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Abstract. This study examines the dynamic range of financial networks in the Chinese stock market
between 2019 and 2021. It provides an objective assessment of the network’s characteristics and scala-
bility. The research time-frame is divided into three segments, reflecting the fluctuations of the financial
market, including stable, volatile, and follow-up periods. To establish correlations among companies, the
study employs the partial mutual information distance (PMID) method, followed by the construction of
three minimum spanning tree (MST) networks for each period. Given the non-linear nature of financial
phenomena, PMID is found to be more appropriate than linear methods in the study of financial markets.
Additionally, the power law is observed in all three networks. This study is organized hierarchically into
levels of nodes, clusters, and global indicators, providing a comprehensive perspective on network behav-
ior and adaptation. Three-level indicators are calculated for each of the three networks, and the findings
display a noteworthy variation between the volatile network and the other two networks. During stable
and follow-up periods, a node-level analysis has indicated strong interconnectedness among companies.
In contrast, during volatility, there are dynamic fluctuations in network dynamics. Cluster-level analysis
reveals that firms become more essential connectors and actively engaged, with increased centrality. A
global analysis shows that companies are more likely to form partnerships with counterparts possessing
similar degrees during times of market volatility compared to periods of stability or follow-up periods. To
assess the resilience of the constructed networks, we employed Markov chain analysis and examined the
maximal connected component (MCC); the study findings suggest that the network is more susceptible
to volatility in the observed second period, while demonstrating greater resilience in the follow-up period
indicating recovery of financial markets.

1 Introduction

1.1 Background

In today’s era of economic volatility, staying abreast
of market trends is critical for investors to maxi-
mize returns and minimize risk. Progress in comput-
ing tools, greater data availability, and new statis-
tical approaches have revolutionized how researchers
analyze and interpret market dynamics [1]. Evaluat-
ing stock market volatility is a critical component of
financial analysis. However, conventional methods uti-
lizing standard deviation and variance have been exten-
sively utilized for this objective. Although these meth-
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ods are based on price data and they have a certain
degree of effectiveness, they are confronted with sig-
nificant problems. An example of such a limitation is
the assumption of volatility, which disregards the non-
linear nature of financial markets. Furthermore, the tra-
ditional approaches might not completely consider the
interdependence among stocks or market factors. Fail-
ing to account for the impact of market events or exter-
nal shocks that significantly affect volatility is a limita-
tion of these methods. Overcoming these challenges is
essential to achieve a more accurate comprehension of
stock market volatility [2].

Representing the stock market as a network, with
each stock as a node and their connections forming
the edges, statistical network analysis provides a unique
perspective on how the market behaves and shifts over
time [3]. This methodology enables researchers to iden-
tify obscure patterns, interdependencies, and systemic
risk that may not be easily detectable with the tra-
ditional time-series techniques [4]. Additionally, net-
work analysis facilitates the identification of crucial
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market players and clusters of stocks with compara-
ble performance. The quantification of stock linkages
and interactions enables researchers to comprehend how
information disseminates throughout the market. This
knowledge is essential for risk management, asset pric-
ing, portfolio diversification, and market projection. As
financial markets grow in complexity and interconnec-
tivity, statistical network analysis plays a critical role in
providing a thorough evaluation of stock market volatil-
ity [5].

The application of network theory offers a strategy to
examine and visualize the interconnections and depen-
dencies among various entities [6]. In the realm of the
stock market, this approach facilitates the comprehen-
sion of the interactions and influences between individ-
ual stocks [7]. By employing nodes to represent stocks
and edges to signify their associations, this method-
ology enables the quantification of the direction and
potency of these connections. Applying this strategy
yields insights into stock clustering, movement, and
mutual impacts, providing researchers with a compre-
hensive grasp of market dynamics. Scrutinizing stock
market attributes, including centrality, clustering coeffi-
cients, and community structure, using network theory,
allows for a deeper understanding of how the market is
arranged and functions [8]. Volatility, which measures
the extent and frequency of price fluctuations, encom-
passes not only the risk linked to individual stocks
but also their reciprocal impacts. The measurement of
volatility enables investors and analysts to thoroughly
assess the magnitude of risk and make informed deci-
sions. To accurately assess and manage market volatil-
ity, it is crucial to adopt measurement techniques that
are proficient at capturing these interconnections [9,10].

As financial markets continue to evolve and become
more complex, there is an increasing demand for meth-
ods to precisely assess stock market volatility. Hence,
there is a necessity for approaches that can overcome
these challenges. In this study, a novel measurement
technique that promises to address these shortcomings,
partial mutual information-based distance (PMID), is
employed. This approach combines concepts from infor-
mation theory and network analysis to quantify the
interdependence between stocks considering both indi-
rect relationships. By incorporating this information,
which measures the unique information shared between
stocks after accounting for information from other
stocks, PMID offers a more nuanced and precise assess-
ment of volatility [11].

This study is organized as follows: The Introduction
section provides an initial understanding of the sub-
ject that is followed by the Motivation section empha-
sizes the driving factors of the study, and the Litera-
ture Review section assesses prior works. The Method-
ology section rigorously outlines the data transforma-
tion process, distance metric application, and network
construction. The Results section describes data split-
ting techniques and dissects network characteristics at
the node, cluster, and global levels. The Discussion sec-
tion explores the implications of the findings and intro-
duces resilience analyses using Markov chain and MCC

analysis. The paper concludes with a concise conclusion
section that encapsulates the key implications.

1.2 Motivation

This study was prompted by a research gap in the use
of variance and standard deviation for measuring mar-
ket volatility. Nonetheless, these measures have limita-
tions that may impede their ability to effectively cap-
ture market dynamics. One key limitation is that they
assume volatility remains constant over time, overlook-
ing the fact that volatility tends to cluster in markets
[12]. This oversimplification ignores volatility and fails
to account for sudden bursts or periods of calm in
market activity. Additionally, traditional measures of
volatility primarily focus on the spread of price returns,
disregarding the interdependencies and relationships
between assets that can impact volatility. These mea-
sures are not ideal for capture the interplay of fac-
tors and relationships between assets that contribute
to risks. Consequently, relying on measures of volatility
can result in an incomplete and inadequate understand-
ing of market volatility, emphasizing the need for more
nuanced approaches.

The second reason for conducting this study lies in
the increased importance of researching the Chinese
economy due to its global significance. As an economic
powerhouse, China’s market dynamics and trends have
a substantial impact on the international financial envi-
ronment. Therefore, it is imperative to conduct a thor-
ough analysis of the Chinese stock market, particularly
in times of unprecedented events such as the global
COVID-19 pandemic. Among the unprecedented chal-
lenges posed by the global COVID-19 pandemic, under-
taking a comprehensive network analysis of the Chinese
stock market not only promises to shed light on the
intricate dynamics of financial systems but also holds
the potential to unravel the market’s resilience despite
adversity. This ambitious endeavor presents an oppor-
tunity to dissect the intricate interplay of stock prices,
investor sentiment, and market volatility within the
context of a pandemic [13]. By meticulously examining
the underlying connections and dependencies among
various sectors, industries, and individual stocks, this
study provides invaluable insights into the market’s
response to volatile-induced fluctuations. Through a
meticulous dissection of the network’s topology and
evolution, a deeper understanding of emergent patterns
and trends can be unearthed.

1.3 Literature review

1.3.1 Interpreting financial markets through network
analysis

In recent years, there has been significant interest in
deploying complex network analysis to financial data
[14]. In particular, scholars have concentrated their
efforts on the examination of financial market intercon-
nections through correlation-based network methodolo-
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gies. This focus stems from the recognition that the
stock market exerts a direct or indirect influence on
various financial arenas [15]. By crafting an intricate
web of associations among economic parameters, such
as financial assets or currency exchange rates, investi-
gators can acquire profound insights into the underly-
ing framework and conduct of the marketplace. This
approach facilitates the pinpointing of pivotal nodes or
junctions with substantial sway over market dynamics,
while also facilitating the unearthing of trends and asso-
ciations conducive to the development of trading tactics
and risk oversight [16]. For instance, through a metic-
ulous evaluation of linkages between financial parame-
ters, scholars can spot critical junctions that wield sig-
nificant influence over the holistic panorama of market
dynamics [17,18].

Numerous essential principles warrant attention when
employing statistical network analysis in the context
of financial markets. Initially, establishing the financial
network entails the specification of individual variables
or entities present in the market, along with the recog-
nition of connections or associations linking them [19].
These associations may originate from a multitude of
factors, encompassing correlations, synchronized move-
ments, or causal relationships. Second, a critical aspect
involves determining the magnitudes or strengths of the
ties connecting variables. These magnitudes are gauged
through linkage coefficients, which gauge the robustness
and orientation of associations [20]. Third, it becomes
imperative to scrutinize the structural layout of the
financial network to gain insight into the comprehensive
arrangement and interconnectedness of the market [21].
Through a comprehensive examination of the financial
network’s structure, analysts can pinpoint influential
nodes or junctions that exert a substantial impact on
the overarching dynamics of the marketplace [22]. Fur-
thermore, the application of intricate network theory
facilitates the exploration of statistical features and ten-
dencies within financial domains. For example, scholars
have employed complex network analysis to explore the
correlation patterns among multiple assets in both the
equity and bond sectors [23,24].

Several studies employ network-based approaches to
scrutinize various aspects of financial markets, includ-
ing network measures, filters, and spectral analysis.
These methods offer valuable insights into complex
patterns within financial data, aiding in relationship
identification, risk assessment, diversity management,
policy decision-making, crisis analysis, and forecast-
ing improvement. Tsankov examines financial markets
using network-based methods. The study covers dif-
ferent techniques, including network measures, filters,
and spectral analysis. The main focus is on applying
these methods to understand complex patterns in finan-
cial data. They help identify relationships, assess risk,
manage diversity, make policy decisions, analyze crises,
and improve forecasting [25]. Chun-Xiao Nie intro-
duces a new method to detect important changes in
financial correlations. This approach uses mathematical
distances and influence strength. It successfully spots

major shifts in correlations, seen in events like the 2008
financial crisis and the disruptions of 2020 [26].

Tao You and colleagues study the Shanghai Stock
Exchange using network analysis and unique measures
based on information. They challenge the idea that non-
Western markets are riskier and show that the Chinese
market has its own stability. Using mutual information-
based measurements, they reveal insights into the com-
plex connections of the Shanghai stock market [27]. Chu
and Nadarajah apply network analysis to the UK stock
market, following an approach used for the US mar-
ket. Their research examines how connected nodes are
and fits specific mathematical models to the data. This
work deepens our understanding of how financial net-
works are structured in the UK [28]. Hatami and others
suggest an innovative way to study financial markets.
They combine networks of correlations with popula-
tion analysis. Applied to stock data from 2000 to 2004,
this method highlights behavior patterns and groups of
related entities [29].

Cutting-edge methodologies in the realm of statis-
tical network analysis have been harnessed to enrich
our comprehension of the intricate dynamics in finan-
cial markets [30]. One frequently employed technique
is the minimum spanning tree, originating from the
realm of physics, which provides a straightforward yet
resilient avenue for examining the topological arrange-
ment and statistical attributes characterizing financial
markets [31]. At the core of the minimum spanning
tree approach lies the creation of a network that repre-
sents financial variables and their interconnected rela-
tionships. The strength of these connections is quanti-
fied through linkage coefficients, which determine the
weights of the edges. These methodologies empower
researchers to discern the most prominent and influ-
ential nodes within the network, offering invaluable
insights into the fundamental framework and behaviors
exhibited by financial markets [32,33].

Several papers delve into exploring the complex sys-
tems of financial markets, underscoring the significance
of higher order interactions. One notable study by
Scagliarini et al. investigates information flows in cryp-
tocurrency markets through the analysis of a cryp-
tocurrency trading network. Utilizing Granger causal-
ity, the research examines both pairwise and high-order
statistical dependencies in the logarithmic US dollar
price returns of the network, offering insights into its
stability, influential nodes, and the impact of major
events. The study highlights the substantial role of sta-
ble coins in high-order dependencies, shaping the intri-
cate dynamical landscape of the cryptocurrency net-
work [34]. In another study, Musciotto et al. introduce
an analytic approach for filtering hypergraphs in real-
world systems, with an emphasis on higher order inter-
actions beyond dyads. Through the identification of
over-expressed hyperlinks, this method discerns infor-
mative connections from noise, presenting a fresh per-
spective on understanding statistically validated hyper-
graphs. The combination of these papers provides a
comprehensive outlook on information dynamics in
financial systems, stressing the significance of incorpo-
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rating both pairwise and high-order analyses to unravel
complex network behaviors and interactions [35].

1.3.2 Complex network analysis in Chinese financial
markets

Complex network analysis has become a valuable tool
for gaining insights into the behavior of financial mar-
kets in China, revealing intriguing properties, such
as small-world characteristics and shedding light on
the dynamic interactions within the Chinese financial
landscape. For instance, the Chinese financial mar-
ket exhibits a small-world property, where there is a
high degree of clustering among vertices with a short
average path length between them [36]. Pan investi-
gates the intersection of global financial networks and
regional development through a case study of Linyi, a
prefectural-level city in China. This study showcases
how regional economies, as exemplified by Linyi, have
become integrated into the global financial network
through the international listing of leading regional
companies. By engaging with international business
service firms and listing on foreign stock exchanges,
these firms create worldwide channels for both capital
and knowledge flow. This work highlights the strategic
opportunities for regional development by leveraging
global financing avenues, and demonstrates how regions
can thrive within a globalized financial ecosystem [37].

Tu introduces an innovative approach to the con-
struction of financial networks in the Chinese stock
market based on co-integration, departing from the
conventional correlation-based methods. This method
offers a novel perspective on the underlying relation-
ships among stocks, capturing connections that go
beyond mere correlations. The study employs various
techniques to filter information within a complex net-
work, resulting in a pruned network structure. This
approach enhances our understanding of the mecha-
nisms driving financial markets and provides insights
into the dynamics of the Chinese stock market’s com-
plex network [38].

Qiu et al. explored the dynamic behavior of financial
networks using static and dynamic thresholds, based
on data from both the American and Chinese stock
markets. This study uncovers how dynamic thresholds
influence network behavior by mitigating large fluc-
tuations resulting from cross-correlations of individ-
ual stock prices. This research provides insights into
the evolving topological structure of financial networks,
revealing long-range correlations and degree distribu-
tions [39].

Another study by Huang et al. employed complex
network analysis to identify influential nodes in the Chi-
nese A-share market. Over 100 stock market networks
were constructed using various tests and methods, cov-
ering 847 stocks from January 2006 to June 2019.
Notably, during financial crises, network metrics such
as clustering coefficient and global efficiency surged and
then dropped. Around 66.98% of networks displayed
scale-free properties. Influential nodes were primarily

large-cap companies, with the intriguing observation
that the top three influential stocks were high-priced
hundred shares, favored by Chinese investors [40]. In
addition, complex network models have been employed
to analyze the behavior of the Chinese equity mar-
ket, while power-law models have been used to con-
struct networks that reflect the stock market behavior.
These network models help to capture the relationships
between different stocks, identify clusters or communi-
ties of stocks that exhibit similar behavior, and analyze
the overall topology of the market [41]. In the next sec-
tion, we discuss the process of constructing the stock
market network.

2 Methodology

2.1 Transformation and symbolization

To initiate the analysis, we transform the closing price
data and traded volume data for the stocks under
examination. This transformation entails computing
the ratios of the closing prices and volumes. Through
this process, we can derive logarithmic returns and vol-
umes, a financial metric utilized to gauge changes in
asset prices, and traded volumes over time

rt,i = ln
pt,i

pt−1,i
, (1)

where pt,i represents the stock price of the company i
at time t

vt,i = ln
volt,i

volt−1,i
, (2)

where volt,i is the traded volume of stock of the com-
pany i at time t.

In this study, we used symbolization method of data
which is based on time-series analysis, with the aim
of dividing the state space of stock return data into
distinct segments, i.e., if the state space Ω within
R

2, encompassing the values of log-returns and log-
traded money, is subjected to transformation into S =
{1, 2, 3} ⊂ N. However, each element within the state
space Ω is mapped to S, which creates a new sequence
of numerical values belonging to S. This process aids
in the simplification and categorization of the data
for subsequent analysis. This partition plays a crucial
role in our methodology which enables a more nuanced
comprehension of the underlying patterns in financial
time-series. The selection of a partitioning scheme is
not arbitrary but rather carefully considered due to
its impact on the resulting symbolic sequences. The
specific scheme chosen is based on its ability to cap-
ture market dynamics. To utilize the symbolization
approach, the initial step is to calculate 3-quantiles for
individual companies. This involves dividing the sorted
distribution of logarithmic returns into three equally
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sized groups, with each group containing one-third of
the dataset.

To be more precise, riT1 represents the first 3-
quantile, and correspondingly, riT2 represents the sec-
ond 3-quantile in the context of the specific company
i

Sit =

{1 rit < riT1

2 riT1 ≤ rit ≤ riT2

3 rit > riT2

. (3)

In Eq. 3, the three values denote the log return sta-
tuses pertaining to each stock index. The first value,
1, signifies a day of declining share prices. The sec-
ond value, 2, denotes a day with relatively stable stock
prices. The third value, 3, indicates a day of rising stock
prices.

To transform the traded volume data for two compa-
nies, we follow this procedure:

1. Calculate the daily average return of the traded vol-
ume, vij,t, for each two companies, i and j at time
t.

2. Compute the 3-quantiles for the daily average
traded volume return for each company. This step
involves dividing the sorted distribution of the
traded volume returns average into three equal sec-
tions, each containing one-third of the data.

3. Define threshold values for the series of the daily
traded volume return averages, denoted as vT1 and
vT2 , representing the first and second 3-quantiles for
companies i and j.

4. Symbolize the return of traded volume using the
following schemes:

Vij,t =

⎧⎨
⎩

1 if vij,t < vT1

2 if vT1 ≤ vij,t ≤ vT2

3 if vij,t > vT2 .

(4)

In Eq. 4, the three values, 1, 2, and 3, represent the
volume states associated with each company. The first
value, 1, indicates low traded volume return, the second
value, 2, represents moderate traded volume return, and
the third value, 3, indicates high traded volume return
between each two companies.

2.2 Partial mutual information-based distance
(PMID)

In information theory, the concept of partial mutual
information distance (PMID) is employed to quantify
the statistical dependence between two variables while
considering the impact of another variable. PMID mea-
sures the extent to which knowledge of one variable
reduces uncertainty about another, while accounting for
the impact of a third variable.

In analyzing stock prices, we consider variables X
and Y as the returns of two companies, Company A
and Company B. We also defined a variable Z, which

represents the average volume of shares traded for both
companies. Given this, we can define the PMID between
share prices X and Y relative to volume Z as follows:

PMID(X;Y |Z) = H(X|Z) + H(Y |Z) − H(X,Y |Z),
(5)

where

• H(X|Z) represents the conditional entropy of the
stock price return of company A given the average
return traded volume of both companies A and B.

• H(Y |Z) represents the conditional entropy of the
stock price return of company B given the traded
volume of both companies A and B.

• H(X,Y |Z) represents the conditional joint entropy
of the stock prices of companies A and B, given the
average return traded volume of both companies A
and B.

Essentially, this equation quantifies the interdepen-
dence of two companies’ stock prices, accounting for
the impact of traded volume. It measures the degree to
which these companies’ stock prices move in sync with
changes in traded volume. PMID elucidates the extent
of shared information between X and Y when analyz-
ing their relationship with Z. It tells us how their joint
entropy differs from their summed entropies when con-
sidering their association with Z. This helps to under-
stand and reveal hidden patterns in the complex finan-
cial system.

In this article, we utilize the Schürmann–Grassberger
estimator, a Bayesian parametric method used to evalu-
ate Shannon’s entropy for practical purposes. This esti-
mator specifically depends on the Dirichlet probability
distribution.

2.3 Network construction

In this study, the Financial Stock Market Network is
a process designed to uncover intricate relationships
among financial assets within a stock market. This
method uses historical daily price data and trading vol-
ume, a correlation threshold, and advanced network
analysis techniques to create a visual and actionable
representation of asset interactions. The algorithm cal-
culates log-returns for each financial asset using histor-
ical price data and traded volume. Then, it initiates an
empty network graph representing the asset relation-
ships. By systematically evaluating pairs of assets, the
correlation coefficients or similarity measures between
their log-returns are calculated using PMID. If these
coefficients exceed the predefined correlation threshold,
nodes representing the assets are introduced into the
network and edges weighted by the correlation coef-
ficients are established between them. This process
establishes a network that visually represents the inter-
connectedness of financial assets. To minimize extra-
neous information, this study employs the Minimum
Spanning Tree (MST). To compute the weights of the
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edges, 10,000 MSTs are generated using the partial
mutual information-based distance. Subsequently, the
frequency ratio for each edge is determined and assigned
as the edge thickness.

Upon constructing the network, a comprehensive
analysis is extracted by employing different network
characteristics. Centrality measures are utilized to iden-
tify assets with a significant influence, while commu-
nity detection algorithms group similar assets, aiding
the identification of distinct market segments. Network
connectivity patterns are recognized by clustering coef-
ficients. This comprehensive approach results in inter-
preting the findings that assist in identifying groups
of assets with similar behavior, determining key assets
based on centrality measures, and gaining a deeper
comprehension of market trends and possible risk fac-
tors. Essentially, this approach is a potent instrument
for uncovering the complex network of interconnec-
tions among financial markets, providing indispensable
knowledge for informed decision-making. Algorithm 1
comprehensively outlines the entire process of network
construction.

Algorithm 1: Financial stock market network con-
struction
Data: List of financial assets, historical daily price and

traded volume data, correlation threshold
Result: Network representation of asset relationships
for each financial asset do

Calculate the log-returns based on historical price
and traded volume data using Eqs. 1 and 2;
transform the constructed returns to the set of 1,
2, and 3 using Eqs. 3 and 4

end
Initialize an empty network graph;
for each pair of financial assets (i, j) do

Calculate the correlation coefficient using Eq. 5; if
calculated correlation ¿ correlation threshold then

Add nodes i and j to the network graph if not
already added;
Add an edge between nodes i and j with
correlation coefficient as edge weight;

end

end
Building Minimum spanning tree (MST) using
bootstrap method;
Visualize the network graph using appropriate
visualization tools;
Perform network analysis;
Calculate centrality measures to identify influential
assets;
Apply community detection algorithms to group
similar assets together;
Compute clustering coefficients to understand network
connectivity;
Interpret the results;
Determine influential assets based on centrality
measures;
Extract insights into market trends, interdependencies,
and potential risk factors;

3 Results

3.1 Data splitting

This research employs a dataset that consists of the
closing prices of the SSE 50 index, which is an impor-
tant stock market index, in China. This index com-
prises the 50 companies listed on the Shanghai Stock
Exchange (SSE). Our analysis focuses on the period
from June 1 2019 to December 30 2020. By studying
these data, we can gain insights into how these com-
panies’ stock prices fluctuated during this time-frame.
Figure 1 displays the data of the SSE 50 index from
June 1 2019 to December 30 2020. It shows the daily
patterns of the index, including the closing, highest, and
lowest prices of the stocks included. The visualization
uses a candlestick plot to highlight a period of volatile
during this time-frame. This plot effectively illustrates
how the markets volatility changed and depicts the fluc-
tuations, in stock prices during this phase. By analyz-
ing the SSE 50 index in detail, we can gain insights
into China stock market performance as a whole and
understand how market dynamics changes during the
important periods.

The dataset of the SSE 50 index has been divided into
three non-overlapped time-periods to analyze the mar-
ket dynamics comprehensively. The first period, which
spans from June 1 2019 to January 1 2020, acts as a
reference point, for understanding how the market per-
formed before disruptions occurred. The second period
covers January 2 2020–June 30 2020, which represents
a time of volatility with the significant fluctuations
in returns. This split was chosen due to the volatil-
ity observed during this time-frame. Finally, the third
period encompasses July 1 2020–December 30 2020,
which allows for an analysis of the markets recovery
and stabilization after experiencing the high volatility.
By segmenting the data in this way, we can identify
how the volatility impacted the SSE 50 index and gain
insights, into how market volatility evolved over time
and its subsequent effects.

Figure 2 shows the variability of a randomly chosen
set of stocks, including Shanghai Pudong Development
Bank Banking SSE: 600000, China Petroleum Chem-
ical Corporation Oil gas SSE: 600028, CITIC Securi-
ties Financial services SSE: 600030 and Sany Heavy
Industries Industry SSE: 600031 from January 2019, to
December 2020. It gives a picture of how these stocks
prices changed over this time-period. This visual rep-
resentation provides insights, into how these selected
stocks performed and helps us understand the market
dynamics that influenced their price movements during
this period of time.

3.2 Topological structure of constructed networks

The analysis of the Minimum Spanning Tree (MST)
within the stock network reveals distinct patterns in the
central nodes of the MST during stable, volatile, and
follow-up periods, shedding light on the shifting priori-
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Fig. 1 The time-series of SSE 50 from 2019-06-01 to 2020-12-30 with close, high, and low prices, and a candlestick plot
highlighting the volatile period

ties of the Chinese economy. During the stable period,
the MST’s main nodes are centered around diverse
sectors, representing different aspects of the Chinese
economy. The presence of AECC Aviation Power, SSE:
600893, signifies a focus on aviation and power gener-
ation, highlighting the importance of aviation-related
industries and energy supply. WuXi AppTec, SSE:
603259, is a key player in the pharmaceutical sector,
reflecting the thriving pharmaceutical industry. China
Tourism Group Duty Free Corporation, SSE: 601888, is
associated with the tourism sector, indicating a thriving
travel and tourism industry. China Petroleum & Chemi-
cal Corporation (Sinopec), traded as SSE: 600028, from
the energy sector holds a pivotal importance in the oil
and gas industry, playing a crucial role in fuel supply.
Figure 3 depicts this period.

During the volatile period, the central hubs of the
MST are shifting to sectors that enhance the resilience
of the economy. CITIC Securities, a pillar of financial
services, maintains its prominence, prioritizing the sta-
bility of the financial sector in volatile times. LONGi
Green Energy Technology, SSE: 601012, emerges as a
key player in the renewable energy sector, emphasiz-
ing the importance of sustainable energy sources in
uncertain times. Zhejiang Huayou Cobalt, SSE: 603799,
emphasizes the importance of resource management
and sustainability in the mining industry, securing key
resources for recovery. At the same time, China Com-
munications Services Corporation Limited, a pioneer

in telecommunications, emphasizes the critical role of
digital connectivity in maintaining economic continuity.
Hangzhou Hikvision Digital Technology Co. Ltd., rep-
resenting technology, emphasizes innovation and adap-
tation as driving forces in managing volatility. In addi-
tion, Shanghai Construction Group Co. Ltd., a promi-
nent player in the construction sector, signifies the cen-
tral role of infrastructure development in driving eco-
nomic recovery. This deliberates emphasis on the bank-
ing, renewable energy, resource management, telecom-
munications, and construction sectors which demon-
strates a practical and all-encompassing tactic for over-
coming economic obstacles and cultivating resilience.
Figure 4 illustrates this time period.

Following the volatile period, the primary nodes
within the MST are once again focusing on sectors
that are essential to economic recovery. CITIC Secu-
rities, a major player in financial services, emphasizes
the resilience of the financial sector and its continued
importance. Industrial and Commercial Bank of China
(ICBC), a heavyweight in the banking sector, reiterates
the continued importance of this sector in the follow-on
scenario. Meanwhile, Will Semiconductor, SSE: 603501,
plays a crucial role in advancing the technology sec-
tor’s contribution to driving recovery and innovation.
Wingtech, SSE: 600745, is an excellent example of the
technology sector’s continued contribution to economic
rejuvenation. Foshan Haitian Flavouring & Food Co.,
SSE: 603288, represents domestic consumption within
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Fig. 2 Fluctuations in the return of close prices for the selected stocks SSE: 600000, SSE: 600028, SSE: 600030, and SSE:
600031 over the time-period of January 2019–December 2020

Fig. 3 MST of stable period; thickness of edges shows the reliability of linkage
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Fig. 4 MST of volatile period; thickness of edges shows the reliability of linkage

the Food & Beverage sector, which is a critical compo-
nent of economic growth. In addition, the inclusion of
China Communications Services Corporation Limited,
representing telecommunications, highlights the ongo-
ing digital transformation and its importance in main-
taining connectivity during the recovery. This balanced
focus on the banking, technology, food, and telecom
sectors demonstrates a comprehensive approach to the
post-volatility economic recovery. Figure 5 illustrates
this time period.

When comparing these three distinct periods, a clear
pattern emerges, illustrating how the primary nodes
within the MST adapt their focus in response to the
prevailing economic conditions. In the stable era, the
MST’s central hubs exhibited notable diversity across
various sectors, with energy, tourism, and infrastruc-
ture featuring prominently. Prominent firms, such as
AECC Aviation Power, WuXi AppTec, China Tourism
Group Duty Free Corporation, and China Petroleum &
Chemical Corporation (Sinopec), reflect a diverse econ-
omy with a firm focus on aviation, power production,
pharmaceuticals, tourism, and energy sectors.

Nevertheless, amid the volatile period, the MST redi-
rected its attention to industries that could ensure
stability, adaptability, and resilient resurgence. Finan-
cial services, technology, and construction were promi-
nent, with firms, such as CITIC Securities, LONGi
Green Energy Technology, and Zhejiang Huayou Cobalt
playing major parts in promoting stability, sustainable
energy sources, resource management, and digital con-
nectivity as crucial factors in coping with difficult times.
In the aftermath of the volatility, a fresh group of sec-
tors arose as crucial pillars for sustainable expansion
and recuperation. Banking, resources, healthcare, and
telecommunications were the main areas of focus, with
companies, such as Industrial and Commercial Bank
of China (ICBC), Will Semiconductor, Wingtech, and
Foshan Haitian Flavouring & Food Co. contributing to
a comprehensive approach toward economic revitalisa-
tion. This analysis emphasizes the economy’s ability
to adapt and remain resilient by strategically prioritiz-
ing different sectors based on prevailing circumstances.
This approach ensures overall stability and sustainable
growth through various economic phases.
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Fig. 5 MST of follow-up period; thickness of edges shows
the reliability of linkage

3.3 Power-law distribution analysis

Power law in networks is a mathematical distribu-
tion exhibiting a few nodes, or entities, with signifi-
cantly more connections than the majority. In the con-
text of financial network analysis, this means that a
small number of financial entities have a disproportion-
ate influence or connectivity within the network, while
the majority have fewer connections. The power law
implies that a small number of dominant financial enti-
ties can significantly affect the stability and operation
of the financial network. Therefore, comprehending and
surveilling these influential nodes become vital for risk
assessment and management. Analyzing power-law dis-
tributions can provide insight into market trends, trans-
mission mechanisms, and the overall behavior of the
financial system. It also aids in deciphering network
dynamics and formulating effective regulatory strate-
gies to maintain a stable and secure financial ecosys-
tem.

Boginski and colleagues [42] provided evidence indi-
cating that the stock market exhibits characteristics
consistent with a power-law distribution, while Mini-
mum Spanning Trees (MST) display a scale-free struc-
ture. Specifically, the distribution of node degrees con-
forms to a power law, denoted as pk ∝ ck−α, where
pk signifies the distribution of node degrees, α repre-
sents the scaling parameter, and c denotes constants.
By applying the maximum-likelihood estimator, the
parameter α can be estimated as follows for various
time-frames: αstable = 1.5, αvolatile = 1.45, and αfollow-up

= 1.48. As illustrated in Fig. 6, the node’s degree dis-
tribution forms a linear relationship with the node’s
degree, confirming the presence of the power law.

3.4 Network characteristics analysis

The analysis of network characteristics spans three dis-
tinct levels: node level, cluster level, and global level. At
the node level, individual elements within the network
are scrutinized for their attributes, such as degree cen-
trality, representing the number of connections a node
has. This level offers insights into the influence and
importance of specific nodes in terms of their connec-
tions. Moving to the cluster level, groups of nodes that
exhibit higher interconnectedness are studied. These
clusters reveal substructures within the network, aid-
ing in the identification of cohesive units. Finally, the
global level encapsulates the overall network proper-
ties, reflecting the efficiency of information flow and the
network’s extent. Additionally, the presence of hubs,
nodes with exceptionally high degrees, significantly
impacts network resilience. By systematically analyzing
these characteristics at multiple levels, a comprehensive
understanding of the network’s structure, function, and
potential vulnerabilities can be found.

3.4.1 Node level

The degree of a node refers to the number of edges
incident to that node. In the context of an undirected
graph, the degree of a node is simply the count of its
adjacent nodes. Mathematically, if we denote the degree
of a node v as deg(v), and the set of its adjacent nodes
as N(v), then deg(v) = |N(v)|, where |N(v)| denotes
the cardinality of the set N(v). Node degree quanti-
fies the edges linked to a company within the stock

Fig. 6 Plot and fit of the power-law distribution for three periods
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Table 1 Node degree frequency for three periods of stable, volatile, and follow-up

Node degree Stable period Volatile period Follow-up period

1 39 36 39
2 2 6 2
3 1 3 1
4 2 0 0
5 1 0 0
6 0 0 2
7 1 2 2
8 1 0 0
9 0 0 1
13 0 0 1
20 1 0 0
23 0 1 0

price network. Remarkably interconnected companies
exhibit higher degrees, suggesting centrality in the net-
work. Notably, the lowest node degree in a network is
1. However, in a minimum spanning tree (MST), the
maximum degree reaches n − 1, and in a complete net-
work, it extends to n. The average degree in a tree,
with a fixed number of edges (n−1), is mathematically
determined as 2 − 2/n.

The analysis of Table 1 shows trends in the distri-
bution of node degrees over three time-periods. Specifi-
cally, all three periods demonstrate a node degree of 1,
signifying nodes with a single link. It is of further con-
cern that before and during the volatile period, node
degrees are significantly higher at 20 and 23, suggest-
ing a greater range of connections and potential com-
plexity. During the volatile period, however, no nodes
have degrees higher than 1, with a moderate degree of
3 becoming more prominent, indicating a consolidation
of the network structure after the volatility. These pat-
terns reflect changing market conditions and dynam-
ics, with higher node degrees before and during volatil-
ity possibly indicating an interconnected market with
increased trading activity and shifts in investor senti-
ment. The period after the volatility, with fewer high-
degree nodes, may indicate a stable market environ-
ment with reduced volatility and potential adjustments
in market relationships.

Node strength is associated with the sum of weights
of the links connected to a node. In mathematical
terms, for a node i, the node strength, Si, is defined
as the sum of the weights, δij , of the links connected to
that node as follows:

Si =
∑

j

δij , (6)

where Si is the node strength of node j represents the
neighboring nodes connected to node represents the dis-
tances of the link between nodes which is constructed
by Eq. 5.

This measure provides an indication of the overall
influence or importance of a node within the network
based on the strength of its connections. Node strength

is calculated as the summation of the weights associated
with the linked connected to a given company such as
i the node strength is represented the distances estab-
lished as per Eq. 5. Node strengths for each node exhibit
fluctuations across the different periods. Notably, the
node strength values tend to decrease over the tran-
sition from stable to follow-up period. As depicted in
Fig. 7, in the stable period, node strengths range from
approximately 0.12 to 2.78, reflecting a diverse distribu-
tion of connections and influence among nodes. During
the volatile period, node strengths experience a broader
range of values, spanning from around 0.09 to 3.32, indi-
cating potential volatility and shifts in network dynam-
ics.

During follow-up period, the node strengths are rel-
atively lower compared to the volatile period, with val-
ues ranging from approximately 0.08 to 1.52, suggest-
ing a potential consolidation or recalibration of network
interactions. The observed changes in node strength
values over these periods may imply shifts in the impor-
tance or influence of certain nodes within the network.
Specifically, nodes with higher node strengths could
represent more central and influential entities in the
network. The decrease in node strengths from volatile
period to follow-up period may reflect changes in mar-
ket dynamics, investor behaviors, or shifts in the overall
connectivity structure.

Node eigenvalue measure pertains to the components
of the principal eigenvector computed from the adja-
cency matrix of the nodes. It serves as the indicator
of the significance or importance of a node, within a
network. It offers insights into how each node con-
tributes to the structure and connectivity of the net-
work. Mathematically, the eigenvalues of the adjacency
matrix A are solutions λ to the characteristic equa-
tion det(A − λI) = 0, where I is the identity matrix.
The eigenvalues represent certain structural proper-
ties of the graph. As shown in Fig. 8, prior to the
volatile period, eigenvalues spanned from 0.0016 to
0.2749 signifying varying degrees of node importance
during that period. When the volatility occurred, eigen-
values ranged from 0.0002 to 0.2792 indicating changes
in network influence at that time. Following the volatile
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Fig. 7 Node strength plot for the three periods of stable, volatile, and follow-up

period, there was a decline in eigenvalues compared
to the volatile period ranging from 0.0086 to 0.4639,
which suggests a stabilization and rearrangement of
node importance within the network structure. Nodes
possessing eigenvalues tend to hold positions and exert
greater influence, on overall network behavior.

3.4.2 Cluster level

In a network, the closeness centrality score acts as an
indicator that reflects how central a firm is. This score
indicates that a firms proximity to all entities in the net-
work is directly linked to its level of centrality. In terms
the central a company becomes within the network,
the closer it is to all other companies. This empha-
sizes the significance of units in terms of their ability
to communicate and transact efficiently with a range of
other units, thus highlighting their crucial role in overall
connectivity and communication dynamics, within the
network. The graph displayed in Fig. 9 demonstrates
that in companies and time-periods exhibit variations,
in their closeness centrality scores. Notably, during the
volatile period, many firms show closeness centrality
scores indicating their increased connectivity and prox-
imity to other firms within the network. This could be
attributed to heightened communication and interac-
tion among these firms during times of instability.

Additionally, the follow-up period reveals a pattern
with certain firms maintaining their high closeness cen-
trality scores, while others experience a decline. This
diversity may reflect changes in the dynamics of the
network as it recovers from the volatile period. Inter-
estingly, a few firms consistently maintain closeness
centrality scores across different time-periods indicat-

ing their ongoing importance in fostering connectiv-
ity within the network. Therefore, analyzing closeness
centrality scores provides insights into how firms con-
tribute to connectivity and communication within the
network in the cluster level. The observed variations in
these scores over time offer information, about shifting
dynamics during stable, volatile, and follow-up periods,
describing how central firms influence the structure and
functioning of the financial system.

The number of closed walks of length m starting
and ending on node i in the network is given by the
local spectral moments δm(i), which are defined as the
ith diagonal entry of the mth power of the adjacency
matrix, A, i.e., δm(i) = (Am)ii.

Then, we define subgraph centrality as follows:

sub(i) =
∞∑

m=0

δm(i)
m!

. (7)

Figure 10 represents the subgraph centrality scores
for different companies across three periods: stable,
volatile, and follow-up periods. Subgraph centrality
quantifies the number of closed walks of varying lengths
that start and end on a given node within the network.
These scores are determined using the local spectral
moments, which are calculated based on the powers of
the adjacency matrix.

After evaluating the three time-periods, it becomes
clear that the subgraph centrality scores of the different
companies show fluctuations. Specifically, some com-
panies displayed significant increases in subgraph cen-
trality during the volatile period, indicating increased
participation in closed paths and connectivity within
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Fig. 8 Eigenvalue plot for the three periods of stable, volatile, and follow-up

Fig. 9 Closeness centrality plot for the three periods of stable, volatile, and follow-up
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the network. This phenomenon could be attributed to
their active involvement and influence within the finan-
cial system during turbulent times. During the follow-
up period, different patterns in the subgraph centrality
scores were evident. While some companies maintain
or slightly increase their centrality, implying a persis-
tent role in maintaining connections within the net-
work, a few companies experience significant fluctua-
tions in their subgraph centrality scores. This variation
may indicate adaptations in their impact and involve-
ment as the financial system recuperates from the tur-
bulent phase and adjusts to new dynamics.

Additionally, some companies show significantly hig
her subgraph centrality scores than others, indicat-
ing their crucial role in maintaining closed walks and
connectivity in the network. These companies may be
viewed as cluster entities that significantly contribute
to the overall structure and functioning of the finan-
cial system. Thus, subgraph centrality scores provide
insights into the importance of firms in terms of their
involvement in closed paths and connectivity within the
financial network. The observed variations during sta-
ble, volatile, and follow-up periods highlight the net-
work’s changing dynamics. The presence of highly cen-
tralized companies suggests their critical function in
shaping the overall structure of the financial system and
their potential influence on its stability and resilience.

The betweenness centrality of a company, denoted as
b(i) for company i, is defined as

b(i) =
∑

i�=j �=k

ζjk(i)
ζ
jk

, (8)

where ζjk(i) is the number of paths from j to k that
passes through i and ζjk is the number of paths between
companies j and k. This centrality metric acknowledges
a company’s function as an intermediary connecting
pairs of other companies within a stock market net-
work.

Figure 11 displays the betweenness centrality scores
for companies during three time-periods. Between-
ness centrality is a metric used to identify companies
that act as bridges between paired companies in the
stock market network. This measurement evaluates how
many paths go through a company, which accentuates
its significance in enabling connections and communi-
cation among entities in the network. After analyzing
the MSTs, it is evident that the majority of companies
do not possess betweenness centrality scores across the
three periods. This implies that these companies do not
serve as significant intermediaries or bridges between
paired companies within the stock market network.
Consequently, these companies are likely to have lim-
ited impact on the shaping of information flow, trans-
actions, or interactions among entities within the net-
work.

However, there are some exceptions with higher
betweenness centrality scores, particularly during and
after the volatile period. These particular firms act as
intermediaries that facilitate communication and inter-

actions among entities. Their betweenness centrality
values indicate their role in maintaining connectivity
and ensuring the proper functioning of the stock mar-
ket network during turbulent times. This indicates that
these companies can adjust to the shifting dynamics
and challenges of the environment by assuming a crucial
role in maintaining connections between other entities.

Moreover, there are a few standout companies with
betweenness centrality scores especially during the
follow-up period. These companies serve as bridges
facilitating interactions and the flow of information
among a range of other paired companies. Their impact
on the stability and functioning of the network is par-
ticularly evident during this time.

3.4.3 Global level

The assessment of communication between a pair of
companies within a stock price network conventionally
revolves around identifying the shortest path that con-
nects these companies. Nevertheless, it is important to
note that global communicability transcends the con-
sideration of solely the shortest paths facilitating com-
munication between nodes p and q. It encompasses a
broader spectrum of pathways, encompassing all possi-
ble trajectories that enable the transfer of information
or entities from one company to another.

Suppose, N
(k)
pq as the count of shortest paths between

nodes i and j with a specific length k, and W
(s)
pq as the

count of walks connecting nodes i and j with a length
greater than s > k, we propose to define the following
quantity:

Cpq =
1
k!

Nk
pq +

∑
s>k

1
s!

W s
ij . (9)

By leveraging the relationship between the powers of
the adjacency matrix and the count of walks within the
network, we derive communicability score as follows:

Cpq =
∞∑

s=0

(As)pq

k!
= (eA)pq. (10)

The assortativity coefficient evaluates a company’s
inclination to associate with the other companies hav-
ing comparable or dissimilar degrees. This metric is
determined by computing the average degrees Snn(s)
of a company’s neighbors when the company itself has
a degree of s. To compute this measure, we initially
determine the average degree Snn(p) of a company p’s
neighboring companies

Ann(p) =

∑
(qp) sq

nq
. (11)

Here, q represents a neighboring node of company p.
Subsequently, we calculate the average once more, this
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Fig. 10 Subgraph centrality plot for the three periods of stable, volatile, and follow-up

Fig. 11 Betweenness centrality plot for the three periods of stable, volatile, and follow-up periods
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time considering all companies p that share the same
degree s

Ann(s) =

∑
p:sp=s Ann(p)

ns
, (12)

where ns represents the count of companies possessing
a degree of s.

As elucidated above, global network metrics provide
a more comprehensive understanding of the behavior
of Minimum Spanning Trees (MSTs) in stock prices
across three time-frames. The degree of assortativity
measures the extent of homophily within the network.
A high coefficient implies that connected nodes tend
to share similar attribute values. Specifically, the assor-
tativity degree during the stable, volatile, and follow-
up periods stands at 0.31, 0.44, and 0.32, respectively.
This observation underscores that the volatile period
exhibits a higher degree of assortativity compared to
the other periods. Additionally, it is worth noting that
the communicability patterns among companies differ
significantly during the volatile period compared to the
preceding and succeeding periods. For instance, during
the volatile period, the communicability degree between
Ping An Insurance (SSE: 601318) and China Petroleum
Chemical Corporation (SSE: 600038) is 31, whereas it
registers at 11 and 12 during the stable and follow-up
periods, respectively.

4 Discussion

4.1 Analysis of network resilience based on Markov
Chains

To enhance the comprehension of symbolized data
introduced in the Methodology section, we assume the
existence of a time-homogeneous Markov chain denoted
as {st,i, t ≥ 1}. This Markov chain comprises states
from the set {1, 2, 3}. The transition probabilities gov-
erning the transitions within this chain are represented
as P (st+1,i = k|st,i = l) = P (s1,i = k|s0,i = l) = plk,i,
where 1 ≤ l, k ≤ 3 for each individual stock indexed by
i.

In the context of any ergodic Markov chain, as the
number of time steps N approaches infinity, the value
of PN

lk,i converges to a certain limit which remains inde-
pendent of the initial state l for each company i. This
limit can be denoted as follows:

lim
N→∞

PN
lk,i = π

(i)
k > 0. (13)

Here, the quantities 0 ≤ π
(i)
k ≤ 1, linked to every

company i, satisfy the subsequent set of steady-state
equations

π
(i)
k =

3∑
l=1

π
(i)
l plk,i, for k = 1, 2, 3 and

π
(i)
1 + π

(i)
2 + π

(i)
3 = 1. (14)

Thus, the set {π
(i)
k , 1 ≤ k ≤ 3} emerges as the exclu-

sive stationary distribution. To illustrate, consider the
transition matrix associated with Ping An Insurance
(SSE: 601318)

P(601318) =

(0.43 0.12 0.22
0.15 0.32 0.08
0.2 0.02 0.25

)
.

By the concept of the ergodic nature of the Markov
chain, a stationary distribution for SSE: 601318, taking
the form

π(601318) = (0.3, 0.24, 0.35).

Moreover, the anticipated recurrence times can be
evaluated via the equation μ

(i)
kk = 1/π

(i)
k for k = 1, 2, 3.

Consequently, the expected recurrence times for SSE:
601318 can be expressed as

μ
(601318)
ll = (3.3, 4, 2.8).

4.2 Maximal connected component (MCC) network
resilience analysis

To evaluate the topological resilience of stock correla-
tion networks, common techniques involve the use of
node attack and edge attack strategies. A network is
deemed robust against such attacks if its fundamental
attributes, such as connectivity, remain relatively sta-
ble after the attack. In this research, we opt for a ran-
dom node removal method to assess the effects of node
attack on the characteristics of our network.

A financial network, denoted as C, is considered con-
nected when there exists a path connecting any com-
pany to any other company within the network. In cases
where the network is not connected, it can be broken
down into multiple connected sub-networks, denoted as
N ′, which are referred to as the connected components
of N . N ′ represents a maximal connected component
(MCC) within N ; if N ′′ is considered a sub-network
of N , then N ′′ is equal to N ′. The size of the MCC
within a stock correlation network provides valuable
insights into the overall network connectivity. To eval-
uate network stability, we examine the fluctuations in
MCC size due to random node eliminations throughout
stable, volatile, and follow-up periods.

Figure 12 illustrates the relationship between the per-
centage of randomly removed nodes and the corre-
sponding sizes of the MCC in the stock correlation
network across three periods. In the stable period, the
MCC initially accounts for 31% of the network when
10% of nodes are removed, gradually decreasing as more
nodes are removed. In the volatile period, the MCC
size further diminishes, starting at 17% when 10% of
nodes are removed and reaching a low point of 8% with
70% node removal. Conversely, during the follow-up
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Fig. 12 Node attack plot of the percentage removal of nodes and corresponding maximally connected components

period, the MCC size begins to recover, commencing at
28% with 10% node removal and gradually increasing
with higher removal percentages. These findings indi-
cate that the stock correlation network exhibits greater
resilience to random node removals in stable and follow-
up periods compared to the volatile period. The MCC
size serves as a measure of network connectivity, with
smaller sizes indicating more disruption caused by node
removals.

During the stable period, the network experiences
a gradual reduction in the MCC size with increas-
ing node removal percentages, suggesting a relatively
stable network with minimal impact from random
removals. In contrast, the volatile period witnesses a
more significant disruption in network connectivity due
to node removals, indicating vulnerability during tur-
bulent times. However, during the follow-up period, the
network displays signs of recovery as the MCC size
increases with higher removal percentages.

5 Conclusions

In this exploration of financial networks within the
Chinese stock market from 2019 to 2021, our central
aim was to rigorously analyze network attributes and
resilience across various hierarchical levels: node, clus-
ter, and global. Our research sought to unveil the ever-
evolving nature of these financial networks, emphasiz-
ing their adaptability and vulnerabilities in the face of
market dynamics.

In the framework of conducting a comprehensive
analysis of financial networks in the Chinese stock mar-
ket from 2019 to 2021, our main objective was to con-
duct a thorough analysis of network characteristics and
their ability to withstand turbulence at different hier-
archical levels, with a particular focus on the node,
cluster, and global levels. The findings are marked by
impartiality and objectivity, intending to offer valuable
insights for the financial sector. This research highlights
the flexible and resilient characteristics of these finan-
cial networks, revealing their capabilities and limita-
tions in adapting to the changing market environment.
In this study, we divided the time-period into three seg-
ments: stable, volatile, and follow-up time-periods. We
then applied a symbolization method to convert stock
return data and daily transaction volume into an appli-
cable format. Next, we employed the PMID method
to measure the distance between nodes and estab-
lish edges. This approach is essential, because finan-
cial markets exhibit non-linear behavior, necessitating
non-linear methods to extract network characteristics.
After constructing networks for each interval using the
Minimum Spanning Tree (MST) method and filtering
unnecessary information, we analyzed the time inter-
vals in three categories: nodes, clusters, and the global
levels with specific indicators for each level. Notably, all
constructed networks conformed to a power-law distri-
bution.

This research study yielded several key findings that
illuminate the intricate dynamics of financial networks.
At the node level, we determined the significance of
individual nodes using metrics, such as degree centrality
and node strength. These metrics uncovered the high
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dynamism of networks, with some companies rising in
importance, while others declined over time. Crucially,
networks demonstrated adaptability in stable market
conditions, but also vulnerability during volatile period.
Cluster-level analysis indicates that during times of
market volatility, firms tend to assume more critical
roles as connectors, becoming actively engaged in form-
ing connections with other entities. This heightened
engagement is reflected in increased centrality, which
suggests that these firms play a central and influential
role in the network during turbulent market conditions.
On the global level, this analysis demonstrates that
companies are more inclined to establish partnerships
with counterparts possessing similar degrees of central-
ity during periods characterized by market volatility,
in contrast to times of stability or follow-up periods. In
simpler terms, when the market is experiencing volatil-
ity, firms tend to collaborate more with the other com-
panies that occupy similar influential positions within
the network.

To assess the resilience of the constructed net-
works, we applied a Markov chain analysis, which is
a mathematical tool used to understand how systems
evolve over time. Additionally, we focused on examin-
ing the maximal connected component (MCC) of the
constructed networks. This component represents the
largest group of interconnected entities within the net-
work. Findings show that in the second observed period,
it appears that the network was more vulnerable to
volatility. This means that during this specific time-
frame, the financial network exhibited a higher degree
of instability, possibly characterized by a greater num-
ber of disruptions, disconnections, or fluctuations in the
relationships between entities. In contrast, the network
displayed greater resilience during the follow-up period.
This resilience suggests that the financial markets were
on a path to recovery during this time.

As financial systems continue to evolve, a com-
prehensive understanding of network behavior and
resilience remains indispensable. The results underscore
the importance of obtaining a comprehensive under-
standing of financial networks to guide risk manage-
ment strategies. By utilizing these insights, financial
institutions can strengthen their capacity to navigate

financial uncertainties proficiently. Furthermore, our
study indicates potential for further investigation into
the interconnectedness of various financial networks.
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Table 2 SSE50 Index of the top 50 Shanghai stock exchange companies by float-adjusted capitalization

Name Industrial Ticker symbol

Shanghai Pudong Development Bank Banking SSE: 600000
China Petroleum Chemical Corporation Oil gas SSE: 600028
CITIC Securities Financial services SSE: 600030
Sany Heavy Industries Industrial SSE: 600031
China Merchants Bank Banking SSE: 600036
Poly Real Estate Real estate SSE: 600048
SAIC Motor Automotive SSE: 600104
China Northern Rare Earth Industrial SSE: 600111
Shanghai Fosun Pharmaceutical Chemical Pharmaceutical SSE: 600196
Jiangsu Hengrui Pharmaceuticals Chemical Pharmaceutical SSE: 600276
Wanhua Chemical Group Chemical SSE: 600309
Hengli Group Industrial SSE: 600346
Zhangzhou Pientzehuang Pharmaceutical Chemical IndPharmaceutical SSE: 600436
Tongwei Company Industrial SSE: 600438
Kweichow Moutai Consumer Discretionary SSE: 600519
Hundsun Technologies Industrial SSE: 600570
Anhui Conch Cement Construction SSE: 600585
Yonyou Network Technology Industrial SSE: 600588
Haier Smart Home Industrial SSE: 600690
Wingtech Industrial SSE: 600745
Shanxi Xinghuacun Fen Wine Factory Industrial SSE: 600809
Haitong Securities Financial services SSE: 600837
Yili Group Dairy SSE: 600887
AECC Aviation Power Tourism SSE: 600893
China Yangtze Power Energy SSE: 600900
China Three Gorges Renewables Energy SSE: 600905
LONGi Green Energy Technology Energy SSE: 601012
CSC Financial Financial SSE: 601066
China Shenhua Energy Energy SSE: 601088
Foxconn Industrial Internet [zh] Industrial SSE: 601138
Industrial Bank Banking SSE: 601166
Guotai Junan Securities Financial services SSE: 601211
Agricultural Bank of China Banking SSE: 601288
Ping An Insurance Insurance SSE: 601318
New China Life Insurance Insurance SSE: 601336
Industrial and Commercial Bank of China Banking SSE: 601398
China Pacific Insurance Insurance SSE: 601601
China Life Insurance Insurance SSE: 601628
Great Wall Motor Company Industrial SSE: 601633
China State Construction Engineering Construction SSE: 601668
Huatai Securities Financial services SSE: 601688
China Telecom Telecommunications SSE: 601728
PetroChina Oil gas SSE: 601857
China Tourism Group Duty Free Corporation Tourism SSE: 601888
Zijin Mining Group Mining SSE: 601899
Cosco Shipping Shipping SSE: 601919
China International Capital Corporation Financial services SSE: 601995
WuXi AppTec Industrial SSE: 603259
Foshan Haitian Flavouring Food Co Industrial SSE: 603288
Will Semiconductor Industrial SSE: 603501
Zhejiang Huayou Cobalt Energy SSE: 603799
GigaDevice Industrial SSE: 603986
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