the existence of any kind of exotic fluid or scalar field.
Instead, the relation which exposes a natural shrinking of the
extra dimension also displays naturally an accelerated cos-
mic expansion in 4D when substituted in the cosmological
parameters.

Therefore, the intriguing acceleration of the expansion of
the universe could be justified purely in a geometrical per-
spective, since the compactification of the extra dimension
yields q < 0, which accounts for the present scenario of
the dynamics of the universe [5]. In fact, the unification of
f (R, T ) theory with KK cosmology through IMM appli-
cation highlights the importance that the geometry of a 5D
universe has in our 4D observable universe.

One might wonder about the reason why the cosmological
solutions of the present model do not recover standard gravity
solutions when λ = 0, as originally proposed in [33]. One
should note that such a recovering is predicted in the 4D
theory. The presence of extra-dimensional terms makes it
impossible to retrieve standard gravity this way.
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