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Abstract. The last 25 years have seen the development of a significant literature within the subfield of
econophysics which attempts to model economic inequality as the emergent property of systems of stochas-
tically interacting agents. In this article, the literature surrounding this approach to the study of wealth
and income distributions, henceforth the “random asset exchange” literature following the terminology of
Sinha (Phys Scr 2003(T106):59, 2003), is thoroughly reviewed for the first time. The foundational papers
of Drăgulescu and Yakovenko (Eur Phys J B 17(4):723–729, 2000), Chakraborti and Chakrabarti (Eur
Phys J B 17(1):167–170, 2000), and Bouchaud and Mézard (Physica A 282(3):536–545, 2000) are discussed
in detail, and principal canonical models within the random asset exchange literature are established. The
most common variations upon these canonical models are enumerated and the successes and limitations
of such models are discussed. The paper concludes with an argument that the literature should move
in the direction of more explicit representations of economic structure and processes to acquire greater
explanatory power.

1 Introduction

Over the last 16 years, the problem of economic inequal-
ity has become the epicenter of one of the most intense
political debates in the United States. Concern about
the widening gap between rich and poor had been
steadily growing since the 2008 U.S. bank bailouts
and the 2010 Citizens United v. FEC Supreme Court
decision, and the outbreak of the Occupy Wall Street
movement in September 2011 decisively pushed the
inequality question to the forefront of American poli-
tics. Though the Occupy movement, which introduced
the dichotomy of “the 1%” versus “the 99%” to pub-
lic discourse, did not immediately produce anything by
way of practical politics, it nonetheless laid the foun-
dation for U.S. Senator Bernie Sanders’ two campaigns
for president, in which he used the language of Occupy
to reframe economic inequality as the result of pro-
business policy choices which could be rectified through
a social-democratic “political revolution.”

However, the idea that economic inequality is an issue
at all is by no means an uncontroversial one. A majority
of Republican party voters do not believe that the cur-
rent level of economic inequality in the United States is
excessive [5]. The legacy of “Reaganomics”—the eco-
nomic policy pursued by the Federal government of
the United States under the tenure of former Presi-
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dent Ronald Reagan, which was characterized by cuts
to tax rates and other concessions to proponents of
“supply-side” economic theory—remains contentious.
And within the Republican delegation to the United
States House of Representatives, a proposal to elimi-
nate the current bracketed income tax system and to
replace it with a much higher nationwide flat sales tax—
as a way to dramatically lessen the tax burden on the
wealthy—has gained traction [6].

Controversies surrounding the nature of economic
inequality are just as longstanding and intense within
the realm of academic economics. On one hand,
economists tend to be more skeptical than other social
scientists of government intervention into economic
affairs, as a great deal of emphasis is placed on the
fact that, within the discipline’s canonical models, free
markets have no trouble arriving at socially optimal
allocations of resources all on their own. On the other
hand, French economist Thomas Piketty’s 2013 mag-
num opus Capital in the 21st Century, which proposes
the imposition of a global, progressive tax on wealth in
order to rein in inequality, has become greatly influen-
tial in popular-academic debates concerning the issue
[7]. The intense political and academic disputes around
the question of inequality therefore show no sign of
abating anytime soon.

1.1 The universality of economic inequality

Whatever one believes about the moral question of
inequality, it is indisputable that, in nearly every single
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developed market economy, the degree of stratification
between the rich and everyone else is both staggering
and increasing. In the United States, the share of house-
hold wealth owned by the top 1% of the population by
net worth grew from 29.9% in 1989 to 35.5% in 2013;
meanwhile, the share of wealth owned by the bottom
50% of the population shrunk from 3 to 1.1% over the
same period [8]. In Germany, individuals at the 90th
percentile of net assets possess 13 times as much wealth
as the median individual and over a quarter of indi-
viduals possess liabilities equal to or greater than their
assets, resulting in a negative net worth [9]. While there
are many countries where the degree of wealth inequal-
ity is not this extreme—the United States has one of
the most unequal distributions of wealth in the world—
the overall structure is strikingly similar across almost
all countries [10]. In every market economy for which
data exists, many possess very little wealth and a few
possess much.

Great inequality also governs the distribution of
incomes in market economies. As reported by Horowitz
et al. for the Pew Research Center, the share of aggre-
gate income possessed by high-income households1 has
grown from 29% in 1970 to 48% today [5]. In the same
period, the share of aggregate income possessed by low-
income households2 fell from 10 to 9% over the same
period. The incomes of those who are already in the top
5% of the population in terms of earnings have likewise
grown the faster than the incomes of all other earners
over the past 40 years.

1.2 Measuring inequality: the Gini coefficient

One of the most popular metrics used to quantify the
degree of inequality present in a given wealth or income
distribution—or, indeed, any density distribution over a
non-negative domain—is the Gini coefficient, named for
Italian statistician Corrado Gini. The Gini coefficient of
a distribution f(x) is defined by reference to the Lorenz
curve, itself defined as the function:

L (F (x)) =
1
μ

∫ x

0

s · p(s)ds (1)

where F (x) =
∫ x

0
f(s)ds is the cumulative density dis-

tribution of f(x) and μ =
∫ ∞
0

sf(s)ds is the mean of
f(x) [11]. Intuitively, this integral represents the share
of some asset—say, income—held by the bottom 100x%
of the population, normalized by the mean of the dis-
tribution. The Gini coefficient is then given by twice
the difference between the area under Lorenz curve of a
perfectly egalitarian distribution—a straight line with
a slope of 1—and the Lorenz curve of the distribution
in question [12]. Thus, the canonical formula used to

1 Defined as households with incomes greater than twice
the national median.
2 Defined as households with incomes less than two-thirds
the national median.

calculate the Gini coefficient is:

G = 1 − 2
∫ 1

0

L(x)dx (2)

The Gini coefficient can take on any value between 0—
perfect equality—and 1—perfect inequality. To extend
this statistic to describe dispersion within a finite pop-
ulation {xi}N

i=1, however, it is more convenient to lever-
age the alternative definition of the Gini coefficient as
half the relative mean absolute difference of a distribu-
tion:

G =
1
2

(∑N
i=1

∑N
j=1 |xi − xj |

)
/N2

μ
(3)

Note that this definition of the Gini coefficient over a
discrete population does not perfectly correspond to its
continuous counterpart, however, as the former has an
upper bound of 1 − 1/N [13].

On its own, the Gini coefficient is not a faultless mea-
sure of inequality. It has been criticized on the basis that
distributions with very different levels of concentration
in the right tail can produce identical indices; there
is therefore significant information lost when using it
to represent an entire distribution with a single scalar
value [14]. Nonetheless, the Gini coefficient serves as
a useful and widely used statistic for summarizing the
degree of dispersion present in a given wealth or income
distribution.

Underscoring the universality of steep economic
inequality in both wealth and income distributions,
Table 1 displays the Gini coefficients for the wealth and
income distributions of ten countries. One observes that
wealth distributions are almost always “more unequal”
than income distributions: Gini coefficients for wealth
distributions tend to range between 0.5 and 0.8, while
Gini coefficients for income distributions tend to range
from 0.25 to 0.45. Furthermore, there is no obvious cor-
relation between the Gini coefficients for wealth distri-
butions and for income distributions: some countries,
such as China, have Gini coefficients relatively close in
value, while other countries, such as France, have Gini
coefficients for wealth over twice as high as the corre-
sponding value for income.

1.3 Pareto, Gibrat, and the econophysicists

The universality of the phenomenon of extreme inequal-
ity across market economies is highly significant and
demands investigation. Different countries have dra-
matically different approaches to welfare programs, tax
structures, and economic policy of all sorts. Yet the
distributions of wealth and income present in these
countries are remarkably similar in form. It follows
that there is likely some shared set of characteristics
that account for this common structure of wealth dis-
tribution. This line of questioning points one to an
often overlooked and still poorly understood aspect of
inequality: its cause.
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Table 1 Gini coefficients of wealth and income inequality for ten countries, all major world economies, based on data from
the year 2000

Gini Coefficients of Wealth and Income for Ten Countries
Country Gini Coefficient of Wealth Gini Coefficient of Income

United States 0.801 0.401
France 0.730 0.311
United Kingdom 0.697 0.396
India 0.669 0.344*
Germany 0.667 0.289
Netherlands 0.650 0.298*
Australia 0.622 0.331*
Italy 0.609 0.353
Spain 0.570 0.343
China 0.550 0.420*

Asterisks represent values for which the Gini coefficients of income for the year 2000 are unavailable in the relevant data
set; Gini coefficients for the closest available year are provided instead
Data for Gini coefficients of wealth are taken from Davies et al. (2009), while data for Gini coefficients of income are taken
from the World Bank, accessed via the FRED database hosted by the Federal Reserve Bank of St. Louis. Gini coefficients
of income for India, the Netherlands, and Australia are from 2004. Gini coefficient of income for China is from 2002 [15]

The nature and origin of economic inequality has
been an open problem in economics for more than
a century. In 1897, the Italian civil engineer-turned-
economist Vilfredo Pareto attempted to provide an
answer after noticing a striking pattern in data for land-
ownership rates in Italy. Specifically, Pareto posited
that income in every society is distributed according
to a decreasing power law; namely:

p(x) ∝ x−1−α (4)

where p(x) represents the probability density function
of income and α represents the “Pareto index,” with
smaller values producing fatter tails and thus represent-
ing more unequal distributions. This observation has
come to be known as the “weak Pareto law,” with its
strong counterpart including the additional claim that
the Pareto index possesses a value in the range 1.5±0.5
[16]. But not long thereafter it became apparent that
this law did not actually well characterize the entire
income distribution. Instead, when low- and middle-
income strata were taken into account, the data seemed
to be much better fit by a right-skewed lognormal dis-
tribution:

p(x) =
1

xσ
√

2π
exp

(
− (ln(x) − μ)2

2σ2

)
(5)

This fact was first noticed by economist Robert Gibrat,
who posited as an explanation that growth rates (of
firm size, personal wealth, etc.) are independent of cur-
rent size [17]. More formally, Gibrat’s law holds that
the logarithm of growth rates Xt = ln(Yt) follow the
stochastic process:

Yt = exp(Xt)
Xt = αt + βBt

(6)

where Bt is a Brownian motion and for which it is
easily shown that Yt ∼ Lognormal(αt, β2t) [18]. It is
now well established that, in fact, both Pareto and
Gibrat were partially correct: a lognormal-like distri-
bution tends to characterize the bulk of incomes, while
the Pareto distribution tends to characterize the high-
est 2–3% of incomes [19].3

Since these discoveries, mainstream economic the-
ory has, broadly speaking, shied away from further
attempts to posit a universal form for these distribu-
tions or to explain the processes responsible for their
emergence. There are both normative and methodolog-
ical reasons for this aversion. The normative reason, as
voiced by Piketty, manifests as skepticism that univer-
sal laws governing income distributions exist at all [7].
The methodological reason, on the other hand, stems
from the fact that prototypical macroeconomic models
make use of single, representative agents, an approach
ill-suited for describing distributions over populations.
More sophisticated tools capable of addressing such
questions, such as Heterogeneous Agent New Keyne-
sian (HANK) models, exist, but they are still relatively
new to the scene [20]. This gap drew the attention of
physicists interested in applying methods developed for
the study of the natural sciences to questions in the
social sciences in the late 1990s.

The aim of this group of researchers, who became
known as econophysicists,4 was to capture the charac-
teristic features of empirical wealth and income distri-

3 A similar double regime has been observed in other well-
studied size distributions, e.g., city populations [18].
4 According to Yakovenko and Rosser (2009), the
term econophysics—and its derivative econophysicist—was
coined in 1995 by American physicist H. E. Stanley to
describe the utilization of techniques developed in statis-
tical physics to explore phenomena normally considered to
fall under the purview of economics [21].
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butions, as made known by extensive statistical analy-
ses. There is now substantial evidence that the bulk of
the income distribution in all capitalist countries follows
an exponential distribution [22]. The right tail of the
income distribution follows the aforementioned Pareto
law and the left tail follows Gibrat’s law. The expo-
nential bulk and the log-normal left tail are sometimes
unified in the form of the closely related Gamma dis-
tribution:

p(x) =
βα

Γ(α)
xα−1e−βx (7)

where α is called the “shape parameter” and β the “rate
parameter.” However, the existing data are insufficient
to conclude whether the Gamma or log-normal distri-
bution provides the better empirical fit in general [23].

Wealth distributions are unfortunately much less
well understood as there is a dearth of publicly avail-
able data. Rough estimates of wealth distributions in
pre-capitalist societies, such as the New Kingdom of
Egypt and medieval Hungary, provide some evidence
that power-law distributions of wealth prevailed even
then, but these results are far from conclusive [24,25].
Drăgulescu and Yakovenko (2001b) use inheritance tax
data to study the wealth distribution in the modern
United Kingdom, which is found to have a similar struc-
ture to the UK’s income distribution [26]. Further sup-
porting this conclusion, Sinha (2006), among others,
find evidence that the very wealthiest stratum of soci-
ety, as measured by published “rich lists,” follows a
power law distribution [27]. These features appear to
emerge even in artificial economies, with a wealth distri-
bution characterized by an exponential bulk and power-
law tail being observed across players of a massively
multiplayer online game with inbuilt systems of produc-
tion and trade [28]. Thus, early exchange models in the
econophysics literature sought to generate distributions
exhibiting both the exponential bulk and power-law tail
observed in data by means of symmetric, often binary,
interactions.

The first paper in this lineage was Ispolatov et al.
(1998), and shortly thereafter two papers which would
ultimately become the cornerstones of the random
asset exchange modeling literature—Drăgulescu and
Yakovenko (2000) and Bouchaud and Mézard (2000)—
emerged [2,4,29]. But as it turned out, the econo-
physicists were not the first to approach the question
of inequality in this way. The sociologist John Angle
had actually published a series of papers studying a
model extremely similar to Ispolatov et al.’s more than
a decade earlier [30–32], though the literature had no
knowledge of this fact until it was pointed out by Lux
(2005) [33]. Likewise, it was noticed by Patriarca et
al. (2005) that Drăgulescu and Yakovenko’s model was
anticipated by a series of papers by Eleonora Bennati,
which had been published in Italian and had not yet
been translated into English [34–36].

Nonetheless, in the 25 years since Ispolatov et al.’s
original paper, a sizeable literature on this class of
models has emerged, with countless variations having
been defined and investigated. The literature has also

become much more diverse in that time: though this
subject was initially solely the domain of a subset of
physicists interested in exploring economic questions, it
has since drawn attention from researchers with back-
grounds in mathematics, economics, information and
systems science, and more.

This article provides, for the first time, a compre-
hensive review of this literature, which, following the
terminology of Sinha (2003), will be referred to as the
“random asset exchange” literature. While many excel-
lent partial reviews do already exist (see Chatterjee
and Chakrabarti (2007), Yakovenko and Rosser (2009),
Patriarca et al. (2010), Patriarca and Chakraborti
(2013), and Boghosian’s 2019 article in Scientific Amer-
ican, just to name a few [21,37–41]), all either have since
become dated or have focused only on select parts of the
literature. This review is the first to the authors’ knowl-
edge that not only discusses all of the most significant
econophysical models of wealth and income inequality,
but fully enumerates the most common variations upon
the literature’s benchmark models as well.

The remainder of the paper is structured as follows.
Section 2 introduces the two principal categories of ran-
dom asset exchange model and discusses a handful of
the most significant (“canonical”) papers of each type.
Section 3 identifies six major themes in the literature—
types of variations upon the canonical models meant
to study the effect of a certain economic phenomenon
on wealth distributions—and summarizes key papers
relating to each theme. Section 4 concludes with a dis-
cussion of the overall significance and explanatory value
of the random asset exchange literature, and makes the
argument for moving in the direction of more concrete
economic modeling.

2 The taxonomy of random asset exchange
models

Most random asset exchange models fall into one of two
categories. The first of these is conventionally called the
“kinetic wealth exchange” (KWE) category of model,
which was popularized by Drăgulescu and Yakovenko
(2000). Named such because of the similarity of such
models to thermodynamic models derived from the
kinetic theory of gasses, KWE models are typically
characterized by the following properties:

1. Pairwise exchange between agents is the primary
system state transition function;

2. Total money present in the system is conserved; and
3. Total money present between all pairs of agents

engaged in exchange is conserved.

These features are analogous to the role of particle
collisions, conservation of energy, and conservation of
momentum in the kinetic theory of gasses, respectively.

The second prominent category of model, inspired by
models of directed polymers rather than ideal gasses,
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is the Bouchaud-Mézard (BM) type model, first intro-
duced by Bouchaud and Mézard (2000) [4]. In con-
trast to KWE-style models, BM-style models tend to
be characterized instead by static wealth flows between
“adjacent” pairs of agents, as defined by an exogenously
given adjacency network, being the main mechanism of
system evolution. Furthermore, each agent’s wealth is
subject to endogenous stochastic variation, leading to
systemic non-conservation of wealth.

While other formulations exist, models belonging to
one of these two categories represent the great majority
of the literature.

2.1 Kinetic wealth exchange

Though their work was anticipated by Angle (1986,
1992, 1993), Bennati (1988, 1993), and Ispolatov et al.
(1998), it is Drăgulescu and Yakovenko (2000) who are
credited with first formalizing and thoroughly studying
the KWE model [2,29–32,35,36]. Their original formu-
lation considers a system of N � 0 agents with M � N
units of wealth between them. Agents then engage in
random pairwise exchanges, with a winner and loser
being randomly selected in each pair and a transfer of
wealth occurring, following some exchange rule:

[
wi(t + 1)
wj(t + 1)

]
=

[
wi(t) + Δwij

wj(t) − Δwij

]
(8)

with Δwij > 0 if agent i is the winner of the exchange
and Δwij < 0 if j is victorious instead. Since KWE
models almost always feature exclusively linear, pair-
wise exchanges, it is often convenient to represent the
model’s exchange rule as a 2 × 2 matrix M, such that:

[
wi(t + 1)
wj(t + 1)

]
= M

[
wi(t)
wj(t)

]
(9)

Drăgulescu and Yakovenko demonstrate that, so long
as Δwij is chosen such that the exchange process was
time-reversal symmetric, then the distribution of money
among agents converges to the entropy-maximizing
exponential distribution:

p(w) =
1
T

exp
(
−w

T

)
(10)

where T = w̄ = M/N represents the average wealth
held by agents—analogous to temperature in the equiv-
alent thermodynamic system. This result proves to be
extremely robust, not varying with one’s choice of time-
reversal symmetric exchange rule or underlying adja-
cency network [42].

The differences between Drăgulescu and Yakovenko’s
model and those of Angle, Ispolatov et al., and Bennati
are subtle. In both Angle’s initial model (the “one-
parameter inequality process,” or OPIP) and Ispola-
tov et al.’s “multiplicative-random” exchange model,

Δwij = εwloser, such that exchanges are of the form:

[
wi(t + 1)
wj(t + 1)

]
=

[
wi(t) + εwj(t)
(1 − ε)wj(t)

]
(11)

if agent i wins the exchange. The sole difference between
these two models is that Angle (1986) draws ε from
a uniform distribution before each exchange, whereas
Ispolatov et al. (1998) define ε as a fixed, global param-
eter. In contrast to the exchange rules investigated by
Drăgulescu and Yakovenko (2000), both of these mod-
els break time symmetry and produce identical distri-
butions which are very well-approximated by, but not
exactly given by, Gamma distributions [32].

In both Ispolatov et al.’s additive-random exchange
model and Bennati’s model, agents exchange constant,
quantized amounts of wealth, equivalent under rescal-
ing to Δwij = 1. In Ispolatov et al. (1998), agents
with 0 wealth are removed from the system entirely,
causing all the wealth in the system to eventually be
accumulated by a single agent (a phenomenon termed
“condensation”). In Bennati (1988), however, agents
with 0 wealth are permitted to win, but not to lose,
exchanges, identical to the provision in the constant
exchange rule discussed by Drăgulescu and Yakovenko.
For that reason, the KWE-style model with time
reversal-symmetric exchange rule is sometimes referred
to as the Bennati-Drăgulescu-Yakovenko (BDY) model
of wealth distribution. [21].

An extension of Drăgulescu and Yakovenko’s model
studied contemporaneously with its initial publication
was that of Chakraborti and Chakrabarti (2000), who
introduce a global “saving propensity” parameter λ
[3]. Called the CC model (or, more rarely, the “saved
wealth” [SW] model), its system dynamics are char-
acterized by the fact that, for λ ∈ [0, 1), each agent
engages in multiplicative exchange with only a fraction
1 − λ of his total wealth. The exchange rule in such
models can thus be described as:

M =
[

λ + ε(1 − λ) ε(1 − λ)
(1 − ε)(1 − λ) λ + (1 − ε)(1 − λ)

]
(12)

where ε is drawn from a uniform distribution on [0, 1]
at every exchange.

Curiously, this slight modification dramatically alters
the equilibrium distribution of money among agents
within the system, with the mode of the distribution
(the “most likely agent wealth”) becoming non-zero
for any value of λ > 0. More specifically, the mode
approaches T = M

N (an egalitarian distribution) as λ
approaches 1. Gupta (2006) observes that this depar-
ture from the entropy-maximizing distribution is a con-
sequence of the fact that the introduction of the sav-
ing propensity parameter λ causes the system transi-
tion matrix to become non-singular [43]. Patriarca et al.
(2004a, b) demonstrate that the resultant distribution
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is extremely well fit by a scaled Gamma distribution:

p(w) =
1

Γ(n)

(
n · w

T

)n−1

exp
(
−n · w

T

)
(13)

where n = 1 + 3λ/(1 − λ) [44,45]. The fit is not
exact, however, as the distributions differ in their fourth
moments [46].

The CC model is extremely influential in the random
asset exchange literature, and it itself has two major
variations which must be mentioned. The first, intro-
duced by Chatterjee et al. (2003), defines the saving
propensity parameter as heterogeneously distributed
throughout the population: instead of having identical
saving propensities, each agent i has his own individ-
ual saving propensity λi ∈ [0, 1) drawn from the uni-
form distribution during model initialization [47]. The
exchange rule of this model, called the CCM model, is
thus:

M =
[

λi + ε(1 − λi) ε(1 − λj)
(1 − ε)(1 − λi) λj + (1 − ε)(1 − λj)

]
(14)

The steady-state distribution exhibits a Gamma-like
bulk, as in the CC model, as well as a right tail well
fit by a power law with Pareto parameter α = 1. This
apparent power law is observed for any distribution
of saving propensity of the form ρ(λ) ≈ |λ0 − λ|α,
or for uniform distributions within a restricted range
λi ∈ [a, b] ⊂ [0, 1) [48].

One well-known (and arguably unrealistic) aspect of
the CCM model is that agents’ wealth is highly corre-
lated with the value of agents’ saving parameter, such
that the agents who save nearly all of their money
in every transaction invariably become the wealthiest.
This remains the case even if a significant bias in favor
of poorer agents is introduced, because thrifty agents
in the CCM model always stand to gain much more
than they lose from every transaction [49]. This aspect
of the model also explains the surprising appearance of
the Pareto tail, which is actually somewhat illusory: the
right tail of the equilibrium distribution of the CCM
model is constituted by the overlapping exponential
tails of the distributions corresponding to the subpop-
ulations with the highest saving parameters [34] (Fig.
1).

Another significant drawback of the CCM model is
that, while the right tails of the steady state distribu-
tions change from approximately Pareto with index 1 to
exponential as the distribution of λi narrows, the empir-
ical value of α ≈ 1.5 is never reached [50]. However,
there are a number of ways to modify the CCM model
and recover such a regime: Repetowicz et al. (2006),
for instance, note that introducing modified wealth
parameters with memory—ŵi(t) = wi(t)+γwi(q), with
γ ∈ (0, 1) and q < t—before each transaction and
applying the CC exchange rule thereto does permit
Pareto tails with indices α > 1 to be obtained [51]. Like-
wise, Bisi (2017) demonstrates that replacing the saving
propensity parameter with a bounded, global function

of an agent’s wealth γ(wi) also permits superunitary
Pareto indices [52].

The second variation, introduced by Cordier et al.
(2005) and often called the CPT model, combines the
CC model with an additional stochastic growth term:

M =
[
(1 − λ) + ηi λ

λ (1 − λ) + ηj

]
(15)

where ηi and ηj are independent and identically dis-
tributed variables with mean 0 and variance σ2 [53].
As in the BDY, CC, and CCM models, debts are not
permitted, so a transaction only takes place so long as
neither agent is reduced to a negative level of wealth.
Because ηi and ηj are uncorrelated, total wealth is
now only preserved in the mean. The CPT model has
an inverse-Gamma equilibrium, with shape parameter
α = 1 + 2λ

σ2 and scale parameter β = α − 1:

p(w) =
βα

Γ(α)
· w−1−α · exp

(
− β

w

)
(16)

In this case, the shape parameter α may be interpreted
as the “Pareto index” of the approximately power-law
right tail.

The CPT model, like the CCM model, is a very flex-
ible modeling framework and has consequently been
studied in a variety of other contexts. Düring and
Toscani (2008) employ a CPT model with quenched
saving propensities to study international transactions,
representing countries as subpopulations with different
saving propensities [54]. Bisi and Spiga (2010) consider
a variation on the CPT model wherein the amount of
wealth an agent receives from his trading partner is also
subject to stochastic fluctuations [55]. More recently,
Zhou et al. (2021) investigate the effect of introducing
a non-Maxwellian (i.e., wealth-varying) collision kernel
in the CPT model [56].

2.1.1 Theft, fraud, and yard sales

Following the terminology of Hayes (2002) [57], binary
exchange models in which the quantity of wealth trans-
ferred is proportional to the wealth of the loser, such
as most of the exchange rules studied in Drăgulescu &
Yakovenko (2000), are commonly referred to as “theft
and fraud” (TF) models. In contrast, those in which
the quantity of wealth transferred is proportional to the
wealth of the poorer agent involved in a given exchange
are referred to as “yard sale” (YS) models. YS-style
models were first studied by Chakraborti (2002), who
simulates an ensemble with the exchange rule:

Δwij = 2ε min{wi, wj} (17)

where ε is a uniform random variable with mean 0.5
[58].

The advantage of YS-style models over TF-style
models is that, from a strategic perspective, agents
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Fig. 1 Stationary distributions
produced by the BDY (top),
CC (middle), and CCM (bot-
tom) models, with best-fit Gamma
curves shown. All simulations
were performed with the parame-
terization N = 5000 and w̄ = 100
over 105 iterations

are not disincentivized from engaging in trade, as the
expected value of an exchange is always 0. This is in
contrast to the TF model, which is so-named precisely
because the expected value of an exchange is always
negative for the richer agent. If risk-neutral agents were
allowed to choose whether or not to engage in a given
exchange, a TF economy would immediately freeze as
soon as a wealth differential appears. The principal
drawback of YS-style models is that, lacking modifica-
tion, they always result in the condensation of wealth
in the hands of a small number of agents [59,60]. How-
ever, various studies have since demonstrated a num-
ber of different ways a non-degenerate equilibrium can
be recovered, such as introducing a probabilistic bias
in favor of the poorer agent [1], modeling the redis-
tribution of wealth from rich to poor [59], employing
extremal dynamics [61], or mixing in TF-style interac-
tions with some non-vanishing probability [62].

Moukarzel et al. (2007) demonstrate that, in the case
of a YS-style model where the proportion of the poorer

agent’s wealth at stake in each transaction is a fixed
constant f , a sufficient bias of the probability p toward
the poorer agent alone was sufficient to avoid condensa-
tion [63]. In particular, the critical probability p∗ above
which the system does not condense was found to be:

p∗ =
log

(
1

1−f

)

log
(

1+f
1−f

) (18)

Based on this result, Bustos-Guajardo and Moukarzel
(2012) study an extension of a YS-style model on an
adjacency network, such that exchanges may only take
place between adjacent agents; they find that the value
of the critical probability remains the same regardless of
the choice of network [64]. In fact, most system dynam-
ics in the stable phase of the system are independent
of the choice of network. However, certain dynamical
aspects of the system (such as time required for the sys-
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tem to fully condense) do differ from the fully-connected
case in the unstable (i.e., condensing) region. This is
not entirely surprising, seeing as the number of agents
to whom the wealth will condense is determined solely
by the geometry of the underlying network; instead of
one agent accumulating all the money, the distribution
condenses to a set of “locally rich agents,” sometimes
termed the “oligarchy.”

Redistribution in a YS-style model is examined by
Boghosian (2014a), who introduces a mechanism by
which, at each time step, a fraction χ of each agent’s
wealth is confiscated and subsequently redistributed
uniformly among the population [59]. Introducing this
mechanism not only prevents condensation, but also
produces a Gamma-like steady state distribution with
a Pareto-like tail. The dynamics of this mechanism are
studied in more detail by Boghosian et al. (2017) and
Devitt-Lee et al. (2018), in which it is combined with
an bias in exchanges in favor of the wealthy, called
the “wealth-attained advantage” (WAA) [65,66]. In
this variation, termed the “extended yard sale” (EYS)
model, the wealthier agent wins a given exchange with
probability p = rT (wi − wj), where T = w̄ is the
average wealth of the system and wi is the wealth of
the richer agent. The wealth-attained advantage for-
mally acts as a net tax on the non-oligarchy, while
the redistribution acts as a net tax on the oligarchy;
once the rich-to-poor flux of the redistributive mecha-
nism is eclipsed by the poor-to-rich flux of the wealthy
agents’ advantage (the system enters a “supercritical”
state), the inequality of the resulting wealth distribu-
tion, as measured by the Gini coefficient, begins increas-
ing rapidly. Boghosian and co-authors show that, if the
poor-to-rich flux dominates, a “partial oligarchy” ulti-
mately obtains a finite fraction of the total wealth of
the system in the infinite-time limit—explicitly given
by the ratio between χ (or limw→∞ χ(w) = χ∞ if non-
linear redistributive schemes are permitted) and ζ, the
“scale” of the WAA in a given economy.

A generalization of the EYS model, the “affine
wealth” (AW) model, is studied in a series of papers
beginning with Li et al. (2019) [67]. The AW model per-
mits negative wealth by defining a debt limit Δ, adding
Δ to the wealths of both agents before each exchange,
and subtracting Δ once the exchange is complete. Li et
al. observe that the AW model provides a remarkably
good fit to the U.S. wealth distribution, as reported
by the U.S. Survey of Consumer Finances. Polk and
Boghosian (2021) find in the context of the AWM model
that, while the ratio between sub- and supercritical
states of the AWM remains the ratio χ∞/ζ, the frac-
tion of wealth ultimately accumulated by the oligarchy
also increases with the debt limit Δ [68]. Moreover, it is
found that many developed capitalist economies appear
to be very near criticality—the point below which a
Gaussian distribution of wealth prevails, above which a
partial oligarchy emerges, and at which an exponential
distribution of wealth serves as an unstable stationary
distribution [66,68]. Since the regime one finds oneself
in near criticality is clearly sensitive to small changes in
redistributive policy, Boghosian and co-authors assert

that, if the AWM is to be believed, there is no universal
form attributable to the right tail of wealth distribu-
tions; rather, policy is paramount.5

Also significant is the variation on the YS-style model
first formulated by Iglesias et al. (2004) [71]. This
model, sometimes referred to as the IGAV model, sees
agents with wealths wi and wj and saving parameters
λi and λj exchange quantities Δwij = min {(1 − λi)wi,
(1 − λj)wj} with bias. The bias in favor of the poorer
agent j is defined following Scafetta et al. (2002) [72]:

p =
1
2

+ f · wi − wj

wi + wj
(19)

The asymmetry flux index f ∈ [0, 1/2] may be inter-
preted as the degree of social protection offered to the
poor. A number of similar models which modify Iglesias
et al.’s exchange rule are studied by Caon et al. (2007)
[73]. Finally, Neñer and Laguna (2021a) show that, in
the IGAV model, the richest agents are not necessar-
ily the thriftiest [49]. Instead, the saving propensity λ∗

i
that maximizes equilibrium average wealth lies in the
interval (0, 1), increasing with f (Fig. 2).

Heinsalu and Patriarca (2014) introduce a varia-
tion of the BDY model meant to more explicitly
model the dynamics of barter economies [74]. While
Drăgulescu and Yakovenko examined, among others,
the TF exchange rule:

M =
[

ε ε
1 − ε 1 − ε

]
(20)

where ε is a uniform random variable with mean 0.5,
Heinsalu and Patriarca consider the rule:

M =
[
1 − εi εj

εi 1 − εj

]
(21)

where εi and εj are i.i.d. uniform random variables
with mean 0.5. This modification, called the “imme-
diate exchange” (IE) model, changes the system from a
pure TF one, where wealth flows unidirectionally and,
on average, from richer to poorer agents, to one in which
wealth flows bidirectionally. In the general IE model,
transactions have some probability μ of occurring unidi-
rectionally in the manner of Angle (1986). The pure IE
model with μ = 0 has a steady state distribution p(w)
which is an exact Gamma distribution with a shape
parameter of 2, which implies that limx→0 p(x) = 0,

5 The implications of these works are clearly relevant in
modern economic contexts. Empirical work has shown both
that, on average, wealth in the United States has flowed
from poor to rich over the last forty years and that, simul-
taneously, the degree of inequality in labor incomes has
dramatically increased [69,70]. If we are indeed tending
toward a partial oligarchy characterized by extreme inequal-
ity, what kinds of interventions must be considered to pre-
vent inequality from reaching economically and politically
destabilizing levels?
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Fig. 2 Stationary distribution produced by the IGAV model with quenched savings propensities and a bias function per
Eq. (19). Simulation was performed with the parameterization N = 5000 and w̄ = 100 over 106 iterations

p(x) has a non-zero mode, and the right tail is well-
approximated by a Pareto distribution with α = 1 [75].

2.2 Bouchaud-Mézard models

Unlike KWE-style models, BM-style models do not
make use of agents pairing up and engaging in binary
transactions with a winner and a loser; rather, the rate
of exchange between agents is defined by a fixed adja-
cency matrix J, each entry of which Jij represents the
“cash flow rate” from agent j to agent i. In Bouchaud
and Mézard (2000), each agent in the population of size
N has two sources of income—stochastic returns from
investments and sales of a product to other agents—
and one source of expenses—purchases of products from
other agents. Thus, the income of agent i is given by
the Langevin equation:

ẇi = ηi(t)wi(t) +
∑
j �=i

Jijwj(t) −
∑
j �=i

Jjiwi(t) (22)

where the stochastic growth terms ηi are i.i.d. Gaussian
random variables with mean μ and variance 2σ2. Simi-
lar stochastic processes have been studied in economics
as well; notably, letting J → 0 allows Eq. (22) to be
rewritten (following Stratonovich’s interpretation):

dwi = μwidt +
√

2σwi ◦ dBit (23)

which is equivalent to the model of city growth (with
an inverse power law stationary distribution) studied
by Gabaix (1999) [76].

In stark contrast to KWE-style models, BM-style
models have no restriction on total wealth being con-
served. The simplest case, in which all rates of exchange

are equalized such that Jij = J̄
N , is found by way

of a mean-field approximation to produce an inverse-
Gamma equilibrium distribution with shape parame-
ter α = 1 + J

σ2 and scale parameter β = α − 1—
strikingly similar in form to the equilibrium distribution
of the CPT model. However, this approximation is time-
limited; for any finite number of agents, the BM model
on a complete graph will eventually exhibit wealth con-
densation, with the probability that a given agent will
have wealth less than any finite fraction of total wealth
growing to 1 [77].

Further investigation into this category of model has
shown that the resulting distribution is also sensitive
to the nature of the underlying network defining the
non-zero entries of the transaction matrix J. Souma et
al. (2001) demonstrate through simulation that defining
J on a small-world network—where each agent neigh-
bors only 0.1% of the population—leads to distributions
which are best fit by a combination of log-normal and
power-law distributions [78]. Garlaschelli and Loffredo
(2004, 2008) likewise show that it is possible to retrieve
a realistic mixed log-normal/power law distribution by
simulating the model on a simple heterogeneous net-
work with a small number of “hub” agents, and that the
BM model on a homogeneous network is able to repro-
duce either a log-normal or a power law distribution—
but not both—depending on the average number of
adjacencies per agent [79,80]. Ma et al. (2013) simu-
late the BM model on a partially connected network
and find the generalized inverse Gamma (GIGa) distri-
bution provided the best fit to the steady state [81].

Though Bouchaud and Mézard’s original model is
written in continuous-time, a number of authors have
studied similar models written in discrete time. Di Mat-
teo et al. (2003), for example, consider the variation
[82]:
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wi(t + 1) = Ai(t) + (1 + Bi(t)) wt

+
∑
j �=i

Qj→i(t)wj(t)

−
∑
j �=i

Qi→j(t)wi(t)

(24)

For the purposes of their analysis, additive noise Ai(t)
is assumed to be Gaussian with mean zero, and multi-
plicative noise Bi(t) = 0. Additionally, each agent i is
assumed to split a fixed share q0 of his wealth evenly
with all of his neighbors j ∈ Ii, where |I| = zi. Thus,
Qi→j(t) = q0

zi
if j ∈ Ii and 0 otherwise. The restricted

system dynamics become:

wi(t + 1) = Ai(t) + (1 − q0) wi(t) +
∑
j∈Ii

q0
zj

wj(t)

(25)
The results this model produces depend on the choice of
adjacency network: interestingly, but perhaps not sur-
prisingly, scale-free networks produce power-law distri-
butions. In this case, the equilibrium wealth level of
a given node is nearly perfectly correlated with the
number of neighbors it has in the specified network,
as shown in Fig. 3.

Scafetta et al. (2004) propose another discrete-time
variation of Bouchaud and Mézard’s model, motivated
by a dissatisfaction with the fact that the original BM
model produces a constant wealth flux from rich to poor
[83]. This is not necessarily realistic as wealth should
only be transferred in exchange if an agent buys an
asset for a price different than its value; such a model
cannot explain wealth inequality under the assumption
of perfect pricing. Thus, Scafetta et al. propose a model
in which the wealth of agent i is given by:

wi(t + 1) = wi(t) + riξ(t)wi(t) +
∑
j �=i

wij(t) (26)

where ri > 0 is the “individual investment index,”
given as the product of the global investment index
and the proportion of wealth actually invested by
agent i, ξ(t) is a Gaussian random variable repre-
senting return on investment, and wij(t) represents
the flow of wealth between agents j to agent i in
period t, which is assumed to be Gaussian with mean
μ = fh

wi−wj

wi+wj
min{wi, wj} and standard deviation σ =

h min{wi, wj}.
By varying f , h, and r, the authors produce wildly

different system dynamics. If h > 0 and f = r = 0
(the symmetric trade-only model), wealth condensation
occurs. If f, h > 0 and r = 0 (the asymmetric trade-
only model), a Gamma-like distribution is observed.
Finally, if f, h, r > 0 (the asymmetric trade-investment
model), a Gamma-like distribution with a power-law
tail is observed.

Various other modifications to the BM model have
been studied as well. Huang (2004) extends the BM
model to negative wealth levels, and Torregrossa and
Toscani (2017) prove analytically that a unique steady

state with support on the entire real number line exists
[84,85]. Johnston et al. (2005) impose the additional
restriction of conservation of wealth, finding that wealth
condensation still occurs for high values of μ [86].
Finally Ichinomiya (2012a, b) relaxes Bouchaud and
Mézard’s mean field assumption to adiabatic and inde-
pendent assumptions, drawn from quantum mechanics
[87,88]. The power law-like tail is reproduced and con-
densation is seen to take place at a higher J̄ than the
mean-field case would indicate, though the Pareto index
obtained remains smaller than empirical values [89].

2.3 Other formulations

While KWE-style models and BM-style models remain
by far the most popular categories of random asset
wealth exchange models, a variety of other formulations
exist and deserve mention.

A simple model which has nonetheless proved influ-
ential is the multiplicative stochastic process (MSP),
which was studied by the economists Robert Gibrat
and D.G. Champernowne [80]. It would however be a
stretch to say that MSP-style models are truly a type
of random asset exchange model as they are principally
characterized by the lack of exchange or any other sort
of interaction between agents. Such models essentially
represent agents’ levels of wealth in terms of indepen-
dent random walks, but nonetheless are able to cap-
ture some essential characteristics of observed distribu-
tions. The simplest model in this vein is the pure MSP
w(t + 1) = λ(t)w(t), where λ(t) is any Gaussian ran-
dom variable. It is straightforward to show that the
distribution of wealth among an ensemble of agents
whose wealth evolution is governed by a pure MSP
will follow a log-normal distribution, though variations
which include additive noise (such as the Kesten pro-
cess from the biological sciences) and “minimum wage”-
style boundary constraints can also reproduce power
law tails [90]. For examples of such models, see Biham
et al. (1998), Huang and Solomon (2001), Souma and
Nirei (2005), and Basu and Mohanty (2008) [91–94].

Another category of model from the early days of
the RAE literature is the Generalized Lotka-Volterra
(GLV) model, which also has its origins in the biological
sciences. The original Lotka-Volterra process, studied
by Biham et al. (1998), is given by:

wi(t + 1) = λ(t)wi(t) + aw̄(t) − bwi(t)w̄(t) (27)

where λ is a time-dependent random variable and w̄(t)
is the average wealth in the system [91]. The inclusion of
the w̄(t) terms represents a form of indirect interaction
between agents: much like in the mean-field approxima-
tion of the BM model, instead of including specific inter-
action terms bijwi(t)wj(t), all interactions are assumed
to be symmetrical: bij = b/N .

123



Eur. Phys. J. B (2024) 97 :69 Page 11 of 27 69

Fig. 3 Stationary distribution produced by the discrete-time BM model on a Barabási-Albert scale-free network, as
described by Di Matteo et al. (2003). Simulation was performed with the parameterization N = 5000, w̄ = 100, q0 = 0.1,
and E

[
Ai(t)

2
]

= 1 over 105 iterations

The generalized form of this model is defined by
Solomon and Richmond (2001, 2002) [95,96]:

wi(t + 1) = wi(t)+ (εi(t)σi+ci(w1, w2, . . . , wN , t)) wi(t)

+ ai

∑
j

bjwj(t)

(28)
where εi is a Gaussian random variable with mean
0 and standard deviation 1, ci represents endogenous
and exogenous dynamics in returns, and ai and bi rep-
resent redistribution dynamics among agents. Under
certain assumptions, this model also produces mixed
exponential-Pareto distributions. However, this model
ultimately faded in popularity due to the difficulty it
has accurately representing the left tail of income dis-
tributions, as well as the lack of economic justification
for some of its terms [50].

3 Prominent themes in the literature

While the papers discussed above (Fig. 4) serve as the
foundation for the random asset exchange literature,
the flexibility of the underlying modeling framework
have allowed a vast number of featural variations upon
these canonical models to have proliferated. This sec-
tion provides an overview of the most significant of
these trends and summarizes a few key papers of each.

3.1 Non-conservation of wealth

One of the criticisms leveled most consistently against
the first generation of KWE-style models is that the
assumption of total conservation of wealth, made by

analogy with the physical principle of the conservation
of energy, is economically unrealistic. In real economies,
wealth is constantly being created and destroyed by
means of production, consumption, and credit. Thus,
a number of variations upon KWE-style models have
attempted to represent this fact. Most such models can
be further classified into one of two types: models which,
like the CPT model, conserve wealth in the mean, and
models which tie the global wealth level to a fixed influx
rate.

Bisi et al. (2009) and Bassetti and Toscani (2010)
both consider models of the first type [97,98]. The latter
considers the non-conservative exchange rule:

M =
[
εi εi

εj εj

]
(29)

where εi and εi are i.i.d. and E[εi + εj ] = 1. Bas-
setti et al. (2014) consider a class of similar lotteries
and demonstrates they tend to produce inverse-Gamma
steady states [99].

Slanina (2004) was the first to consider a non-
conservative model of the second type, in which a con-
stant inflow of wealth from outside the system of inter-
acting agents is permitted [100]. As in other formula-
tions, the model sees pairs of agents i and j chosen at
random to engage in a transfer of wealth, defined by
the dynamics:

M =
[
1 − λ + ε λ

λ 1 − λ + ε

]
(30)

where λ ∈ [0, 1) represents agents’ propensity to save
and ε > 0 represents the rate at which exogenous
wealth flows into the system. Slanina’s model produces
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Fig. 4 “Family tree” of some significant papers in the RAE literature, where a “child” node represents a model formulated
as a variation upon the “parent” node

a Gamma-like equilibrium distribution with a Pareto
tail with an index α ∼ 1 + 2λ

ε2 . Coelho et al. (2008)
extend this model, redefining λ(wi) as a piecewise func-
tion taking on two different values depending on which
side of a pre-specified wealth threshold nw̄(t) an agent’s
wealth wi(t) fell:

M =
[
1 − λ(wi(t)) + ε λ(wj(t))

λ(wi(t)) 1 − λ(wj(t)) + ε

]
(31)

This modification reproduced a double power-law
regime, a phenomenon observed when comparing the
right tail of income from tax data to estimates for the
capital gains of a country’s very wealthiest individuals
[101].

A number of non-conservative models have dynamics
which attempt to more directly model the process of
money creation through borrowing. For example, Chen
et al. (2013) consider a random exchange model in
which agents who would otherwise reach zero wealth
are permitted to borrow money from a central bank,
which in turn can issue loans with no interest up to a
certain global debt limit [102]. This process of money
creation (issue of loans) and annihilation (paying back
of loans) leads to a system in which the money sup-
ply grows logarithmically. Schmitt et al. (2014) intro-
duce a similar system of money creation and analyzes
the non-local effect that issuing credit has on the rest
of the system; though the recipient of the loan clearly
benefits, the effects of the increase in the money sup-

ply quickly propagate and all agents suffer the resultant
inflationary effects [103].

Liu et al. (2021) and Klein et al. (2021) exam-
ine a generalization of an unmodified YS-style model
which permits growth in the money supply over time,
which they call the “Growth, Exchange, and Distri-
bution” (GED) model [104,105]. Each time-step, total
wealth W (t) is increased by a factor of 1 + μ, and
the wealth influx μW (t) is distributed among agents
such that agent i receives wλ

i /(
∑

j wλ
j ). For subunitary

values of λ, poorer agents disproportionately benefit
from the growth in the money supply and a quasi-
stationary distribution exists; otherwise, the system
exhibits wealth condensation as in the unaltered YS-
style model. The mechanism of apportioning the sur-
pluses attained from growth in these models is similar
to that employed by Vallejos et al. (2018), in which sur-
pluses from growth apportioned according to a more
indirect “wealth power” parameter [106].

3.2 Networks and preferential attachment

It is a notable and well-established result in the random
asset exchange literature that the effect of adjacency
networks on the equilibrium distribution of wealth
depends heavily on the type of model. While, for
instance, the specific nature of the network has a deci-
sive effect on the steady state wealth distribution in
BM-style models, the opposite tends to be true for
KWE-style models. Networks of exchange are an impor-
tant aspect of real economic systems, and as such there
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has been a significant effort to study the effect they
have on various types of RAE models.

Interestingly, models characterized by unidirectional
exchange exhibit greater sensitivity to network struc-
ture than bidirectional exchange models. Chatterjee
(2009), for example, introduces a toy model in which
agents exchange fixed fractions of their wealth on a
directed network characterized by a disorder parame-
ter p [107]. Higher values of p produced networks where
more agents had similar incoming and outgoing connec-
tions; the distributions obtained therefrom were more
Gamma-like, as opposed to the Boltzmann-like dis-
tributions obtained from lower values of p. Mart́ınez-
Mart́ınez and López-Ruiz (2013) study a unidirectional
model with random exchange fractions, meant to rep-
resent payments on a non-complete graph [108]. This
“directed random exchange” (DRE) model thus has the
exchange rule:

M =
[

ε 0
1 − ε 1

]
(32)

As in Chatterjee (2009), the choice of adjacency net-
work affects the equilibrium distribution of the DRE
model. For the fully-connected case, the equilibrium
distribution p(w) is again exactly Gamma, with shape
parameter 1

2 [109]. Notably, this implies that the
equilibrium distribution possesses a singularity at 0,
likely explaining why Mart́ınez-Mart́ınez and López-
Ruiz observed a condensation-like phenomenon even on
fully-connected networks.

Sánchez et al. (2007) investigate a model in which
agents populate a one-dimensional lattice. Each agent’s
wealth grows in a deterministic fashion as a product
of a linear “natural growth” term and an exponential
“control” term, which retards growth as the difference
between an agent’s wealth and the average wealth of its
neighbors increases [110]. While this system produces a
pure power law distribution, different parametrizations
or arrangements of agents’ neighborhoods can produce
Boltzmann–Gibbs distributions as well [111,112].

A handful of models have included the additional
possibility of agents exchanging connections or posi-
tions on a lattice as well as units of wealth. Gusman
et al. (2005) define an IGAV model on a random net-
work in which the winner of an exchange is rewarded
with additional connections on the network, producing
a power law regime [113]. Aydiner et al. (2019) examine
a CCM-style bidirectional exchange model on a one-
dimensional lattice, in which some fraction of agents
exchange lattice position each iteration of the simu-
lation [114]. Fernandes and Tempere (2020) likewise
consider a variation of the CC model in which agents
on a two-dimensional lattice randomly switch positions
on the lattice such that the average wealth difference
between neighboring nodes is reduced [115]. This ulti-
mately results in perfect wealth segregation and uni-
formly higher inequality.

The effect of extremal dynamics on the distribution of
wealth over agents on a network is thoroughly studied
in the “conservative exchange market” (CEM) model
[116–118]. This model populates a lattice with agents

who possess wealth levels in the range [0, 1], and each
time step sees the poorest agent’s wealth randomly re-
randomized at the expense or benefit of its two closest
neighbors. The selection rule in this model induces self-
organizing behavior such that almost all agents end up
with wealth levels above a “poverty line,” which proves
to be higher in the restricted lattice case than in the
fully-connected case. This model has been utilized by a
number of follow-up papers over the years: Iglesias et
al. (2010) use this model to compare two different redis-
tribution schemes, and Ghosh et al. (2011) consider its
mean-field approximation [119,120]. Chakraborty et al.
(2012) and Braunstein et al. (2013) study the same
dynamics on various other networks [121,122]. Finally,
Paul et al. (2022) demonstrate that the level of the
“poverty line” increases with saving propensity in the
case of a CC-style model coupled with extremal dynam-
ics [123] (Fig. 5).

A concept closely related to adjacency is that of pref-
erential attachment, which defines the likelihood of two
agents interacting as a function of endogenous variables.
The variable chosen is usually wealth, representing the
fact that, in real economies, both the rich and the
poor tend to interact more often with people of similar
socioeconomic status to themselves. Because of its non-
discrete nature, preferential attachment can allow for
somewhat more dynamic interactions than adjacency
networks can, permitting agents who become wealthy
to access the networks of the rich and not totally disal-
lowing chance rich–poor interactions.

Laguna et al. (2005) study the effect of this phe-
nomenon on the IGAV model by imposing the restric-
tion that a given agent is only permitted to interact
with another agent if the difference between their two
wealth levels is less than a given threshold value u
[124]. Large values of u unsurprisingly replicate the
IGAV model, while small values freeze the system
entirely. Intermediate values of u, however, produce
a self-organizing separation within the distribution of
wealth, with a gap separating rich agents from poor
ones spontaneously arising. This bimodal distribution
persists even for high values of the poor-bias parameter
f .

Chakraborty and Manna (2010) study a model with
simple preferential attachment behavior, such that
richer agents engage in exchange more frequently [125].
That is, the probability that agent i is selected as the
first trader is proportional wα

i , and the probability that
j is selected as the second trader is proportional wβ

j .
The limit as either exponent goes to infinity yields
purely extremal mechanics, while α = β = 0 is identi-
cal to the CCM model. Goswami and Sen (2014) defines
a more complicated attachment function, wherein the
probability of a given pair of agents (i, j) interacting
depends on i’s total wealth, the difference in wealth
between i and j, and the number of past interactions
between agents i and j [126]. The strength of each factor
is modulated by a corresponding exponent, and, when
applied to the classical BDY model, the choice of mod-
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Fig. 5 Stationary distribution produced by the CEM model, with the best log-linear fit of the right tail of the distribution
shown. Simulation was performed with N = 5000 over 107 iterations

ulation has a significant effect on the Pareto index of
the steady-state distribution.

3.3 Goods and rationality

Despite their reductive nature, many of the simplify-
ing assumptions discussed above are not uncommon to
find in the economics literature as well. Many neoclas-
sical models of simple “exchange economies” study the
distribution of endowed and conserved assets absent
wealth creation, and comparatively few consider the
effect of exchange networks or other kinds of barriers to
freely-associating exchange between agents (an impor-
tant source of imperfect competition and thus mar-
ket inefficiency). Rather, the main distinction between
RAE models and those found in the mainstream eco-
nomics literature lies in the fact that the former typ-
ically study ensembles of agents exchanging money
directly in a stochastic fashion, while the latter typically
study ensembles of rational (i.e., utility-maximizing)
agents exchanging goods, with money exchange being
an implicit consequence of goods exchange. A number
of attempts have been made to partially bridge this dif-
ference by introducing goods and rationality into RAE
models.

Chakraborti et al. (2001) study a model with both a
fixed commodity supply Q and money supply M dis-
tributed among a population of agents [127]. These
agents have a simple but reasonable utility function:
they first seek to ensure their level of goods qi exceeds
some subsistence level q0, and then seek to maximize
their money holdings mi; agents with qi > q0 thus find
agents with qj < q0 to sell their excess goods to at a
fixed price of 1. Not surprisingly, the steady-state dis-
tribution of this system is found to be sensitive to the

global quantities Q and N ; if the commodity supply is
limited (Q/N < q0), some fraction of agents will nec-
essarily fall below subsistence level, while if the money
supply is limited, agents lack the ability to redistribute
the commodity supply in an efficient manner. A simi-
lar model with stochastic price fluctuations is consid-
ered by Chatterjee and Chakrabarti (2006), in which
wealth is taken to be the sum of money and commodity
holdings [128]. In both models, the money distribution
exhibits a Pareto tail with index 1 while the commodity
distribution is exponential so long as neither Q nor M
is restricted.

Silver et al. (2002) consider a model with a more
sophisticated utility function, in which agents possess
stochastically time-varying Cobb-Douglas utility func-
tions of the form [129]:

ui,t(ai,t, wi,t) = (ai,t)fi,t(wi,t − ai,t)1−fi,t (33)

where ai,t represents agent i’s holdings of the money
commodity at time t, wi,t − ai,t represents agent i’s
holdings of non-money commodities at time t, and fi,t

is a random variable independently and identically dis-
tributed across both indices. Each agent then chooses to
re-allocate his wealth between money and non-money
commodities in such a way that maximizes ui,t subject
to supply constraints. Simulations of this system pro-
duce a wealth distribution well-fit by a Gamma distri-
bution with a shape parameter of 1 and a rate parame-
ter of 1/α, where α represents the global supply of the
money commodity.

More recently, a handful of economists have made
progress working in the other direction, recovering well-
studied dynamics for the time-evolution of wealth from
“micro-founded” models (i.e., models in which aggre-

123



Eur. Phys. J. B (2024) 97 :69 Page 15 of 27 69

gate dynamics are derived from the directed behavior
of an ensemble of utility-maximizing agents). Benhabib
et al. (2011) consider an overlapping generations model
in which each individual allocates income received from
idiosyncratic and stochastic returns in order to maxi-
mize utility, which is derived both from consumption
and bequest of wealth to the next generation; the resul-
tant stationary distribution is shown to have a Pareto
tail [130]. Benhabib et al. (2019) then calibrate this
model to U.S. data and find that both the stochastic
growth factor and differential (wealth-varying) levels
of intended bequest as a fraction of lifetime earnings
play a significant role in determining the time-evolution
of income inequality [131]. Gabaix et al. (2016) sug-
gest a possible microeconomic formulation—based on
an stochastic optimal investment problem—to recover
dynamics very similar to the mean-field Bouchaud-
Mézard model:

dwit = μdt + σdBit + gitdNit (34)

where git are i.i.d. random variables drawn from an
arbitrary distribution and Nit is a Lévy jump process
[132]. Gabaix and coauthors also discuss the problem
of the too-slow convergence of the model to the steady-
state level of inequality when compared to empiri-
cal data, and a modification based on “growth types”
and “scale dependence” (individuals belong to one
of finitely many types which define different growth
dynamics) is proposed to solve this problem. In a simi-
lar vein, Berman et al. (2020) find that—contrary to the
widespread assumptions that (a) empirical wealth and
income dynamics have a stationary distribution and (b)
the system converges more or less rapidly to said sta-
tionary distribution—aggregate transfers from poor to
rich (corresponding to a J < 0 and precluding the possi-
bility of a stationary distribution) predominate in most
recent data [133]. Moreover, Berman and coauthors find
that, when a stationary distribution does exist, the time
to relaxation is extraordinarily long.

However, not every exchange model with goods
is paired with rational agents. Ausloos and Pȩkalski
(2007) consider a model with money, goods, and com-
pletely stochastic agent behavior [134]. Each time step,
one agent decides via coin toss whether to purchase a
nonzero number of goods. If so, he randomly selects a
fraction of his money to spend and taps another agent
to sell to him. If this second agent has enough goods to
sell and has a desire to sell (again decided via coin toss),
the exchange takes place. This model produces a distri-
bution of wealth which interpolates between two power
laws as time progresses, while the distribution of goods
follows a static power-law. In general, those agents that
are rich in terms of money are poor in terms of goods,
and vice versa.

Another interesting line of research has concerned
itself with defining traditional macroeconomic ensem-
bles which produce results equivalent to RAE mod-
els. For example, Chakrabarti and Chakrabarti (2009)
demonstrate that the dynamics of the CCM model can
be replicated in a neoclassical framework with ratio-

nal agents producing differentiated goods and trading
in order to maximize time-varying Cobb-Douglas util-
ity functions for goods and money [135]. In this case,
the stochastic nature of exchange in the CCM model
is represented by random variations in agents’ util-
ity functions in the analog model. Tao (2015) derives
the entropy-maximizing exponential distribution as the
statistical equilibrium of an Arrow-Debreu market sys-
tem populated by agents with such time-varying utility
functions [136]. More recently, Quevedo and Quimbay
(2020) have extended this formulation to permit agents
to save a portion s of goods possessed, naturally leading
to an equivalent non-conservative RAE model [137].

3.4 Strategic behavior

Another way to model “smarter” agent behavior is to
integrate game-theoretic or machine learning dynam-
ics into RAE models. This integration can take various
forms, including bilateral agreement, strategic hetero-
geneity, and behavioral evolution, just to name a few.

In Heinsalu and Patriarca’s aforementioned 2014
paper, the authors consider the effect of introducing an
acceptance criterion—a probabilistic factor defining the
odds a given agent will agree to engage in a proposed
transaction. This factor is a function of the wealth levels
of each agent (increasing the wealthier an agent’s trad-
ing partner is). and both agents need to agree to a trans-
action for it to take place [74]. In both the BDY and IE
models, the choice of any symmetrical acceptance cri-
terion (whether linear, exponential, etc.) only impacts
the time of relaxation to equilibrium, but not the shape
equilibrium itself. Asymmetrical decision criteria cause
the equilibrium distribution to lose its universal form
and to depend instead on the rule chosen. For the CC
model, however, introducing even a symmetric criterion
causes the equilibrium to lose its Gamma-like shape.

Sun et al. (2008) investigate a KWE model in which
each agent can follow one of four strategies, chosen
at random before the simulation begins [138]. The
exchange rule between two agents depends on their
respective strategies: two of the strategies are pas-
sive and tend toward equalizing the wealth of the two
agents, while the other two are aggressive and tend
toward classical theft-and-fraud exchange. As in Hein-
salu and Patriarca (2014), the introduction of heteroge-
neous trading strategies leads to a steady-state distribu-
tion heavily sensitive to the model parameters, specifi-
cally those defining the rate of success of the aggressive
strategies against the passive strategies.

Heterogeneity in strategies is often studied alongside
dynamics for updating agents’ strategies, representing
a rudimentary form of learning. Hu et al. (2006, 2007,
2008), for example, consider a model in which each
agent begins as either a “cooperator” or a “defector”
and plays a series of prisoner’s dilemma and public
goods games with his neighbors [139–141]. After each
game, an agent identifies the strategy of his richest
neighbor and adopts it with some probability defined by
his most recent payout, causing more successful strate-
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gies to propagate throughout the network. In a simi-
lar vein, da Silva and de Figueirêdo (2014) investigate
an adaptive variation of the CCM model in which each
agent i has a fixed probability γi of being able to update
his savings parameter according to a pre-defined rule
each time step [142]. Neñer and Laguna (2021b) study
a variation on a poor-biased YS-style model with non-
zero saving propensity, in which a fraction of agents are
subjected to a genetic evolutionary algorithm after each
Monte Carlo simulation step to update their exchange
parameters, which approach the optimal values deter-
mined by Neñer and Laguna (2021a) [49,143]. A BM-
style model coupled with game-theoretic dynamics is
extensively analyzed by Degond et al. (2014) [144].

3.5 Class division

As mentioned above, one of the key features of empir-
ical income distributions which RAE models attempt
to capture is the bifurcation of the overall distribu-
tion into distinct exponential and Pareto (“thermal”
and “superthermal,” following Silva and Yakovenko
(2004) [145]) components. While some models attempt
to replicate this two-regime behavior while preserving
homogeneity of system dynamics (e.g., by distributing
a behavioral parameter throughout the population or
imposing a specific network structure), a number of
authors have instead sought to do so by defining sepa-
rate system dynamics for agents with large wealth. It
is very natural to identify the exponential bulk of the
income distribution with labor income and the power
law tail with capital gains, seeing as Pareto’s original
observations came from data for property incomes [145].
In this way, asymmetric system dynamics represent the
fact that, in real economies, the rich do indeed have
access to income streams not available to the majority
of the population [146].

Simple models which have this class division “baked
in” are easily able to produce two-regime structures of
wealth. Yarlagadda and Das (2005) and Das and Yarla-
gadda (2005), for instance, introduce a model in which
trading dynamics differ for agents on opposite sides
of a fixed wealth threshold [147,148]. Poorer agents
engage in bilateral exchange exactly as in Chakraborti
and Chakrabarti (2000), while richer agents engage in
exchange—with a different saving parameter—against
the gross system, representing forms of leverage only
available to the wealthy. Quevedo and Quimbay (2020)
likewise study a trading model in which a fixed frac-
tion of the population acts as “producers,” who employ
the remainder of the population as “workers” [137].
Producers trade wealth and pay their associated work-
ers a portion of the exchanged quantity, creating two
differently-shaped Gamma distributions for producer
and worker income which, when combined, create a
clear two-regime distribution.

Lim and Min (2020) consider the case in which the
CCM model is partitioned into two classes by a wealth
percentile threshold and a “solidarity effect” among
agents below said threshold is introduced [149]. If two

agents belong to the same class, then exchange pro-
ceeds according to the usual CCM dynamics. But if the
agents belong to different classes, the lower-class agent
gathers some fraction of the class into a coalition and
wins a portion of the upper-class agent’s wealth with
a probability equal to the ratio between the coalition’s
wealth and the total wealth of all agents involved in
the exchange. This solidarity factor turns out to be cru-
cial for the generation of a realistic wealth distribution,
as without it the middle income stratum collapses and
one obtains a bimodal distribution, as in Laguna et al.
(2005).

However, imposing a fixed boundary differentiating
the upper class from the lower is not necessarily the
best approach; analysis has shown that the “superther-
mal” component of the income distribution is highly
volatile, fluctuating in size with the stochastic move-
ments of financial markets [145]. Thus, a more accu-
rate representation of real-world class dynamics would
see a porous boundary between classes, with some frac-
tion of upper-class agents going broke and falling into
the lower class and some fraction of lower-class agents
“making it” and entering the upper class. A number of
models attempt to capture this aspect of the distribu-
tion’s right tail by setting class boundaries dynamically.
Russo (2014) investigates a model without exchange in
which a new wealth percentile threshold defining the
size of the upper class is chosen from the uniform dis-
tribution at each time step [150]. Agents above that
threshold see their wealth augmented by a multiplica-
tive stochastic process, while agents below it have their
wealth augmented by an additive stochastic process. A
different approach is forwarded by Smerlak (2016), who
constructs a Markov process defining transition prob-
abilities between a finite number of stratified classes
[151]. Agents in higher classes derive proportionally
greater amounts of income from a multiplicative pro-
cess subject to shocks, and consequently exhibit much
greater fluctuations in wealth compared to the major-
ity of agents, who persist at low levels of wealth indefi-
nitely.

Finally, the authors wish to highlight the unique and
striking “social architecture” (SA) model of Wright
(2005), which sees agents spontaneously self-organize
into three distinct classes [152]. Wright defines an
ensemble with three types of agents—employers, employ-
ees, and the unemployed—and in each iteration, an
agent i is randomly chosen to be “active.” The activ-
ities agent i engages in depends on its status: if i is
an employer, it pays as many of its employees as it can
afford; if i is an employee, it receives a wage and spends
it on consumption goods produced by an employer; and
if agent i is unemployed, a random (wealthy) agent is
chosen to hire i, assuming his level of wealth is suf-
ficient to pay i’s wages. Although the initial condi-
tions of the simulation posit complete equality of agents
(all agents begin unemployed and with equal wealth),
the population quickly self-organizes into a three-class
regime with a distribution of wealth characterized by
an exponential bulk and a Pareto tail (Fig. 6). The
exact nature of this distribution becomes clear when
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Fig. 6 Stationary distributions
of wealth, income, and class size
produced by the SA model of
Wright (2005). Simulation was
performed with the parameteri-
zation N = 5000, w̄ = 100,
[wa, wb] = [10, 90], over 102 “year
rule” iterations (6 ·106 time-steps)

disaggregated by class: the wealth of “employee” agents
is governed by an exponential distribution, while that
of “employer” agents is well-fit by a power law. This
result is consonant the argument forwarded by Mon-
troll and Shlesinger (1982) and contrasts with expla-
nations of the two-regime distribution which rely on
endogenous differences between agents. Unfortunately,
Wright’s model has seen few direct extensions, though
a similar self-organizing model is studied in Lavička et
al. (2010) [153].

3.6 Taxation and redistribution

A good deal of attention has been dedicated to the
potential usefulness of RAE models for analyzing the
effectiveness of tax policy. Earlier studies such as Guala
(2009) and Toscani (2009) consider the effect of intro-
ducing a simple “income tax,” in which a fixed fraction
of each exchange is withdrawn by an external body

(“the state”) and redistributed uniformly, into mean-
conservative KWE models; this alteration does not alter
the exponential nature of the steady state distribution
[154,155]. Diniz and Mendes (2012) extend this result
for multiple different taxation rules in a CC model,
representing both income taxes (taxes on transaction
amounts) and wealth taxes (taxes on wealth level) [156].
Bouleau and Chorro (2017) contrast the effect of income
and wealth taxes on YS-style models, demonstrating
analytically that income taxes alone are not sufficient
to prevent condensation [157]. Similarly, Burda et al.
(2019) investigate the dynamics of a BM-style model in
which all wealth flow rates Jij < 0—a parametrization
which normally causes the system to condense—paired
with a redistributive mechanism [158]. A sufficiently
strong mechanism succeeds in preventing condensation
and recovering a heavy-tailed wealth distribution, with
a multimodal critical phase also being observed. A num-
ber of non-standard redistribution rules in the context
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of a YS-style model are examined by Lima et al. (2022)
[159].

More recently, interest in the problem of identify-
ing optimal tax rates in RAE models has grown, often
borrowing techniques from control theory to do so.
Bouchaud (2015) extends the BM model to permit
a wealth tax capable of reallocating wealth between
the private and public sectors, with different growth
rate parameters [160]. By maximizing expected eco-
nomic growth, an optimal tax rate in the interval (0, 1)
is obtained so long as the difference between sectoral
growth rates lies within an intermediate range. Düring
et al. (2018) develop a finite-horizon model predic-
tive control mechanism for the CPT model to find a
feasible tax regime which minimizes a cost function
representing some metric of inequality, and consider
various objective functions and redistribution schemes
[161]. Zhou and Lai (2022) investigate an idiosyncratic
model of individual wealth growth and formulate both
an additive and a multiplicative control mechanism
to modulate the excessive growth of the right tail of
the ensemble’s wealth distribution [162]. Lastly, Wang
et al. (2022) pair a CPT model with an evolutionary
description of agents’ decision-making competence—
which feeds back into their saving propensities—and a
model predictive control mechanism to reduce inequal-
ity [163].

3.7 Miscellanea

Though the outline above (and Table 2 below) enumer-
ates the most widely-studied variations of RAE mod-
els, it should by no means be considered exhaustive.
The flexibility of the RAE framework makes it easy to
introduce new system dynamics and isolate the effects
of a given modification. Just to name a few examples
which do not fit neatly into any of the categories above,
Pareschi and Toscani (2014) investigate the effect of
variable agent knowledge on the CPT model, obtaining
the counterintuitive result that the most knowledgeable
agents tend not to be the richest ones; Trigaux (2005)
examines the effect of introducing altruistic behavior
to a subpopulation and finds a very strong equalizing
effect when combined with redistribution; Coelho et al.
(2005) and Patŕıcio and Araújo (2021) model the prop-
agation of wealth on a generational network to study
the stratifying effect of inheritance; and Dimarco et al.
(2020) use a class-based framework to characterize the
effect of pandemics on wealth inequality [164–168].

The RAE literature has also given rise to a num-
ber of wholly new analytical techniques. Ballante et al.
(2020) demonstrate that fitting the distribution of sav-
ing propensities to real-time economic data in a general-
ized CCM model via statistical sampling may be useful
as a leading indicator of economic stressors which have
the potential to increase inequality [169]. Luquini et
al. (2020) establish a formal equivalence between KWE
models and population-based random search algorithms
used in computer science, and speculate that econo-
physical models could ultimately be used as a bench-

mark model in cybernetics [170]. Finally, dos Santos et
al. (2022) propose a computational technique by which
the crossover point between the exponential and Pareto
regimes can be identified within data sets of real income
distributions, aiding in the empirical study of economic
inequality [171].

4 Discussion

From the ambition and breadth of recent contributions
to the literature, it is clear that random asset exchange
modeling is being increasingly recognized as a highly
versatile tool which has the potential to find wide appli-
cation even beyond its original use as a descriptive
model. It is also clear that, in seeking to explain the
characteristic features of wealth and income distribu-
tions, these models have highlighted the existence of
a number of more fundamental economic phenomena
underlying those features, such as the inherently diffu-
sive nature of exchange economies and the emergence
of apparent power laws from overlapping exponential
functions.

Furthermore, it has become apparent that the ran-
dom asset exchange modeling literature as a whole has
a number of non-trivial implications. Namely, all of the
models discussed seem to imply that a large propor-
tion of observed economic inequality is the result of
luck and the inherently diffusive (entropy-increasing)
nature of exchange itself, and not the result of interper-
sonal differences in industriousness, entrepreneurialism,
or intelligence. While some authors have taken this to
mean that the “natural,” entropy-maximizing level of
inequality is by definition fair, such a conclusion is far
too strong and veers into the territory of naturalistic fal-
lacies. Instead, the conclusion one ought to draw from
this cardinal result of the RAE literature depends on
one’s own subjective beliefs about the “ideal” level of
inequality—however that is determined—as compared
to the prevailing level of inequality. For proponents
of relatively unrestrained capitalism, who have argued
that inequality plays an important stimulative role in
the economy by encouraging people to work harder
in the hopes of achieving better economic outcomes
[172], the implications of said result are quite positive:
the laws of statistical mechanics naturally guarantee
such inequality without the help of market-distorting
conditions such as the formation of monopolies or the
institutionalization of economic thievery! On the other
hand, for those policy makers who aim to reduce the
level of inequality in modern, developed economies, the
corresponding implication may be somewhat more dis-
mal. For them, the primary implication of these mod-
els is that altering government policies to make market
economies operate more “fairly” by, for example, intro-
ducing progressive taxation can only do so much. At the
end of the day, large scale regimes of wealth redistribu-
tion, such as wealth taxes, may be necessary in order
to reduce inequality below the level that is endogenous
to exchange-based systems.
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éz

a
rd

(2
0
0
0
)

[4
]

B
ih

a
m

et
a
l.

(1
9
9
8
)

[9
1
]

B
en

n
a
ti

(1
9
8
8
,
1
9
9
3
)

[3
5
,3

6
]

S
in

h
a

(2
0
0
3
)

[1
]

D
i
M

a
tt

eo
et

a
l.

(2
0
0
3
)

[8
2
]

H
u
a
n
g

a
n
d

S
o
lo

m
o
n

(2
0
0
1
)

[9
2
]

Is
p
o
la

to
v

et
a
l.

(1
9
9
8
)

[2
9
]

Ig
le

si
a
s

et
a
l.

(2
0
0
4
)

[7
1
]

S
ca

fe
tt

a
et

a
l.

(2
0
0
4
)

[8
3
]

S
o
lo

m
o
n

a
n
d

R
ic

h
m

o
n
d

D
ră
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It must also be noted that canonical RAE mod-
els are not without their own set of problems. Most
are still incapable of replicating all of the charac-
teristic features of wealth and income distributions.
For wealth distributions, as has been discussed, these
include non-negligible segments of the population with
non-positive wealth and possibly a power law right tail;
for income distributions, these include an exponential
or log-normal bulk, and an at least apparent power law
tail with exponent between −2 and −3.

More importantly, while all of the models discussed
above serve as excellent demonstrations of the role
random chance plays in generating the inequalities
observed in market economies, the literature has not
yet been able to provide an adequate explanation for
the emergence of the distributional features which it
posits to be universal. That is to say, it has not yet
been able to identify and describe the concrete system
dynamics, common to all market economies, which gen-
erate the characteristic features of inequality.

Models which impose specific distributions on an
endogenous parameter throughout the population
(thriftiness, size of social network, etc.) clearly have the
capability of producing nearly any desired distribution,
but such results have far less explanatory power see-
ing as they merely defer the question. If one observes
a given distribution of wealth because there exists an
underlying distribution of a certain behavioral param-
eter, why is this parameter distributed the way it is
throughout the population? One ultimately returns to
Pareto’s own unsatisfying explanation for his law—that
economic inequality is purely the result of intrinsic
differences between individuals—and finds oneself no
closer to actually understanding the crux of the issue.

More promise is shown by models which offer, fol-
lowing the terminology of Reddy (2020), “processual”
accounts of inequality [177]. Such accounts introduce
production and class relationships into their models
as fundamental processes of economic systems. This
approach reflects concrete asymmetries in the economy,
reduces the degree of unnecessary abstraction present
within the models, and permits the identification of
different segments of wealth and income distributions
with different social positions. Unfortunately, models
and analyses which take this approach still constitute
a small part of the literature, with Wright (2005) and
Lavička et al. (2010) remaining the two most notable
examples [152,153].

Another significant problem pertains to the relation-
ship between the distribution of wealth and the distri-
bution of income, the nature of which the literature has
not consistently grasped. Wealth and income are two
linked but quite distinct quantities. Wealth can take
a wide variety of forms—money, consumption goods,
real estate, debts, or even information and skills can all
be considered forms of wealth! Income, on the other
hand, typically refers more narrowly to the amount
of “wealth,” however it is enumerated, received by an
individual in a given time period, prior to expenses.
This quantity of course augments one’s existing wealth,
but the straightforward relation of income as the time-

derivative of wealth only holds under the simplifying
assumptions that the individual in question has no
expenses and that the individual’s wealth is not sub-
ject to any endogenous changes of its own: that is, no
articles of wealth are consumed, fluctuate in value, are
traded for articles of differing value, etc.

For the most part, random asset exchange models are
concerned with the distribution of an undifferentiated,
non-consumable, exchangeable asset—usually a stand-
in for money—among an ensemble of agents. Thus,
these distributions are best interpreted as wealth distri-
butions, and it is inapt to compare them to empirical
distributions of income. Moreover, many of the desir-
able features of the wealth distributions obtained by
these models do not translate to the implicit, corre-
sponding income distributions: Xu et al. (2010) note
that reconstructing time-series of agents’ income within
canonical KWE-style models actually produces income
distributions which are Gaussian, as opposed to expo-
nential, directly contrary to the available data [178]!
Once again, a greater focus on developing models in a
more processual vein, which explicitly link wealth to
assets and income to salaries and wages paid out by
firms to employees, could be useful in clearing up this
confusion.

But these issues should serve as an impetus to clarify,
rather than indict, the RAE modeling project, because
further progress toward an econophysical explanation
for inequality is sorely needed. Again per Horowitz et
al., 61% of all American adults believe that the level
of inequality in the United States today is too high
[5]. Of that number, 81% believe that this problem will
require either major policy interventions or a complete
restructuring of the economy to address. There exists
a clear political will, at least in the U.S., to reduce the
degree of inequality that has been allowed to develop
over the past few decades. Despite that fact, there exists
no consensus on what the major contributors to eco-
nomic inequality in the U.S. even are. While there are
a number of potential explicators commonly cited in the
Pew survey—such as industrial outsourcing, tax struc-
ture, and intrinsic differences between individuals—no
single one is viewed by a majority of the population as
a decisive factor. Needless to say, intelligent decision-
making about the policies needed for a fairer economy
and society necessitates a clearer understanding of the
processes responsible for generating inequality in the
first place. Much work remains to be done before such
a satisfactory understanding is reached.
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