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Abstract. When at equilibrium, large-scale systems obey conventional thermodynamics because they
belong to microscopic configurations (or states) that are typical. Crucially, the typical states usually repre-
sent only a small fraction of the total number of possible states, and yet the characterization of the set of
typical states—the typical set—alone is sufficient to describe the macroscopic behavior of a given system.
Consequently, the concept of typicality, and the associated Asymptotic Equipartition Property allow for
a drastic reduction of the degrees of freedom needed for system’s statistical description. The mathemat-
ical rationale for such a simplification in the description is due to the phenomenon of concentration of
measure. The later emerges for equilibrium configurations thanks to very strict constraints on the under-
lying dynamics, such as weekly interacting and (almost) independent system constituents. The question
naturally arises as to whether the concentration of measure and related typicality considerations can be
extended and applied to more general complex systems, and if so, what mathematical structure can be
expected in the ensuing generalized thermodynamics. In this paper, we illustrate the relevance of the con-
cept of typicality in the toy model context of the “thermalized” coin and show how this leads naturally
to Shannon entropy. We also show an intriguing connection: The characterization of typical sets in terms
of Rényi and Tsallis entropies naturally leads to the free energy and partition function, respectively, and
makes their relationship explicit. Finally, we propose potential ways to generalize the concept of typicality
to systems where the standard microscopic assumptions do not hold.

1 Introduction

A major conceptual contribution of statistical mechan-
ics is that it successfully refocused its attention from
phenomenological concepts such as heat and energy
flow, which dominated thermodynamics in the second
half of the nineteenth century, to the question of how
the underlying microscopic dynamics occupies the space
of potential configurations. This, in turn, made it pos-
sible to understand why a simple compact, macroscopic
description is so efficient in describing microscopically
diverse thermodynamic systems [1–5]. The key mathe-
matical concept that is responsible for such a “miracu-
lous” simplicity in the description is known as the con-
cept of a typical set [6–9]. In fact, when at equilibrium,
large-scale systems obey conventional thermodynam-
ics, because they lie in microscopic configurations (or
states) that are typical. Typical states comprise a frac-
tion of those possible states that carry total probability
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close to one. The set of these states is thus called the
typical set.

Crucially, the set of typical states comprises only a
small fraction of the total number of possible states,
and yet typical sets alone are sufficient to describe the
macroscopic behavior of a given system. Consequently,
the concept of typicality allows for a drastic reduction
of the degrees of freedom needed for system’s statistical
description. A quantitative definition of typical states
in weakly interacting systems is most easily provided
by information theory [6]. For continuous random vari-
ables, the concept of typical sets is also studied in the
framework of measure theory where it is tantamount to
the concentration of measure phenomenon [10–12]. The
latter was popularized in the context of (multi)fractals
by B. Mandelbrot who also dubbed the phenomenon as
curdling [13]. It is, therefore, the existence of the typi-
cal set of micro-states that allows the heat and energy
flow considerations (underlying phenomenological ther-
modynamics) to be understood in terms of the occu-
pancy of the state space in statistical mechanics [14].
Furthermore, the equivalence between microcanonical
and canonical ensemble description in the thermody-
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namic limit is, again, a direct consequence of the exis-
tence of a typical set of equal-energy microstates in the
canonical ensemble [15].

In Shannon’s information theory, partitioning a set
of states or sequences into those that are typical and
those that are atypical is possible due to the Asymptotic
Equipartition Property (AEP) or Shannon–McMillan–
Breiman theorem [6], which states that all the sequences
in the typical set have almost the same probability to
occur. There, the typical set and the AEP are instru-
mental in proving main results for the channel capac-
ity and noiseless coding, as well as to provide a sound
mathematical basis for various information compression
strategies. Shannon’s original proof of the AEP for inde-
pendent and identically distributed (i.i.d.) sequence of
random variables (as well as subsequent extensions to
weakly dependent random variables) uses the weak law
of large numbers. In such a context, Shannon entropy
emerges as a natural tool for characterizing typical
probabilities. and, by extension, as a quantifier of the
cardinality of the typical set. Moreover, the typical set
contains sequences with a sample entropy (analog of
Boltzmann entropy) that is close to the Gibbs–Shannon
entropy. This is an information-theoretic equivalent of
the celebrated Einstein’s entropic principle [16] (i.e.,
reversal of Boltzmann’s entropic formula) (Fig. 1).

When the underlying dynamics satisfies appropriate
boundary conditions, e.g. it is weekly interacting, then
the conventional mathematical structure of equilibrium
thermodynamics is directly implied by the concentra-
tion of measure phenomenon. This fact will be illus-
trated shortly with an example of a simple coin toss at
different “temperatures”. Weakly interacting systems
with (almost) independent system constituents are epit-
omized, for instance, in the celebrated Stosszahlansatz
hypothesis [17] or Bogoliubov’s no-correlation initial
conditions [18]. The question naturally arises as to
whether the concentration of measure and related typ-
icality can be applied to more general systems, such
as complex dynamical systems, and if so, what mathe-
matical structure can be expected in the ensuing gen-
eralized thermodynamics. The motivation for such a
question is clear: the existence of typical behaviors
implies a massive reduction of degrees of freedom and,
in turn, triggers the emergence of macroscopic, inter-
related functionals that allow us to characterize and
define macroscopic observables. If typical sets and asso-
ciated macroscopic functionals could be identified in
systems with higher underlying microscopic complex-
ity, this would open up the possibility of characterizing
them (i.e. establishing predictive principles) in a way
that would mimic equilibrium thermodynamics. It is
the aim of this paper to address this issue and put for-
ward some of our preliminary results.

The paper is organized as follows. In the next sec-
tion, we analyze consequences of the concentration
of measure and typicality in simple coin tossing sys-
tems. In particular, we discuss both microcanonical
and canonical ensemble descriptions of such systems,
and the role of temperature in the occupation of the
state space. In Sect. 3, we extend our discussion beyond

the conventional Shannon’s paradigm, and we derive
the conditions for typicality using both Rényi and
Tsallis entropies. Interestingly, we find that the ensu-
ing typical sets are well defined, allowing the occupa-
tion of the sampling space to be mapped into well-
known functionals. In particular, typicality arising from
Rényi entropies naturally involves the emergence of free
energy, whereas for Tsallis entropies the typical set
bounds are phrased in terms of the partition function.
We end with Sect. 4, in which we briefly discuss a pos-
sible general framework in which the assumptions on
the underlying dynamics are relaxed, leading to gen-
eral forms of entropy characterizing the sampling space
occupation even in cases with very complex dynamics
and/or unstable sampling spaces. Conclusions and per-
spectives are finally summarized in Sect. 5. For the sake
of clarity, some more technical considerations are rele-
gated to appendix.

2 Concentration of measure: tossing a coin

In this section, we provide the characterization of a
fairly simple stochastic process—coin tossing. In partic-
ular, we show how the key observable quantities from
information theory and statistical mechanics can be
interpreted in terms of measure concentration and typ-
icality, that is, in terms of state space occupation.

2.1 A coin’s “microcanonical” ensemble

Suppose we have a system that can only be in two states
{0, 1}. In the following, we will refer to this system as
a coin. To start, let us assume that after running (or
observing) our system N times, it shows exactly m0

0’s and m1 1’s, with N = m0 + m1. This coin tossing
process represents a two-valued discrete-time stochas-
tic process known as a Bernoulli (binary) process. Let
σg(m0,m1) be a generic sequence of 1’s and 0’s, i.e.

σg(m0,m1) = (1, 0, 0, 1, 1, 0, ...., 0, 1), (1)

containing exactly m0 0’s and m1 1’s. We refer to the set
of all such sequences as ΩN (m0,m1). The cardinality of
such a set is given by the binomial coefficient:

|ΩN (m0,m1)| =
(

N

m0

)
. (2)

We note that all sequences (1) are equally likely. The
Boltzmann-like entropy of the macrostate defined by the
set Ω(m0,m1) is defined as

S(Ω(m0,m1)) = log |Ω(m0,m1)| . (3)

By using Stirling’s approximation

log(n!) = n log n − n + O(log n), (4)
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Fig. 1 A Different underlying microscopic hypothesis: (Top), the standard i.i.d. assumption, or its physical analogue, the
Stosszahlansatz or chaos molecular hypothesis. (Bottom) a stochastic process whose sampling space grows in time, thereby
violating the assumptions over which standard statistical mechanics is built. B (Top) A physical system in equilibrium whose
microscopic dynamics obeys the molecular-chaos hypothesis and (Bottom) a toy representation of the collective behaviour
of a physical system with increasing sampling space. C (Top) The standard assumptions of equilibrium statistical mechanics
lead naturally to the concept of typical set. (Bottom) more complex dynamics may also have typical behaviours, albeit
more complex to identify or characterize. D (Top) The existence of the typical set in equilibrium configurations gives rise to
the Shannon entropy, as the natural functional accounting for the typical occupation of the sampling space. (Bottom) more
complex dynamics still leading to typical behaviours may give rise to generalized forms of entropy and other functionals

which is valid for sufficiently large values of n, we might
rewrite (3) as

log |Ω(m0,m1)| ≈ NH(θ) . (5)

Here, the entropy per toss H(θ) is nothing but the
Shannon entropy associated with the Bernoulli’s ran-
dom variable θ, i.e. variable that acquires two values (0
and 1), with respective probabilities

p(θ = 0) ≡ p(0) =
m0

N
,

p(θ = 1) ≡ p(1) =
m1

N
, (6)

so that

H(θ) = −
∑

θ∈{0,1}
p(θ) log p(θ) . (7)

In passing we might note that H(θ) is maximized by a
uniform distribution with a maximum log 2, thus

H(θ) ≤ log 2 . (8)

One can interpret the above results as a toy represen-
tation of the microcanonical ensemble.

2.2 A coin’s “canonical” ensemble

Let us now consider the sequence of N coin tosses for
which we know only the prior probabilities of occur-
rence of 0 or 1, i.e. p(0) or p(1), respectively. Instead
of a specific sequence of 0’s and 1’s with fixed m0

and m1, we now have a i.i.d. sequence of random vari-
ables θ1, θ2, ..., θN following the stationary distribution

{p(0), p(1)}. We denote the state space of all possible
sequences of length N as ΩN , so that

ΩN = {0, 1}N . (9)

Clearly, the cardinality of this state space is

∣∣ΩN
∣∣ = 2N . (10)

Let us observe how the measure concentration phe-
nomenon arises in this case as a consequence of the
law of large numbers. Indeed, let us denote the average
of the sum after N trials as 〈θN 〉. Then for any N we
have

〈θN 〉 = Np(1). (11)

At this stage we might employ, e.g. Hoeffding’s version
of the law of large numbers (or Hoeffding’s inequal-
ity) [19], which states that for all δ > 0

P

{
1
N

(
N∑

k=1

θk − 〈θN 〉
)

≥ δ

}

= P

{(
1
N

N∑
k=1

θk − p(1)

)
≥ δ

}
≤ e−2δ2N . (12)

We see that most of the weight in long sequences is
carried by sequences whose arithmetic average is close
to p(1), and that deviations from this behavior are
extremely rare in long sequences. But can we know
more? Apart from the inequality (12), it is important
to know how the expected sequences look like. Obvi-
ously, not all 2N sequences of length N have the same
arithmetic mean. This leads to the concept of typicality
and the associated concept of typical set.
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2.2.1 The typical set

Let p(θ1, θ2, . . . , θN ) be the probability of observing the
sequence θ1, θ2, . . . , θN of i.i.d. random variables, then
in the large N limit the following form of AEP holds

− 1
N

log p(θ1, θ2, . . . , θN ) → H(θ), (13)

where the convergence is in probability. This can be
proved in various ways [6,20]. For instance, if we employ
the fact that θk’s are i.i.d., we have

− 1
N

log p(θ1, θ2, . . . , θN ) = − 1
N

N∑
k=1

log p(θk),

(14)

and by Hoeffding’s inequality

P

{(
− 1

N

N∑
k=1

log p(θk) + 〈log p(θ)〉
)

≥ δ

}

= P

{(
− 1

N

N∑
k=1

log p(θk) − H(θ)

)
≥ δ

}

≤ e−2δ2N . (15)

which directly implies (13). The aforementioned AEP
has important consequences for the understanding of
the state space structure. In fact, let AN

ε be the set
of sequences of length N , σN

1 , . . . σN
m , . . . with a generic

member σN
g satisfying

e−N [H(θ)+ε] ≤ p(σN
g ) ≤ e−N [H(θ)−ε], (16)

(for ε > 0). For reasons to be seen shortly, the set AN
ε

is known as a typical set. Equation (16) implies that

∣∣∣∣− 1
N

log p(σN
g ) − H(θ)

∣∣∣∣ ≤ ε, (17)

or in probability

P

{∣∣∣∣− 1
N

log p(θ1, θ2, . . . , θN ) − H(θ)
∣∣∣∣ < ε

}

= P
{
θ1, θ2, . . . , θN ∈ AN

ε

}
> 1 − 2e−2ε2N .

(18)

On the last line, we used the inequality (15) with ε
instead of δ. Equation (18) shows that the probability
of obtaining a sequence that belongs to the typical set
AN

εN
converges to one in the large N limit. The result

(18) directly implies that

1 − 2e−2ε2N < P
{
θ1, θ2, . . . , θN ∈ AN

ε

}

≤
∑

θ1,θ2,...,θN ∈AN
ε

e−N [H(θ)−ε]

=
∣∣AN

ε

∣∣ e−N [H(θ)−ε], (19)

where
∣∣AN

ε

∣∣ is the cardinality of the set AN
ε . In the

derivation, we used the defining relation (16). Similarly,
one can easily see (cf. e.g. [6]) that

1 =
∑

θ1,θ2,...,θN ∈ΩN

p(θ1, θ2, . . . , θN )

≥
∑

θ1,θ2,...,θN ∈AN
ε

p(θ1, θ2, . . . , θN )

≥
∑

θ1,θ2,...,θN ∈AN
ε

e−N [H(θ)+ε]

=
∣∣AN

ε

∣∣ e−N [H(θ)+ε]. (20)

Thus, the cardinality of AN
ε is constrained as follows

(1 − 2e−2ε2N )eN [H(θ)−ε] ≤ ∣∣AN
ε

∣∣ ≤ eN [H(θ)+ε] .

(21)

From Eq. (10), we get that the relative size of the typical
set with respect to the cardinality of the state space ΩN

is bounded as
∣∣AN

ε

∣∣
|ΩN | ≤ e−Nδ, (22)

with δ = [log 2 − H(θ)] − ε. From Eq. (8), we can con-
clude that, outside the special case of equiprobability,
the relative size of the typical set in relation to the state
space decays at least exponentially fast with N , so

∣∣AN
ε

∣∣
|ΩN | → 0. (23)

This is a hallmark of typical sets, namely their relative
cardinality is very small, but they carry almost all of the
probability. In our case, we may notice that the mea-
sure becomes more and more concentrated around the
tiny region of the state space where the sequences have
(almost) constant probability e−NH(θ). Consequently
for any σN

g ∈ AN
ε

p(σN
g ) ∼ e−NH(θ), (24)

where the symbol ∼ denotes asymptotic equivalence to
the first order in the exponent, that is a ∼ b if

log a

log b
→ 1. (25)

(if b = 1, then a ∼ 1 is satisfied by definition). There-
fore, as the sequences get closer and closer to the typical
ones, they tend to become equi-distributed.
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In passing we might observe that Eq. (21) allows us
to write the cardinality of the typical set as

∣∣AN
ε

∣∣ ∼ eNH(θ). (26)

This could alternatively be rewritten as

log
∣∣AN

ε

∣∣
N

→ H(θ). (27)

The latter means that the Shannon entropy is the log-
arithm of the cardinality of

∣∣AN
ε

∣∣ per particle. Interest-
ingly, the cardinality of

∣∣AN
ε

∣∣ approaches in the large N
limit the cardinality of the set of sequences containing
exactly m0 = Np(0) zeros and m1 = Np(1) ones, i.e.
the cardinality of Ω(m0,m1) discussed in the previous
subsection.

From the foregoing coin tossing system, we can con-
clude that: (a) the typical set concentrates around the
subset of states from the state space that represent
the “microcanonical” ensemble states from Sect. 2.1,
(b) the measure is distributed in such a way that,
as N increases, it gets closer and closer to the equi-
distribution,1 i.e. the “microcanonical” ensemble dis-
tribution 1/|ΩN (m0,m1)|. This latter property is typi-
cally referred to as AEP [6], and it is a particular case of
the measure concentration phenomenon. Finally, (c) in
the coin toss example, we have seen that entropy is just
a (logarithmic) measure that quantifies the occupation
of the state space and characterises the concentration
of measure as long as N is large.

2.2.2 “Temperature” and occupation of the state space

Let us now “thermalize” the above Bernoulli binary
scheme. To this end, we consider the following scenario:
First, we take the process described above as the ref-
erence process θ, following {p(0), p(1)}, and formally
associate a unit temperature with this process. Without
loss of generality, we assume p(0) > p(1) (the special
case when p(0) = p(1) = 1/2 will be discussed sepa-
rately). Second, we deform the process θ with a single
deformation parameter β so that

{p(0), p(1)} → {pβ(0), pβ(1)} , (28)

where pβ(k) is the escort transformation of the proba-
bility distribution, i.e.

pβ(k) =
pβ(k)
Zβ

, (29)

with the normalization factor Zβ defined as

Zβ =
∑

k∈{0,1}
pβ(k) . (30)

1 Let us stress that the word equi-distribution implies that
probabilities are equal up to first order in the exponent.

We might note that

lim
β→∞

pβ(0) = 1, lim
β→∞

pβ(1) = 0, (31)

i.e., the process is “frozen” at high β’s, meaning that
only a single result will materialise in repeated tosses.
On the other hand

lim
β→0

pβ(0) =
1
2
, lim

β→0
pβ(1) =

1
2
, (32)

i.e., at low β’s the process gets more and more close to a
random fair coin. Note that if we had started with the
reference process where p(0) = p(1) = 1/2, then the
escort transformation would not change this distribu-
tion; in other words, the fair coin distribution is a fixed
point of the escort transformation. However, the latter
fixed point is unstable, as any small deviation from the
fair coin rule will cause the process to “freeze” in the
β → ∞ limit. Consequently, β behaves like the inverse
temperature: The higher the temperature, the higher
the randomness. In terms of state space occupation, it
is easy to check that

lim
β→∞

∣∣AN
ε (β)

∣∣ ∼ 1, (33)

that is, the effective size of the state space is reduced
to a single state, the sequence (0, 0, . . . , 0), in which the
system is frozen. The latter state plays a role analogous
to that of the pure state in quantum mechanics. On the
other hand

lim
β→0

∣∣AN
ε (β)

∣∣ ∼ ∣∣ΩN
∣∣ = eN log 2 , (34)

that is, the whole space of all possible binary sequences
of length N . It is not difficult to see that for a generic
β we have

∣∣AN
ε (β)

∣∣ ∼ eNH(θ(β)), (35)

where

H(θ(β)) = −
∑

i∈{0,1}
pβ(i) log pβ(i), (36)

is the Shannon entropy of the “thermalized” coin. It is
not difficult to verify that

d
dβ

H(θ(β)) < 0, (37)

from which we can deduce that the cardinality of the
typical set decreases monotonically with increasing β,
and that the actual choice of the reference process is
irrelevant for this type of behavior.

Note that Eq. (33) is valid for arbitrarily large but
fixed N . It is interesting to know what happens when
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the limit N → ∞ is performed first. With the help of
Eq. (35), we can write

lim
β→∞

lim
N→∞

log
∣∣AN

ε (β)
∣∣

N
= H(θ(∞)) = 0, (38)

which is reminiscent of the third law of thermodynam-
ics, where in order to get correct entropy, one must first
consider the thermodynamic limit and then the zero
temperature limit [21].

3 Typicality in coin tossing systems—going
beyond Shannon’s paradigm

From the preceding discussion, it follows that the con-
cept of typical sets is closely related to the concept of
Shannon entropy. It is thus natural to ask how unique
is the role of Shannon entropy in determining typical
sets. To answer this, we will go back to our θ process
described by the distribution {p(0), p(1)} and consider
two important classes of non-Shannonian entropies,
namely Rényi and Tsallis entropies.

The Rényi entropy of order α of the process θ is
defined as [22,23]

Hα(θ) =
1

1 − α
log

[ ∑
k∈{0,1}

pα(k)

]
, (39)

where α > 0. By L’Hôpital’s rule, the Rényi entropy
converges to the Shannon entropy for α → 1, that is:

lim
α→1

Hα(θ) = H(θ). (40)

Similarly, we may introduce the Tsallis entropy of order
α as [24,25]

Sα(θ) =
1

α − 1

[
1 −

∑
k∈{0,1}

pα(k)

]
, (41)

where again

lim
α→1

Sα(θ) = H(θ). (42)

In this section, we will explore how these two probabil-
ity functionals characterize the concentration of mea-
sure in the Bernoulli binary scheme. In particular, we
will see that the characterization of the typical set by
the Rényi entropy and the Tsallis entropy leads in a
natural way to the equilibrium free energy and the par-
tition function, respectively.

3.1 Typical set from Rényi entropy

Let us again consider a sequence of i.i.d. random vari-
ables θ1, . . . , θN following the distribution {p(0), p(1)}

characterizing the Bernoulli process θ. We can again
use Hoeffding’s inequality to show that

1
1 − α

log

(
1
N

N∑
k=1

pα−1(θk)

)
→ Hα(θ), (43)

where the convergence is understood as the convergence
in probability. Indeed, Eq. (43) directly follows from
Hoeffding’s inequality

P

{(
1
N

N∑
k=1

pα−1(θk) − 〈pα−1(θ)〉
)

≥ δ

}

≤ e−2δ2N , (44)

where

〈pα−1(θ)〉 =
1
N

∑
θ1,...,θN

p(θ1, . . . , θN )
N∑

k=1

pα−1(θk)

=
∑

l∈{0,1}
pα(l). (45)

Similarly to Shannon entropy, we can associate with the
expression (43) a sequence of typical sets, which we will
call Rényi-type typical sets. In fact, let BN

ε (α) be the
set of sequences of length N , i.e. σN

1 , . . . , σN
m , . . . with a

generic member σN
g = (θg,1, . . . , θg,N ) which satisfies

Ne(1−α)Hα(θ)−ε ≤
∑
k≤N

pα−1(θg,k)

≤ Ne(1−α)Hα(θ)+ε, (46)

(for arbitrary ε > 0). In Appendix A, we use the concept
of the Kolmogorov–Nagumo mean [26,27] to show that
this formulation of a typical set represents a natural
generalization of the Shannon case. For ε � 1, this can
be equivalently rewritten as

∣∣∣∣∣
1
N

N∑
k=1

pα−1(θg,k) − 〈pα−1(θ)〉
∣∣∣∣∣ ≤ ε̃, (47)

where

ε̃ = e(1−α)Hα(θ)ε. (48)

In probability, we can write (47) as

P

{∣∣∣∣∣
1
N

N∑
k=1

pα−1(θk) − 〈pα−1(θ)〉
∣∣∣∣∣ < ε̃

}

= P
(
θ1, θ2, . . . , θN ∈ BN

ε (α)
)

> 1 − 2e−2ε̃2N .

(49)
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On the last line, we used (44) and set ε̃ = δ. From (49)
directly follows that

P
(
θ1, θ2, . . . , θN ∈ BN

ε (α)
) → 1. (50)

Therefore, similar to Shannon’s case, in the large N
limit the set BN

ε (α) carries almost all probability—
justifying the name typical set.

To find bounds on the cardinality of BN
ε (α), we can

follow the strategy from Sect. 2.2.1. In particular, to
obtain the lower bound, we can write (for α > 1)

1 − 2e−2ε̃2N < P
{
θ1, θ2, . . . , θN ∈ BN

ε (α)
}

=
∑

θ1,θ2,...,θN ∈BN
ε (α)

e
N

α−1

∑
k≤N

1
N log(pα−1(θk))

≤
∑

θ1,θ2,...,θN ∈BN
ε (α)

e
N

α−1 log[∑k≤N
1
N (pα−1(θk))]

=
∣∣BN

ε (α)
∣∣ e−N [Hα(θ)−ε]. (51)

Here, on the third line, we used Jensen’s inequality for
concave functions (in this case logarithm) and on the
last line, we employed (46). Should we repeat the argu-
ment for α < 1, we would obtain

1 − 2e−2ε̃2N <
∣∣BN

ε (α)
∣∣ e−N [H2−α(θ)−ε]. (52)

As for the upper bound, we can write (α > 1)

1 =
∑

θ1,θ2,...,θN ∈ΩN

p(θ1, θ2, . . . , θN )

≥
∑

θ1,θ2,...,θN ∈BN
ε (α)

p(θ1, θ2, . . . , θN )

=
∑

θ1,θ2,...,θN ∈BN
ε (α)

e
N

1−α

∑
k≤N

1
N log(p1−α(θk))

≥
∑

θ1,θ2,...,θN ∈BN
ε (α)

e
N

1−α log[∑k≤N
1
N (p1−α(θk))]

=
∣∣BN

ε (α)
∣∣ e−N [H2−α(θ)+ε]. (53)

Similarly for, α < 1 we get

1 ≥ ∣∣BN
ε (α)

∣∣ e−N [Hα(θ)−ε]. (54)

Thus, the cardinality of |BN
ε (α) is constrained as fol-

lows (α > 1)

(1 − 2e−2ε̃2N )eN [Hα(θ)−ε] ≤ ∣∣BN
ε (α)

∣∣
≤ eN [H2−α(θ)+ε], (55)

and similarly for α < 1.
Since maximum of Rényi entropy for the Bernoulli

binary scheme is log 2, we get that
∣∣BN

ε (α)
∣∣

|ΩN | → 0, (56)

which again shows that the relative cardinality decays
at least exponentially with N . In fact, one can prove
even stronger statement [28], namely that the cardinal-
ity of the Rényi-type typical set satisfies

|BN
ε (α)| ∼ |AN

ε/α|. (57)

Now, we rename α to β and recall the definition of
the partition function Zβ from (30). Similarly, as in the
equilibrium thermodynamics, we can associate with the
partition function Zβ the free-energy-like functional

Fθ(β) = log Zβ , (58)

which can be succinctly rewritten as

Fθ(β) = (1 − β)Hβ(θ). (59)

In terms of free energy the typical set sequence identi-
fied through the Rényi entropy can be defined in a more
compact way as the sequences pσN

k
bounded as

eFθ(β) − ε ≤ 1
N

∑
k≤N

pβ−1(θg,k)

≤ eFθ(β) + ε. (60)

So, the typical set arising from the Rényi entropy gives
rise to the free-energy-like functional.

In passing we note that the Shannon entropy of the
“thermalized” coin (36) can be rewritten as

H(θ(β)) = βH(pβ , p) + (1 − β)Hβ(θ)
= βH(pβ , p) + Fθ(β). (61)

Here the reference process θ has temperature 1 and

H(pβ , p) = −
∑

k∈{0,1}
pβ(k) log p(k), (62)

is an analogue of internal energy.2
This connection of the Rényi entropy with the

free energy through a reference process was primarily
reported in [29] and studied in depth in [30].

3.2 Typical sets from Tsallis entropy

Now, we turn to Tsallis entropy. Proceeding as above,
one can straightforwardly proof that

1
α − 1

⎛
⎝1 −

∑
k≤N

1
N

pα−1(θk)

⎞
⎠ → Sα(θ). (63)

2 Note that if one parametrizes p(i) = e−ui , where ui can
be identified by some energy value, then H(pβ , p) can be
straightforwardly rewritten as 〈u〉.
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where the convergence is again meant in probability.
The latter is a simple consequence of Eq. (44).

With the expression (63), we can associate typical
sets that we will call Tsallis-type typical sets. In par-
ticular, let CN

ε (α) be the set of sequences of length
N , i.e. σN

1 , . . . , σN
m , . . . with a generic member σN

g =
(θg,1, . . . , θg,N ), which satisfies

N [1 − (α − 1)Sα(θ) − ε] ≤
∑
k≤N

pα−1(θg,k)

≤ N [1 − (α − 1)Sα(θ) + ε], (64)

(for arbitrary ε > 0). The set CN
ε (α) is a typical set

because

P
(
θ1, θ2, . . . , θN ∈ CN

ε (α)
) → 1. (65)

Before showing the validity of this relation, we will
motivate the relation (64). To this end, we rewrite Tsal-
lis’ entropy in terms of deformed logarithm as

Sα(θ) =
∑
k≤N

p(θk) lnα

(
1

p(θk)

)
, (66)

where the α-logarithm is defined as

lnα(x) =
∫ x

1

dt t−α =
1

1 − α

(
x1−α − 1

)
. (67)

By rewriting Eq. (16) as

H(θ) + ε ≥
∑
k≤N

1
N

log
(

1
p(θg,k)

)

≥ H(θ) + ε, (68)

we might propose for the Tsallis-type typical set to sat-
isfy the defining relation

Sα(θ) + ε ≥
∑
k≤N

1
N

lnα

(
1

p(θg,k)

)

≥ Sα(θ) − ε, (69)

which indeed coincides with (64). Here, the factor 1−α
was assimilated in the redefinition of ε, so that the
new ε is still positive. It is quite interesting to note
that (64) can also be rewritten in a form that is remi-
niscent of (46), namely

N
[
eSα(θ)−ε

α

]1−α

≤
∑
k≤N

pα−1(θg,k)

≤ N
[
eSα(θ)+ε

α

]1−α

, (70)

where the α-exponential is defined as [25]

ex
α = [1 + (1 − α)x]1/(1−α)

+ , (71)

with [z]+ = max{z, 0}. Inequality (70) is valid for α <
1. Bounds must be reversed for α > 1.

Let us now turn back to (65). In order to prove it, we
rewrite (64) as

ε ≥
∣∣∣∣∣
1
N

N∑
k=1

pα−1(θg,k) − [1 + (1 − α)Sα(θ)]

∣∣∣∣∣
=

∣∣∣∣∣
1
N

N∑
k=1

pα−1(θg,k) − 〈pα−1(θ)〉
∣∣∣∣∣ , (72)

which in probability can be written as

P

{∣∣∣∣∣
1
N

N∑
k=1

pα−1(θk) − 〈pα−1(θ)〉
∣∣∣∣∣ < ε

}

= P
(
θ1, θ2, . . . , θN ∈ CN

ε (α)
)

> 1 − 2e−2ε2N .

(73)

The inequality is a consequence of (44). This concludes
our proof of (65).

Let us now turn our attention to the cardinality of
CN

ε (α). Again, we can follow the strategy of Sect. 2.2.1.
In particular, to obtain the lower limit we can write (for
α > 1)

1 − 2e−2ε2N < P
{
θ1, θ2, . . . , θN ∈ CN

ε (α)
}

=
∑

θ1,θ2,...,θN ∈CN
ε (α)

e
N

α−1

∑
k≤N

1
N log(pα−1(θk))

≤
∑

θ1,θ2,...,θN ∈CN
ε (α)

e
N

α−1 log[∑k≤N
1
N (pα−1(θk))]

=
∣∣CN

ε (α)
∣∣ [

eSα(θ)−ε]
α

]−N

. (74)

where on the last line, we used (72). For α < 1, we
would need to change α to 2 − α. To obtain the upper
bound we can write (for α > 1), cf. (53)

1 =
∑

θ1,θ2,...,θN ∈ΩN

p(θ1, θ2, . . . , θN )

≥
∑

θ1,θ2,...,θN ∈CN
ε (α)

p(θ1, θ2, . . . , θN )

≥
∑

θ1,θ2,...,θN ∈CN
ε (α)

e
N

1−α log[∑k≤N
1
N (p1−α(θk))]

=
∣∣CN

ε (α)
∣∣ [

eS2−α(θ)+ε]
α

]−N

. (75)

Consequently, the cardinality of CN
ε (α) is constrained

as follows (α > 1)

(1 − 2e−2ε2N )
[
eSα(θ)−ε

α

]N

≤ ∣∣CN
ε (α)

∣∣
≤

[
e

S2−α(θ)+ε]
2−α

]N

. (76)
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By identifying α with the “inverse of the temperature”
β, we obtain for the partition function that

Zβ = 1 − (β − 1)Sβ(θ). (77)

As a result, the condition (69) for typical Tsallis-type
sequences can be rewritten in the form

Zβ − ε ≤ 1
N

∑
k≤N

pβ−1(θg,k) ≤ Zβ + ε. (78)

Therefore, the identification of the typical sequences
from the Tsallis entropy leads to the emergence of the
partition function of the “thermalized process”.

4 Entropy and typicality: going beyond i.i.d.

As we saw in the previous section, the thermodynamic-
like structure of a process can be derived from the con-
centration of measure, under clearly stated underlying
dynamical assumptions: (1) constant state space, i.e. no
states appear or disappear through time, and (2) inde-
pendence in the successive drawings, i.e. no time cor-
relations are present. We then extended the notion of
typicality and typical set by characterizing the occupa-
tion of the state space by different limiting procedure,
giving rise to the Rényi and Tsallis entropies. In the
latter context, we could observe that the corresponding
entropies could not be formulated as sample entropies,
i.e. logarithms (or deformed logarithms) of the cardi-
nality of the ensuing typical sets—as it was possible
in the case of Shannon. On the other hand, the typi-
cal sets obtained were instrumental in defining “equi-
librium” thermodynamic functions, namely free energy
and partition function, without the need to introduce
thermalized coins (and escort transformation).

Going beyond the simple structure of the Bernoulli
binary scheme (or, more generally, i.i.d. processes), the
question arises: Could a foregoing macroscopic picture
emerge under more general assumptions? For instance,
for stochastic processes that may have growing or
shrinking state spaces. Thus, the first task is to define
a sufficiently general class of stochastic processes that
includes the above cases and, if necessary, also processes
violating the i.i.d. condition. We call such a class of
processes Compact Stochastic Processes (CSP’s) [9]. We
are especially interested in finding a sample entropy of
the system that is a functional of a trace-class type,
and thus generalize the formula (16). In turn, this
would represent the CSP’s version of Einstein’s cele-
brated entropic principle [16]. In the following, we will
briefly outline a general strategy in this direction. More
detailed discussion can be found in [9].

4.1 Basics: CSP’s

Let us consider a time-discrete stochastic processes
η [31,32]. A realization of N steps of the process is

denoted as η(N)

η(N) = η1, . . . , ηN , (79)

where η1, . . . , ηN are random variables themselves. Note
that, in different realizations of t steps of the process,
the sequence of random variables can be different, as the
process may display path dependence, long term corre-
lations, or changes of the phase space (either shrinking
or expanding). We denote a particular trajectory (or a
sample path) of the process as

x(t) ≡ x1, . . . , xN ∈ Ωη(N). (80)

Here Ωη(N) is the set of all possible trajectories of
the process η after N steps. We focus on the family
of stochastic processes for which there exists (i) a pos-
itive, strictly concave and strictly increasing function
Λ ∈ C2 in the interval [1,∞), such that Λ(1) = 0 [9,33],
and (ii) a positive, strictly increasing function g ∈ C2,
in the interval (1,∞), such that

lim
N→∞

1
g(N)

Λ
(

1
p(η(N))

)
= 1, (81)

in probability. Stochastic processes satisfying the above
convergence relation are CSP’s [9]. We recall that no
assumptions were made about the process beyond the
convergence condition (81). In particular, we do not
require independence of the successive values . . . , ηN−1,
ηN , ηN+1 . . . or stable state spaces from which the dif-
ferent elements of the sequence of random variables take
values. We call the pair of functions Λ, g compact scale
of the process η, and note that a CSP can have more
than one compact scale.

The convergence condition (81) implies the following
asymptotic behavior for Λ

lim
z→∞

Λ(λz)
Λ(z)

= 1 , ∀λ ∈ R
+ . (82)

We refer to the set of functions Λ as L. Typical candi-
dates for Λ are of the form Λ(z) = c logd(z), where c, d
are two positive, real valued constants or, more gener-
ally

Λ(z) = c1 logd1(1 + c2 logd2(1 + c3 logd3(. . .))), (83)

where c1, . . . and d1, . . . are positive, real valued con-
stants.3 In previous approaches, these constants have
been identified with scaling exponents that enable to
classify the different potential growing dynamics of the
phase space [9,34].

3 We observe that the Tsallis entropy would require an
additional condition on the convergence, as Λ ≡ lnα alone
does not satisfy the above condition directly.
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4.2 The typical set and entropy in CSP’s

If, given a stochastic process η, there exists a com-
pact scale Λ, g for which the convergence condition (81)
holds, then there exists a typical set AN

ε ⊆ Ωη(N)
of paths of the process η. The typical set will repre-
sent all probability in the limit of very large N , which
means that although the potential set of paths can
be arbitrarily large, only paths belonging to the typ-
ical set are expected to be effectively observed. A path
x(N) = x1 . . . xN of the process η belongs to the typical
set (or, alternatively, it is a typical path) if its associated
probability to occur is bounded as

1
Λ−1(g(N)(1 + ε))

≤ p(x(N))

≤ 1
Λ−1(g(N)(1 − ε))

, (84)

where Λ−1 is the inverse of Λ, i.e., (Λ−1 ◦ Λ)(z) =
z, which exists given the assumption that Λ is a
monotonously increasing function. In particular, one
can prove [9] that for any ε > 0 there is a N ′ > 0
such that, if N > N ′

P
(
x(N) ∈ AN

ε

)
> 1 − ε. (85)

In other words, the typical set usurps all probabil-
ity, and the probability of observing non-typical paths
becomes negligible. Note that since there is no assump-
tion beyond the convergence condition (81), we cannot
ensure the validity of tighter bounds on the concen-
tration measure, as we did in Sect. 2.2, where we used
Hoeffding’s inequality, see e.g. Eq. (12). From the defini-
tion and properties of the typical set, it follows directly
that there exists a non-increasing sequence of positive
numbers ε1, . . . , εN , . . . such that εN → 0 (which we will
write as εN ↘ 0), defining a sequence of typical sets

. . . , AN−1
εt−1

, AN
εt

, AN+1
εt+1

, . . . . (86)

by which:

P
(
x(N) ∈ AN

εN

) → 1 , (87)

i.e., the typical set concentrates all the probability.
If, in the limit of large N , all contributions to the

scaling factor g(N) of paths outside the typical set van-
ish, one can rewrite the scaling factor as a trace-class
entropic functional

SΛ(N) =
∑

x(N) ∈ Ωη(N)

p(x(N))Λ
(

1
p(x(N))

)
,

(88)

which satisfies the first three of the four Shannon-
Khinchin axioms for the entropic measure [9]. Conse-
quently, the scaling term g(N) can be identified with

the generalized entropy SΛ(N) in simple CSP’s. In turn,
by construction, SΛ(N) converges to the (generalized)
logarithm of the cardinality of the typical set, which
describes the effective size of the state space. Indeed,
for εN ↘ 0

Λ(|AN
εN

|)
SΛ(N)

→ 1. (89)

In addition, we observe that, for any x(N) ∈ AN
εN

, with
εN ↘ 0, the following limit holds

Λ
(

1
p(x(N))

)
SΛ(N)

→ 1 . (90)

This implies that the probabilities of the paths belong-
ing to typical set are all equal upon the application of
the generalized logarithm Λ. This might be viewed as
a non-i.i.d generalization of the conventional AEP.

With the above formalism, we, therefore, connected;
(1) the microscopic dynamics of the system, (2) the
effective increase of phase space (captured by the typ-
ical set evolution), and (3) a generalized entropic form
SΛ.

5 Discussion and conclusions

Characterizing the occupation of the state space is key
to understanding the macroscopic properties of systems
composed of many microscopic parts. The existence of
the typical set, which is a direct consequence of the con-
centration of measure phenomenon, allows a massive
reduction of degrees of freedom, giving rise to macro-
scopic functionals that characterize macroscopic con-
figurations (i.e., macrostates). The typical set is thus
the key concept that allows a rigorous justification of
the reasoning behind statistical mechanics. Parallel to
the considerations based on the concentration of mea-
sure, considerations on the deviations from the typi-
cal behaviors—studied by the so-called large deviations
theory—provide very valuable information about the
macroscopic behavior of the system [35]. In fact, the
two are complementary and thus provide essential infor-
mation for the possible thermodynamic interpretation
of the different features of the sample space occupancy.
The question remains whether and how the powerful
concept of typicality and the resulting deviations from
it can be extended to systems with more complex micro-
scopic dynamics, such as non-i.i.d. systems.

To demonstrate the power of the unifying concept of
typicality, we first provided a toy example, namely a
“thermalized” coin, to illustrate how entropy, tempera-
ture, and occupancy of state space are interrelated. In
this context, we have shown that the typical set can
be characterized not only by the Shannon entropy but
also by the Rényi and Tsallis entropies. A remarkable
observation here is that the characterization, consid-
ering different convergence criteria, using either Rényi
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or Tsallis-type typical sets, naturally leads to the free
energy and partition function, respectively. Therefore,
in i.i.d. systems, the typical set can be characterized
from different entropic functionals, and this gives rise
to the different thermodynamically relevant quantities.
One might naturally expect that similar results will
hold if, instead of i.i.d. sequences of random variables,
we extend our considerations to weakly dependent ran-
dom variables. This would naturally also cover a large
portion of conventional equilibrium statistical thermo-
dynamics. Beyond equilibrium, a general convergence
condition can be postulated, namely, the CSP con-
dition. Although CSP’s encompass a broad class of
microscopic stochastic dynamics, one can still define
the state space occupation and the associated entropic
functional. As we have seen in the case of the simple
process of the coin toss, different approaches to the typi-
cal set may give rise to different, interrelated functionals
representing different thermodynamically interpretable
quantities. It remains an open question how different
compact scales may relate (or even characterize) the
same process, for general CSP’s.

In passing, it is interesting to mention a potential
connection with the coarse graining method–i.e. a con-
cept from statistical mechanics introduced more than a
century ago by Paul and Tanya Ehrenfest [36] and fur-
ther developed in 60s by Leo Kadanoff [37]. The coarse-
graining method procedure has proven to be a powerful
procedure in statistical physics, especially when coupled
with the concept of the renormalization group and the
resulting portfolio of ideas and techniques that allow
the systematic study of changes in a physical system as
viewed on different length scales [38]. Coarse-graining—
or, more explicitly, the possibility of performing such an
operation—is often referred to as the key mechanism
allowing for the massive collapse of degrees of freedom
that leads to the thermodynamic interpretation of sta-
tistical ensembles. In this respect, one might argue that
the existence of typical behaviors must underlie the suc-
cess of the coarse-graining strategy to derive macro-
scopic behaviors from a deeper microscopic behavior.
However, caution is required: In so-called renormaliz-
able theories, the system at a coarse-grained scale will
generally consist of self-similar copies of itself when
viewed at a smaller coarse-grained scale, with differ-
ent parameters describing the components of the sys-
tem. The components, or fundamental variables, may
relate to atoms, elementary particles, atomic spins, etc.
No such changes in system’s components are required
when discussing typical sets. There, the reduction in
degrees of freedom is achieved purely as a result of the
law of large numbers (or related isoperimetric inequal-
ities), with all parameters of the macroscopic system
remaining the same, regardless of whether one is work-
ing with the full state space or just a typical set. The
latter is certainly true for i.i.d. systems. For non-i.i.d.
systems, the dynamics and probability may be non-
trivially intertwined—with different system’s parame-
ters leading to different typical sets, and the renormal-
ization group approach may then facilitate a new under-
standing of such a fact.

According to the open questions listed above, future
work in this direction should address: (1) connec-
tions between Shannon, Rényi and Tsallis entropies,
and uncover the relationship between state-space occu-
pancy and thermodynamic (or information-theoretic)
functionals—even in the equilibrium case, where these
relations are still poorly understood, (2) possible con-
nections between typicality, large deviation theory and
the existence of coarse-grained descriptions of the sys-
tem, and (3) the mathematical structure of a general-
ized statistical mechanics based on the existence of typ-
icality in generic, more complex dynamics, e.g. in the
framework of the CSP’s. Crucially, these steps should
go hand in hand with the derivation of empirically ver-
ifiable macroscopic observables.
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Appendix A Kolmogorov–Nagumo mean
and Rényi-type typical set

In this appendix we motivate the definition of the Rényi-
type typical set in Eq. (46). To do so, we note that the
Kolmogorov–Nagumo (KN) mean of some random vari-
able X = {x1, . . . , xN} with ensuing probability P =
{p(x1), . . . , p(xN ) is defined as

〈X〉f = f−1

⎛
⎝∑

k≤N

p(xk)f(xk)

⎞
⎠ . (A1)

The KN average represents the most general class of aver-
ages compatible with Kolmogorov’s probability postulates
and subsumes the three conventional averages: arithmetic,
geometric, and the harmonic mean. In particular, Rényi’s
entropy can be formulated in terms of KN mean as

Hα(θ) = f−1

⎛
⎝∑

k≤N

p(θk)f
(

log
1

p(θk)

)⎞
⎠ , (A2)

where the KN function

f(x) ≡ fα(x) = a e(1−α)x + b, (A3)
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with a and b being arbitrary (possibly α-dependent) con-
stants. If we choose a = 1/(1 − α) and b = −1/(1 − α), we
obtain in the limit α → 1 the KN function f1(x) = x, which
yields Shannon’s entropy. Note that two KN functions which
are linear functions of each other give the same mean and
hence (A2) is independent of actual values of a and b.

We note first that with the help of the KN mean, we can
expect that similarly as

− 1

N
log p(θ1, θ2, . . . , θN )

= −
∑
k≤N

1

N
log p(θk) → H(θ), (A4)

also the relation

f−1
α

⎛
⎝∑

k≤N

1

N
fα

(
− log p(θk)

)⎞
⎠

=
1

1 − α
log

(
1

N

N∑
k=1

pα−1(θk)

)
→ Hα(θ), (A5)

should hold. This was indeed proved in Sect. 3.1.
Let us now turn to Shannon’s typical set AN

ε . This is
defined via the inequality

e−N [H(θ)+ε] ≤ p(σN
g ) ≤ e−N [H(θ)−ε], (A6)

where σN
g = (θg,1, . . . , θg,N ) is a general sequence from AN

ε .
Equation (A6) can be rewritten equivalently as

H(θ) + ε ≥
∑
k≤N

1

N

(
− log p(θg,k)

)

≥ H(θ) − ε. (A7)

Thus, for the Rényi-type typical set, we might propose the
defining relation

Hα(θ) + ε ≥ f−1
α

⎛
⎝∑

k≤N

1

N
fα

(
− log p(θg,k)

)⎞
⎠

≥ Hα(θ) + ε. (A8)

This can be equivalently rewritten as

Ne(1−α)Hα(θ)−ε ≤
∑
k≤N

pα−1(θg,k)

≤ Ne(1−α)Hα(θ)+ε, (A9)

which coincides with (46).
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