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Abstract. The uniform prior probability density for the means of normal data leads to inconsistent Bayesian
inference of their mean power and jeopardizes the possibility of selecting among different models that
explain the data. We reinvestigated the problem avoiding delivering unrecognised information and looking
at it in a novel way. Namely, to consider a finite power, we used a normal prior minimally diverging
from the uniform one, hyperparameterised by the mean and variance, and left the data to choose the
most supported parameters. We also obtained an extended James–Stein estimator averaging the hyper-
parameters and avoiding empirical Bayes techniques.

1 Introduction

The Bayes theorem encodes the measurement uncer-
tainty in the probability assignments to the possible
values of a measurand. It also applies to encoding the
lack of certainty of the data model. If the data expla-
nations are questionable and different models compete,
their posterior probabilities provide the framework to
assess the model uncertainties. The model likeliness is
proportional to the data evidence (or marginal likeli-
hood). Since the evidence must remain unchanged after
changes in the model parameters, the prior distribu-
tions of different parameterisations must be proper and
comply with the change-of-variable rule.

When no objective prior information is available,
subjective inferences provide the required compliance
with the transformation of the prior distributions under
parameter changes. Alternatives, discussed by [16] and
known as Jeffreys’ priors, are distributions obtained as
a model functional encoding the symmetries of the mea-
surand link with the data. Others, developed by [5] and
[3], maximise the mutual information between the data
and measurand, which measures how much we learn
about the measurand from the data.

If improper, these distributions can lead to incon-
sistencies. For example, the Jeffreys’ uniform prior
over the reals for the mean of Gaussian data leads

Supplementary Information The online version
contains supplementary material available at https://doi.
org/10.1140/epjb/s10051-024-00737-w.

a e-mail: g.mana@inrim.it (corresponding author)
b e-mail: cpalmisano@dmatorino.it

to an inconsistent inference of their mean power, see
[4,5,12,13,28].

We consider the simultaneous inferences of the indi-
vidual means of multivariate Gaussian data, individual
means’ squares, and average means’ squares. Suppos-
ing the data are the measured values of a discrete-time
signal, we will refer to the lasts as powers. The uniform
distribution for the means’ prior delivers information
about their squares. To avoid introducing this informa-
tion into the problem and taking a finite power into
account, we investigate a novel solution which extends
the approaches of [1,8,9,24,25].

Our investigations were prompted by related prob-
lems in the estimate of the power of signals and
the modulus of complex quantities from measure-
ment results affected by additive uncorrelated Gaussian
errors, which were lengthy discussed in [2,6,14,15,19,
32].

The manuscript is organised as follows. Section 2
states the problem, identifies its origin, and outlines a
solution. Next, we overview hierarchical modelling and
averaging. In Sect. 4, apply them to derive consistent
inferences of the data power. Numerical examples are
given in Sect. 5.

All the integrations were carried out in terms of stan-
dard mathematical functions with the aid of Mathemat-
ica [30]. The relevant notebook is given as supplemen-
tary material. To read and interact with it, download
the Wolfram Player free of charge [31].
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2 Stein paradox

2.1 Problem statement

In the simplest form of the Stein paradox, xi ∼
N(xi|μi, σ = 1) are observations of independent normal
variables with unknown means μi and known variance
σ2, for i = 1, 2, ...,m. With a somewhat inconsistent
use of notation, we will use the same symbol to indi-
cate both the random variables and the labels of their
possible values. To keep the algebra simple, without loss
of generality, we use units where σ = 1.

For example, xi are samples of a μ(t) signal affected
by additive white Gaussian noise, where the uncertainty
for each datum is known, as in [6] and [2]. Suppose that,
in addition to the measurands μi = μ(ti), we are also
interested in the signal power, that is to θ2 = |µ|2/m,
where µ = {μ1, μ2, ... μm} [32].

The Jeffreys prior of every instantaneous signal μi

is the uniform distribution over the reals U∞(μi) ∝
const., resulting in independent normal posteriors, μi ∼
N(μi|xi, σ = 1). By changing variable in the posterior
distributions, μ2

i are independent non-central χ2
1 vari-

ables having one degree of freedom, mean 1 + x2
i , and

variance 2(1 + 2x2
i ). Similarly, mθ2 is a non-central χ2

m
variable having m degrees of freedom. Therefore, it fol-
lows that the posterior mean and variance of θ2 are

E(θ2|x,M∞) = 1 + x2, (1a)

where x = {x1, x2, ... xm}, x2 = |x|2/m, and M∞ is
the data model assuming the uniform prior, and

Var(θ2|x,M∞) =
2
m

(
1 + 2x2

)
. (1b)

From a frequentist viewpoint, since mx2 is a noncen-
tral χ2

m variable having m degrees of freedom, x2 is a
biased estimator of θ2. In fact,

E(x2|µ) = 1 + θ2 (2a)

and

Var(x2|µ) =
2
m

(
1 + 2θ2

)
. (2b)

As m tends to infinity, provided that, θ2 and, conse-
quently, x2 converge, a bad situation occurs: (1a) and
(1b) jointly predict that θ2 is certainly x2 + 1, but, at
the same time, (2a) and (2b) jointly predict that θ2 is
certainly x2 − 1.

2.2 Paradox explanation

The U∞(μi) ∝ const. usage can be justified by showing
that the μi ∼ N(μi|xi, σ = 1) posterior is a suitable
limit obtained from proper priors having increasingly
large variance [3]. The difference between the Bayesian

and frequentist certainties is due to the information
encoded in U∞(μi), which makes the data explanations
underlying the Bayesian and frequentist analyses differ-
ent.

As most of its mass is at infinite, U∞(μi) encodes that
|μi| is greater than any positive number. This infor-
mation is irrelevant to μi; but, it is not for μ2

i . It is
worth noting that, if really μi ∼ U∞(μi), then x2 and θ2

must diverge and the inconsistency disappears. There-
fore, the problem originates in the conflict between the
information encapsulated in U∞(μi) and the data, see
also [11]. Also, if we are not happy with the difference
between (1a) and (2a), it means that we believe that θ2

and, consequently, μ2
i are finite.

2.3 Proposed solution

To remove the inconsistency between (1a) and (2a), we
must take the assumption that |μi| is bounded into
account and use a proper prior. Therefore, extending
[1], we set μi|ai, bi ∼ N(μi|ai, bi), where the mean and
standard deviation ai and bi are hyper-parameters and
the bi → ∞ limit is the uniform distribution. The nor-
mal distribution has been chosen because it has the
minimum relative entropy concerning the uniform one
under a fixed variance [26,27].

The simplest way to encode |μi| < ∞ is setting ai =
a and bi = b for all the samples, which condition is
sufficient, though not necessary, for the convergence. If
the samples are indistinguishable, i.e., the data labelling
is unknown, assigning the same mean and variance is
reasonable.

Hence, we assume the prior

µ|a, b ∼ π(µ|a, b) =
m∏
i=1

N(μi|a, b). (3)

According to the Bayesian viewpoint, firstly, the µ mea-
surands are sampled from the π(µ|a, b) prior, then the x
data are sampled from the N(x|µ, σ = 1) distribution.
Therefore, different priors identify different models, and
we can let the data select the most likely.

Since the prior (3) encodes the belief that all the mea-
surands (e.g., the instantaneous signals μi) have the
same mean, it will originate a shrinkage of the means’
inferences on the sample mean. Our prior choice is
not new. However, previous investigations, for instance,
[4,12,24], set μi|b ∼ N(μi|0, b), which encodes the
strongest belief that all the measurands are expected
to have a zero mean.

3 Outline of the Bayesian model selection

To determine the most likely prior, we let the data
choose. Let N(x|µ, σ = 1) be the multivariate distri-
bution of the x data. Hence, the hierarchical models
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competing to explain the data are

Mab = {N(x|µ, σ = 1) : µ ∼ π(µ|a, b)}, (4)

where π(µ|a, b) is the prior distribution (3) and a and
b index the models. The posterior distribution of the
measurands is

Π(µ|x, a, b) =
N(x|µ, σ = 1)π(µ|a, b)

Z(x|a, b)
. (5)

The marginal likelihood or evidence,

Z(x|a, b) =
∫

Rm

N(x|µ, σ = 1)π(µ|a, b) dµ, (6)

is the sampling distribution x given the model indexed
by a and b, but no matter what the values of µ – or of
others model parameterisations – might be.

The marginal likelihood can be used to compare the
competing models by their probability Q(a, b|x) as pro-
vided by the data,

Q(a, b|x) =
Z(x|a, b)�(a, b)∫ ∞

0

∫ +∞

−∞
Z(x|a′, b′)�(a′, b′) da′ db′

, (7)

where �(a, b) is the prior probability of a, b and the
integration is carried out on its support.

The model-averaged posterior of µ is

P (µ|x) =
∫ ∞

0

∫ +∞

−∞
Π(µ|x, a, b)Q(a, b|x) dadb, (8)

which can also be obtained by marginalising (5) for
the hyper-parameters. The model uncertainty can be
embedded in the expected value of the data mean by

E(µ|x) =
∫

Rm

µP (µ|x) dµ

=
∫ ∞

0

∫ +∞

−∞
E(µ|x, a, b)Q(a, b|x) dadb, (9)

where

E(µ|x, a, b) =
∫

Rm

µΠ(µ|x, a, b) dµ. (10)

4 Application to the Stein paradox

4.1 Posteriors of the instantaneous signals

By application of (5) and (6), the prior (3) results
in independent and identically distributed μi having
marginal likelihood

Z(xi|a, b) =
1√

2π(1 + b2)
exp

[
− (xi − a)2

2(1 + b2)

]
(11)

and normal posterior

Π(μi|xi, a, b) = N(μi|μi, σµ), (12)

where

μi = E(μi|xi, a, b) =
a + b2xi

1 + b2
(13a)

and

σ2
µ = Var(μi|a, b) =

b2

1 + b2
(13b)

are the posterior mean and variance of μi. It is worth
noting that if b → ∞ then μi = xi and σ2

µ = 1. The rel-
evant integrations are given in the supplementary mate-
rial.

4.2 Hyper-prior

We assign prior probabilities to a and b to continue the
analysis. The sampling distribution of x given a and b
is (see the supplementary material)

Z(x|a, b) =
m∏

i=1

Z(xi|a, b) =

exp

{
−m

[
s2x + (x − a)2

]

2(1 + b2)

}

√
(2π)m(1 + b2)m

,

(14)

where x =
∑m

i=1 xi/m and s2x =
∑m

i=1(xi − x)2/m are
the sample mean and (biased) sample variance, respec-
tively.

Since any of the models (4) is uncertain, to offer evi-
dence or disprove that it explains the data, they must
allow for comparisons. This requires proper prior dis-
tributions of different parameterisations and compli-
ance with the change-of-variable rule. In the absence of
measurable information, the normalised Jeffreys’ hyper-
prior (see the supplementary material),

�(a, b) =
b

Va

√
(1 + b2)3

, (15)

where b > 0 and Va is the length of the a’s domain,
does the work. It is worth noting that (15) preserves
the convergence of θ2 when m → ∞.

4.3 Model probabilities

By application of (7) with (14) and (15), the probability
of a, b explaining the data is (see the supplementary
material)

Q(a, b|x, s2x) =
√

2m um
x b√

π(1 + b2)m+3 Γ(m/2, 0, u2
x)
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Fig. 1 Posterior probability densities Q(a, b|x, s2x) of the
model Mab given the {x1, x2, ... xm} normal data. Top: m =
1. Bottom: m = 20 and sx = 2

× exp

{
−m

[
s2x + (x − a)2

]
2(1 + b2)

}
, (16)

where u2
x = ms2x/2 and Γ(a, z1, z2) is the generalized

incomplete gamma function [20]. Since Va simplifies in
the Q(a, b|x, s2x) calculation and provided it is large
enough to approximate (7) by extending the integra-
tion over a to the reals, there is no need to introduce
additional undefined parameters.

Figure 1 shows (16) when m = 1 (top) and m =
20 and sx = 2 (bottom). It is worth noting that
Q(a, b|x, s2x) depends only on the sample mean and
biased variance; its mode is a = x and, as m → ∞,
b2 = s2x − 1 (see the supplementary material).

4.4 Expectations of the instantaneous signals

4.4.1 m = 1 case

By application of (7) with (11) and (15), the probability
density reduces to

Q(a, b|x1) =
b√

2π(1 + b2)2
exp

[
− (x1 − a)2

2(1 + b2)

]
, (17)

which can also be obtained as the s2x → 0 limit of (16)
evaluated for m = 1 (see the supplementary material).

The most supported model is indexed by a = x1 and
b = 1/

√
3, whereas the b → ∞ model – corresponding

to the uniform prior – is excluded.
According to (8), after averaging the μ1 posterior

(12) over the model probability (17),

μ1|x1 ∼ P (μ1|x1) =

∫ ∞

0

∫ +∞

−∞
N(μ1|μ1, σµ)Q(a, b|x1) dadb

= N(μ1|x1, σ = 1), (18)

i.e. the distribution of μ1 is a normal distribution hav-
ing mean x1 and unit variance, and the distribution of
μ2
1 is a non-central χ2

1 distribution, having one degree of
freedom and non-centrality parameter x2

1 (see the sup-
plementary material). These are important and non-
trivial results. They demonstrate that the hierarchical
models (4) are consistent with the uniform prior (see
Sect. 2.1) and that there is no hyper-prior effect on the
posterior distributions of μ1 and μ2

1, as it occurs in [4].

4.4.2 m ≥ 2 case

By substitution of (13a) and (16) into (9), the model-
averaged value of E(μi|xi, a, b) is (see the supplemen-
tary material)

E(μi|xi, x, s2x) = x + (1 − R)(xi − x), (19a)

where

R =
Γ(m/2 + 1, 0, u2

x)
Γ(m/2, 0, u2

x)u2
x

, (19b)

u2
x = ms2x/2 and Γ(a, z1, z2) is the generalised incom-

plete gamma function [20]. Given the belief encoded
in the priors, this inference minimises the (Bayesian)
quadratic risk. It belongs to the estimator class consid-
ered in [21], but it does not comply with the condition
required to dominate (from a frequentist perspective)
the James–Stein estimator. In this regard, we note that
this paper is not about the dominance over the James–
Stein estimators, but about highlighting and encoding
the belief θ2 < ∞.

If m = 1 then sx = 0 and x = xi. In this case,
the last term of (19a) vanishes and the mean is the
observed value (see the m = 1 case). Also, since its value
is irrelevant, we set R(m = 1) conventionally to zero
(incidentally, the sx → 0 limit is 1/3). As shown in Fig.
2, the mean (19a) is between xi and the sample mean
x. This behaviour follows from the mild assumption of
a constant μi (see Sect. 2.3) encapsulated in the most
supported data model.

As shown in the supplementary material, when s2x �
1, (19a) is approximated by

E(μi|xi, x, s2x � 1) ≈ x

+
(

1 − m

m + 2 − m2s2x/2

)
(xi − x), (20a)
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Fig. 2 Shrinking factor of the model-averaged posterior
mean of μi vs the sample standard-deviation. Nine cases
are considered, m = 1 (top line), 2, 4, 6, 8, 10, 12, 16, 20
(bottom line). The dashed line is the James–Stein estimate
(21), when m = 5. The red line is the m → ∞ limit of both
the model-averaged mean and James–Stein estimate; sx < 1
is meaningless in this case, see the supplementary material

which, as the sample size increases and sx → 0, tends
to x. When s2x 
 1, (19a) is approximated by

E(μi|xi, x, s2x 
 1) ≈ x +
(

1 − 1
s2x

)
(xi − x) (20b)

and supports the xi datum. For many observations, we
obtain

lim
m→∞E(μi|xi, x, s2x) = x +

(
1 − 1

s2x

)
(xi − x). (20c)

As shown in the supplementary material, when m → ∞,
it is certain that s2x ≥ 1. These asymptotic expressions
are consistent with the expectation that a sample vari-
ance larger than the data variance (which was set to
one) supports a varying signal and a smaller one the
opposite.

4.5 James–Stein estimate

Empirical Bayes methods set the a and b hyper-
parameters in (13a) to specific values, see [1], instead of
integrating them out. For instance, if in (13a) and fol-
lowing [8] we set a to its posterior mode x and 1+ b2 to
ms2x/(m − 3), then μi reduces to the (positive) James–
Stein estimate given in [9,10],

μJS
i =

{
x +

(
1 − m−3

ms2x

)
(xi − x) if s2x ≥ m−3

m

x if s2x ≤ m−3
m

, (21)

the first line of which is derived in the supplementary
material and shown in Fig. 2 for m = 5. The replace-
ment in the second line avoids pulling the estimate away
from the [xi, x] interval, see [10]. The reason for the
1 + b2 = ms2x/(m − 3) choice resides in the fact that

(m − 3)/(ms2x) is an unbiased estimator of 1/(1 + b2),
see [8].

In Sect. 4.3 we have shown that, as m → ∞, the b2

mode is s2x − 1, see (16). By using this value in (13a),
we obtain (see the supplementary material) the same
asymptotic limit of (21).

4.6 Expectations of the instantaneous powers

From (12), it follows that the normalized powers
(μi/σµ)2 are independent non-central χ2

1 variables hav-
ing one degree of freedom and non-centrality parameter
λi = (μi/σµ)2, where μi and σ2

µ are given by (13a) and
(13b), respectively. Hence,

μ2
i

σ2
µ

∣∣xi, a, b ≈ χ2
1(μ

2
i /σ2

µ|λi). (22)

By taking the mean of the non-central χ2
1 distribution

and the μi/σµ normalisation into account, the posterior
means of the μ2

i powers is

E(μ2
i |xi, a, b) = σ2

µ + μi
2

=
a2 + b2(1 + 2axi) + b4(1 + x2

i )
(1 + b2)2

(23)

and, by application of (9) to (23), its model-averaged
value is

E(μ2
i |xi, x, s2x) = x2

i + 1 + S, (24a)

where (see the supplementary material)

S =
1

Γ(m/2, 0, u2
x)u4

x

{
Γ(2 + m/2, 0, u2

x)(x − xi)2

+Γ(1 + m/2, 0, u2
x)[1/m − 1 + 2xi(x − xi)]u2

x

}
,

(24b)

u2
x = ms2x/2, and Γ(a, z1, z2) is the generalised incom-

plete gamma function [20].
The asymptotic means of the μ2

i powers are derived
in the supplementary material. When s2x � 1 the data
support equal μi,

E(μ2
i |xi, x, s2x � 1) ≈ x2 +

6 − m2s2x
2(m + 2) − m2s2x

, (25a)

where we used xi → x, and the mean shrinks to x2. If
m = 1, then sx = 0 and the mean is x2

1 + 1. A large
sample variance supports different μi and

E(μ2
i |xi, x, s2x � 1) ≈ x2

i + 1 − m − 2m(x − xi)xi − 1

ms2x
.

(25b)
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Fig. 3 Offset of the model-averaged posterior mean of μ2
i

vs the sample standard-deviation, when xi = x. Nine cases
are considered, m = 1 (top line), 2, 4, 6, 8, 10, 12, 16, 20
(bottom line). The red line is the m → ∞ limit; sx < 1 is
meaningless in this case, see the supplementary material

Eventually, when m tends to the infinity,

lim
m→∞E(μ2

i |xi, x, s2x) = x2
i

+1 +
(x − xi)2

s4x
− 1 − 2(x − xi)xi

s2x
, (25c)

where s2x ≥ 1, see the supplementary material. Since
xi, x, and s2x are not independent, a general graphical
display of (24a) is impossible. To make it feasible, in
Fig. 3, we considered the xi = x case.

4.7 Expectation of the mean power

Let us turn the attention to the mean power θ2 =
|µ|2/m. From (12), mθ2/σ2

µ is a non-central χ2
m vari-

able having m degrees of freedom and non-centrality
parameter λ =

∑
(μi

2/σ2
µ), where μi

2 and σ2
µ are given

by (13a) and (13b), respectively. Hence, from (23), the
expectation and variance of the mean power are (see
the supplementary material)

E(θ2|x, s2x, a, b) =
(m + λ)σ2

µ

m

=
a2 + b2(1 + 2ax) + b4(1 + s2x + x2)

(1 + b2)2

(26a)

and

Var(θ2|x, s2x, a, b) =
2(m + 2λ)σ4

µ

m2

=
2b2

[
2a2 + b2(1 + 4ax) + b4(1 + 2s2x + 2x2)

]
m(1 + b2)3

,

(26b)

Fig. 4 Offset of the model-averaged expectation of θ2 vs
the sample standard-deviation. Six cases were considered,
m = 1 (top line), 2, 6, 12, 24, 48 (bottom line). The red line
is the m → ∞ limit; sx < 1 is meaningless in this case, see
the supplementary material

Averaging E(θ2|x, s2x, a, b) over the models via (9), we
obtain (see the supplementary material)

E(θ2|x2, s2x) = x2 − 1 + T, (27a)

where x2 = |x|2/m is the sample mean power,

T =
3mΓ(m/2, 0, u2

x) + 2(2u2
x − 3)um

x e−u2
x

2mu2
xΓ(m/2, 0, u2

x)
, (27b)

u2
x = ms2x/2, and Γ(a, z1, z2) is the generalised

incomplete gamma function [20]. This inference, which
minimises the (Bayesian) quadratic risk, belongs to esti-
mator classes previously considered by [7,17,18,23–25].

As shown in Fig. 4, when s2x � 1 the data support
μi = const. and

E(θ2|x2, s2x � 1) ≈ x2 − 1

+
m + 5
m + 2

− m(14 + 6m + m2)s2x
(m + 2)2(m + 4)

. (28a)

If m = 1, then sx = 0 and the power of this datum is
again x2

1 +1. When s2x 
 1, the data support a varying
signal and

E(θ2|x2, s2x 
 1) ≈ x2 − 1 +
3

ms2x
. (28b)

Eventually, it is non-obvious and remarkable that, as
m → ∞, the expectation of the mean power converges
to the frequentist estimate x2 − 1, see (2a). In fact,

E(θ2|x2, s2x,m 
 1) ≈ x2 − 1 +
3

ms2x
, (28c)

where s2x ≥ 1, see the supplementary material. These
asymptotic expressions are derived in the supplemen-
tary material.
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Fig. 5 Differences of the measured values of the Newto-
nian constant of gravitation G, the Planck constant h, and
the Boltzmann constant k given in [22] and [29] from their
weighted mean, G0, h0, and k0, respectively

5 Application examples

According to the Bayes theorem, the posterior proba-
bility of a model is proportional to the marginal likeli-
hood of its parameters based on the data. However, if
the parameter prior-density is improper, the marginal
likelihood can not be determined. In fact, when a proba-
bility density is non-integrable, it is given only up to an

arbitrary scale factor, which means that the marginal
likelihood depends on the chosen value of this factor.
This is the case of the Jeffreys’ uniform prior over the
reals for the mean of Gaussian data.

The problem is evaded by the prior (3), which has
been proved to produce sound posteriors for the data
mean and power, while avoiding inconsistencies, and,
contrary to the uniform one, is proper and encodes a
finite measurand value.

To give examples, we considered the measured values
of the Newtonian constant of gravitation G, the Planck
constant h, and the Boltzmann constant k given in [22]
and [29]. These measured values have been used by the
CODATA Task Group on Fundamental Physical Con-
stants to determine mutually consistent values for use
in science and technology [29]. Their differences from
the weighted mean are shown in Fig. 5.

These examples have been selected to represent the
cases where a visual inspection of the data suggests dis-
agreement (G values), agreement (k values), or uncer-
tain judgment (h values). Where the data are mutu-
ally inconsistent, most probably they reflect system-
atic errors. Still, it is possible that they are pointing
to unknown subtleties, – perhaps the constant value
depend on how it is measured.

The objective of a Bayesian equal-mean test is to
quantify these qualitative judgments by assigning them
probabilities. Therefore, we compare the hypothesis H0

that the measured values are sampled from Gaussian
distributions having the same mean against that they
are sampled from Gaussian distributions whose means
might be different, H1. Assuming the same 50% prior
probability of the two data models, their posterior prob-
abilities are

Prob(Hn|x) =
Z(x|Hn)

Z(x|H1) + Z(x|H2)
, (29)

where Z(x|Hn) is the marginal likelihood of the n-th
model parameters.

Calculating the Z(x|H1) marginal likelihood in the
simplest way, by resting on the previous results, requires
equal and unit variances of the input data. The unequal
variance case makes the algebra cumbersome without
adding conceptual news. To comply with the unit vari-
ances constraint, we consider the normalised differences
(xi−x0)/ui of the measured values from their weighted
mean x0, where u2

i is the variance of the i-th datum.
However, these scaled data only have the same mean if
it equals x0. Therefore, we must restrict H0 to this case
and, to take the x0 variance, σ2

0 , into account, increase
the data variances to σ2

i = u2
i + σ2

0 .

5.1 H0 hypothesis

Let us consider the normalised differences (xi − x0)/σi

of the measured values from their weighted mean x0,
where σ2

i = u2
i + σ2

0 is the sum of variances of the i-th
datum and the mean, u2

i and σ2
0 , respectively. If each

normalised difference is independently sampled from
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the same Gaussian distributions having zero mean and
unit variance, their joint distribution is

L(x|H0) =
m∏
i=1

N(xi|μ = 0, σ = 1). (30)

Since the distribution (30) is free of parameters, the
marginal likelihood coincides with it. Hence,

Z(x|H0) = L(x|H0) =
exp

(−χ2
/
2
)
exp

[−mx2
/
2
]

√
(2π)m

,

(31)

where x is the arithmetic mean of the normalised data
and χ2 is the sum of the squared residuals.

5.2 H1 hypothesis

Contrary, if the measured values are independently
sampled from Gaussian distributions having (or not
having) different means and standard deviations, the
likelihood of the scaled data xi → (xi − x0)

/
ui is

L(x|µ, σ = 1) =
m∏
i=1

exp
[−(xi − μi)2

/
2
]

√
2π

, (32)

where μi is the scaled mean. By using the prior (3),

π(µ|a, b) =
m∏
i=1

exp
[ − (μi − a)2

/
b2

]
√

2π b
, (33)

the marginal likelihood Z(x|a, b) of the scaled data is
given by (14).

To determine the most probable model in the fam-
ily (4), we look for the values of the hyper-parameters
a and b maximising their posterior density, Q(a, b|x),
which is given by (16). They are a0 = x and b0 =
argmax

[
Q(a = x, b|x)

]
, which must be found numeri-

cally. Eventually,

Z(x|H1) =
exp

{
− ms2x

2(1 + b20)

}

√
(2π)m(1 + b20)m

. (34)

5.3 Results

The calculations relevant to this analysis are available
in the supplementary material. The results are sum-
marised in table 1. The posterior probabilities confirm
our expectations regarding the measured G and k val-
ues and resolve the uncertainty for the h values.

The probabilities of the H0 models are smaller than
expected, which may be because we assumed not only a
common mean but also that it is equal to the weighted
mean of the measured values. In addition, H1 does not
exclude that the data are sampled from distributions

Table 1 Posterior probabilities of the H0 and H1 data
model

Constant Prob(H0|x) Prob(H1|x)

G 0% 100%
h 5% 95%
k 63% 37%

with the same mean. It’s worth noting that, assuming
a uniform prior for the data means, the Bayesian test
of equal means would have been impossible.

6 Conclusion

Given measurement results affected by additive uncor-
related Gaussian errors, we investigated the Bayesian
inferences of the data means, individual means’ squares,
and average means’ squares. The result is a new way
to cope with the inconsistency originated by using a
uniform prior, which inconsistency occurs because the
uniform prior – contrary to what was intended and the
belief that it is finite – encodes that the data power is
infinite.

To minimise the difference (expressed by the Kull-
back–Leibler divergence) from the uniform distribution,
we encoded the measurands’ indistinguishability and
the belief of finite measurand values in a normal prior
hyper-parameterised by the mean and variance. Aver-
aging over the unknown hyper-parameters or letting
the data to chose the most supported ones removes the
shortcomings of the uniform distribution.

In the case of a single datum, the inferred measur-
and is not biased to the smallest value, as occurs in [4],
but it is the measurement result itself. With more than
one datum, we derived a James–Stein estimate of every
single measurand consistent with the stated belief. This
result was obtained without the use of empirical meth-
ods as in [8]. We showed that, as the sample size grows,
the inference of the mean power is consistent and con-
verges to the frequentist estimate.

After proving that it produces sound posteriors for
the data mean and power while avoiding inconsisten-
cies, we applied the hyper-parameterised normal prior
to determining whether the measured values of the
Newtonian constant of gravitation came from popula-
tions with the same mean or not. We repeated the test
using the results of the measurements of the Planck and
Boltzmann constants. If we had used an improper prior
for the data mean, this Bayesian test would have been
impossible.
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