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Abstract. Segregation phase transition has long been considered a robust phenomenon in celebrated
Schelling’s segregation model, the degree of segregation remains largely unchanged even with different
underlying topologies. However, in this study, we have observed that a significant suppression of segrega-
tion can be achieved by modifying agents’ migration paths in a Schelling’s metapopulation model with a
simple step utility function, based on an extremely heterogeneous star-type underlying complex network.
We find that the degree of suppression is occupancy density dependent, and the effect is even more pro-
nounced at higher occupancy densities. To explore the impact of this modification of migration paths, we
suggest a random adding-link mechanism as well. We have observed that as the adding-link probability
increases from zero to unity, the significantly suppressed segregation phase at lower probability eventu-
ally emerges. Moreover, we identified a scaling law of the average stationary interface density versus the
re-scaled adding-link probability.

1 Introduction

In the past few decades, complexity science has emerged
and developed rapidly. A recent open discussion on
the achievements, challenges, and future prospects of
the field can be found in Ref. [1]. There has been a
growing interest in applying statistical physics concepts
and/or methods to study multidisciplinary phenomena
in complex social and economic systems, such as social–
economic structures and behaviors; see, e.g., Refs. [2,3],
and the most recent thorough review [4] (and refer-
ences therein). In particular, the emergence of collec-
tive order, similar to phase transition, can arise from
simple and localized social rules based on expectations
or individual decisions, which is a characteristic shared
by statistical physics systems. Schelling’s segregation
model [5,6], proposed roughly half a century ago, is
a well-known example of this type of model in social
and economic sciences, and has obtained significant
attention across numerous fields; see, e.g., Refs. [4,7–
16]. A number of particularly intriguing connections
between Schelling’s model and statistical physics have
been discussed, e.g., cluster formation [17], connec-
tion to the Ising model [18] and to the Blume–Emery–
Griffiths (BEG) spin-1 model [19,20], underlying topo-
logical effects [11,21–24], and others [25–27].

In Schelling’s simple but elegant model, agents are
divided into two groups based on attributes such as

a e-mail: guifeng su@shnu.edu.cn (corresponding author)
b e-mail: yizhang@shnu.edu.cn (corresponding author)

color (e.g., red and blue) or social–economic mindset
(e.g., egoists and altruists), and they move on a grid or
blocks according to a tolerance rule. Even a slight pref-
erence for similar neighbors can lead to collective segre-
gation, resulting in agents clustering together homoge-
neously. This phase transition can robustly occur in var-
ious model variants, regardless of the underlying topolo-
gies, such as regular lattice, random graph or scale-free
(SF) network [11]. Notably, Schelling also proposed the
prototype metapopulation model in his classic work [5],
which replaces the grid with blocks that comprise a
large number of agents and still preserves the emer-
gence of segregation phase transition. Unfortunately,
the metapopulation version of Schelling’s model was
overlooked for a long time until recent years [16,26,27].
However, the metapopulation model does not qualita-
tively change the conclusion of robust segregation phase
transition with various underlying topologies. This
implies the emergence of segregation phase transition
is also robust cross over both the original Schelling’s
model on a complex network of grids and that of blocks,
in addition to the underlying topologies. On the other
hand, considering the importance of eliminating segre-
gation at a social and economic perspective, a natu-
ral theoretical question arises whether there exists an
underlying topology that could weaken or even elimi-
nate the robust segregation phase transition observed
in Schelling’s model.

In a recent study [23], we demonstrated that Sche-
lling’s metapopulation model with a star-shaped under-
lying topology exhibits novel and counter-intuitive
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effects, such as collective optimization. Our findings
revealed the significant roles played by the star-shaped
topology of blocks on both the optimum stationary
state and evolutionary dynamics, which were modeled
through a triangular-form utility function u(ρ), where
ρ represents the density of agents living in a block.
Surprisingly, we observed that increasing the number
of altruistic agents did not help the system approach
its optimal state. To explore the possible influences of
the evolution of the underlying topology on this phe-
nomenon, we proposed an adding-link mechanism. By
adjusting the probability of adding new links between
blocks, we discovered that the topology evolves from
a star shape to a fully connected network, causing the
optimization of the utility function to fade away. This
procedure was shown to be influenced by the mono-
centric hub of the topology and the connections between
peripheral blocks.

However, there is still a lack of sufficient understand-
ing regarding the social–economic significance of this
effect. Additionally, one might wonder if this effect is
sensitive to the choice of the utility function. These fac-
tors have inspired us to revisit the original Schelling
metapopulation model with a simple step utility func-
tion, in contrast to the one used in Ref. [27], which
leads to a diminishment of the global effect of the util-
ity. Thus, we investigate the influences of a star-shaped
underlying network on the characteristics of the segre-
gation phase transition and provide a positive answer
to the previous question.

In this work, the star topology configuration is com-
posed of a hub block and multiple peripheral blocks.
The hub block has the highest degree, while the periph-
eral blocks have only a single connection. One of the
distinctive features of the star topology is its extreme
heterogeneity, compared to other network topologies
such as the Erdős–Rényi (ER) random graph [28]. We
demonstrate that in such a scenario, there is a signif-
icant suppression of the segregation phase transition.
To gain further insight into how the segregation state
evolves, we propose an adding-link mechanism that con-
nects any pair of peripheral blocks, linking the star
topology to a fully connected network topology. This
allows us to observe the development of segregation over
time as it moves from one topology (e.g., star shape) to
another, indicating a level of heterogeneity that is inde-
pendent of size and substantially alters the way in which
segregation operates. We report the corresponding scal-
ing law for the order parameter versus the connecting
probability.

The rest of the paper is organized as follows: in
Sect. 2, we introduce Schelling’s metapopulation model
on a star-shaped network of blocks, and major param-
eters are set up for later use. In Sect. 3, we present our
numerical results generated by simulations. We demon-
strate the significant suppression of segregation phase
in the Schelling’s metapopulation model, and analyze
in detail the crucial role played by the underlying star
topology of blocks. In Sect. 4, we explore the poten-
tial effects of the random adding-link mechanism, and
observe the evolution of the interface density S(t).

Finally, we sum up our paper with conclusions and final
remarks.

2 Schelling’s metapopulation model

In our framework, we adhere to the spirit of the original
Schelling’s metapopulation model, with the exception
that there are N total agents residing on a star-shaped
network of blocks, instead of a two-dimensional lattice
city. There are two groups of agents, say, red and blue.

The underlying network consists of Q blocks, with
each block having a maximum capacity of M agents.
One hub block in the middle is connected to the other
Q− 1 blocks. The total number of both types of agents
can be set to be constant and equal for simplicity. All
agents are initially distributed randomly across the net-
work, with an initial average density ρ = N/MQ set up
at the beginning of the simulation.

If there are fewer agents of the unlike type nu present
at the same block (neighborhood) than the degree of
“tolerance” T , which is the maximum tolerable ratio of
the sites occupied by unlike agents at the same block, an
agent is said to be satisfied with its utility (u = 1), oth-
erwise unsatisfied (u = 0). All these can be expressed
as

ui =
{

1 ifnu/M < T in i′s neighborhood,

0 otherwise .
(1)

Whether it is satisfied or not, an agent is randomly
selected at each time step of the evolution and then
attempts to migrate to another unsaturated target
block that is connected to the source block. The migra-
tion will be accepted if the settlement of the agent on
the destination block can make itself satisfied; other-
wise, the agent will remain on the source block. Repeat
this procedure until a equilibrium, or a steady state
that no more agents can move, is reached.

To investigate the segregation phase transition, it is
crucial to select an appropriate “order parameter” that
accurately represents or identifies the degree of segrega-
tion in Schelling’s model. Various measures have been
proposed to fulfill this task, such as the ratio of like
to unlike neighbors, or the fraction of vacant neigh-
boring sites of an individual agent. Among these, the
interface density, denoted as S(t), has been frequently
used and serves as a natural observable to measure the
state of the system and the emergence of the segregation
phase [20,21,25]. It is defined as the average fraction of
pairs of agents of opposite types to each other on the
same node at time step t,

S(t) =
1
Q

Q∑
i=1

2nr(i, t)nb(i, t)
[nr(i, t) + nb(i, t)] [nr(i, t) + nb(i, t) − 1]

,

(2)
where nr(i, t) (nb(i, t)) is the number of red (blue)
agents located in the i-th node at a given time t. That
is, the ith node has [nr(i, t) + nb(i, t)] [nr(i, t) + nb(i, t)
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Fig. 1 The phase structure of Schelling’s metapopulation
model with Q = 20, M = 100. a The stationary interface
density S as a function of tolerance T and occupancy den-
sity ρ on a star topology. b The total utility, U , of agents as
a function of tolerance T and occupancy density ρ on star
network. c Similar to a but on a fully connected network.
d Similar to b but on fully connected network. When com-
pared to the fully connected network scenario (c), the seg-
regation area in the star topology case (a) shrank dramat-
ically. On the other hand, a transition area of total utility
U appeared in (b) as opposed to the discontinuous change
of total utility U in (d)

− 1]/2 distinct pairs of agents, of which there are
nr(i, t)nb(i, t) opposite type pairs. A high value of S(t)
indicates a mixed state, while a low value indicates a
segregated state.

3 Results of numerical simulations

We now present our results of numerical simulations.
In Fig. 1a, we display the stationary interface den-

sity as a function of tolerance (T ) and occupancy den-
sity (ρ) for the underlying star topology. In contrast,
Fig. 1c shows similar results for a fully connected net-
work. Notably, Fig. 1c exhibits a broad range of segrega-
tion areas that are resistant to variations in Schelling’s
models and underlying topologies [11,17,18,22]. How-
ever, for the star topology in Fig. 1a, the segregation
area drastically decreases, particularly at high occu-
pancy density, where the mixed state almost completely
fills the tolerance parameter space without interfering
with the segregated state.

As a matter of fact, there are two different types
of mixed states that are divided by a segregation
state, i.e., so-called the “frozen state” and “well-mixed
state” [19]. The number of satisfied agents, or alterna-
tively, the total utility of agents, U =

∑
i ui, is what dis-

tinguishes these mixed states from one another. To fur-
ther identify these mixed states, the total utility, U , can
be used as the second order parameter. We show numer-
ical results in Fig. 1d on fully connected networks. The

line separating the dissatisfied state (notice that the
“frozen state” is on the left part of the picture) and the
satisfied state (i.e., segregated state and “well-mixed
state” on the right part) is represented by the discon-
tinuous change of the total utility U . For numerical sim-
ulations on star-shape networks, however, a transition
area between the unsatisfied and satisfied states can be
seen, as shown in Fig. 1b.

The results in Fig. 1 can be further understood by
examining the dynamic distribution of the agents in the
network. This is illustrated in the upper panel of Fig. 2,
which shows snapshots of the distribution of both types
of agents at various points in their evolutionary his-
tory. In this parameter regime where segregation would
have emerged in the original Schelling’s metapopula-
tion model, one type of agents gathers at the central
node, while the other type of agents tends to flee from
it, even though they were initially randomly distributed
throughout the entire system.

We emphasize that the main reason for the suppres-
sion of degree of segregation is the saturation of agents
on the central node. Specifically, since there are no other
destinations available for these agents to migrate to, the
dominance of red- (blue-) colored agents on the cen-
tral node can prevent blue- (red-) colored agents from
leaving their unsatisfied peripheral nodes. On the other
hand, the dominant type of agents on the central node
can continue to relocate using it as a bridge until all
their prevailing nodes, including the central one, are
saturated. As a result, the other agents, whether satis-
fied or not, are also unable to migrate. The saturation
of nodes is the primary reason why segregation is more
easily suppressed at high occupancy density. Based on
these two mechanisms, when the stationary state is
reached, some agents of the central dominant type and
all agents of the other type are forced to remain in an
unsatisfied mixed state. The transition zone between
the unsatisfied and satisfied states, as seen in Fig. 1b,
can also be explained by these mechanisms. For com-
parison, simulations using the same parameter set but
on a fully connected network are displayed in the lower
panel of Fig. 2. These simulations demonstrate an evo-
lutionary process that leads to an apparent segregation
state where each node is entirely occupied by a single
type of agent and all agents are satisfied.

It may be confusing to reconcile the seeming contra-
diction between our simulation results and the claim
that “segregation is topology independent” [11,22].
However, careful examination reveals that these two
claims are based on different mechanisms. When the
topological effect only affects neighborhood structures
and does not impact the agents’ migratory paths, the
result is topology independent segregation. In contrast,
the topological effect we focus on in this study lim-
its the agents’ migratory paths to those between the
central node and the periphery. Essentially, the segre-
gation process cannot be affected by the heterogene-
ity of neighborhood architecture. However, the extreme
heterogeneity in migration path topologies can severely
inhibit the trend toward collective segregation. This is
critical in understanding why the emergence of segre-
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Fig. 2 Distribution of the two types of agents across nodes.
Upper panel: the distribution at time steps t = 0, t = 80,
and stationary state on star-shape network, respectively.
Note that the leftmost bar in each subplots represents the
agents’ distribution on central node. Lower panel: similar
to the upper one, the distribution at t = 0, t = 800, and
equilibrium state on fully connected network, respectively.
The city size Q = 20, each node’s capacity M = 100, the
occupancy density ρ = 0.8, and the tolerance T = 0.4 are
set throughout simulations. As can be seen, only one type of
agent eventually occupies the star-shape network’s central
node, while the other nodes continue to be mixed. In con-
trast, the fully connected network achieves an segregation
state with the same parameter set, where each node has just
one type of agent

gation is significantly suppressed in Schelling’s model
of star topology, comparing to that of a fully connected
network with the same parameters.

4 The random adding-link mechanism

Another important issue to consider is the impact of
changes in the heterogeneity of the underlying network
structure on the degree of agent mixing. As we have
analyzed before, the limited migratory paths of agents
on peripheral nodes to the central node are the main
reason for the suppression of segregation. Therefore, it
is reasonable to conclude that the robustness of seg-
regation may be reestablished at a suitable limit of
topological heterogeneity. We have addressed this issue
by adding links with probability Πi between peripheral
nodes, which is similar to constructing a random graph
as peripheral nodes are initially not interconnected with
each other [28].

The phase structure of interface density S(t) as a
function of tolerance T and the adding-link probability
Π, with ρ = 0.9, Q = 50, and M = 100, respectively, is
shown in Fig. 3. As the number of added links increases,

Fig. 3 The phase structure of interface density as a func-
tion of tolerance T and adding-link probability Π, with
ρ = 0.9, Q = 50, and M = 100, respectively. The segrega-
tion region that had disappeared gradually starts to reap-
pear as the adding-link probability Πi increasingly rises

the emergence of segregation becomes more and more
obvious, and the parameter region where segregation
occurs becomes wider. When Π → 1, the equilibrium
phase diagram converges to that of a fully connected
network.

Consider that the increase of links between peripheral
nodes actually breaks the constraint on the migration
path of agents on peripheral nodes, in other words, it
mitigates the extreme heterogeneity of the star network.
Therefore, when a new link is added to each peripheral
node on average, the inhibitory effect of the extreme
heterogeneity on the segregation regions in the param-
eter space accordingly fades away to some extent. This
is actually equivalent to the condition for the emergence
of a giant connected cluster in ER random graph, i.e.,
for an ER random graph with Q−1 nodes, there exists a
critical probability Πc ∝ 1/(Q−1) for the emergence of
a giant connected cluster [28], and the latter is close to
a fully connected network in topological structure. The
important enlightenment is the change of pivot role of
the hub.

To verify this theoretical expectation, we conducted
numerical simulations and compared results of the sta-
tionary state for systems with different block sizes Q,
where Q � 1, as we increased Π for a given density
and tolerance, as shown in Fig. 4a. It is worth noting
that a scaling of the averaged stationary interface den-
sity 〈S〉 versus the re-scaled size, i.e., Πr = (Π − Πc)Q
can be observed. The collapsed data points shown in
Fig. 4b confirm this scaling. This observation suggests
that there is a size-independent degree of heterogeneity
that can significantly impact the nature of segregation.
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Fig. 4 a Average interface density 〈S〉 as a function of
the adding-link probability Π in linear-log scale for differ-
ent sizes of systems Q = 20 (black open square), 50 (red
open circles), and 100 (blue open triangles), respectively,
with occupancy density ρ = 0.9, tolerance T = 0.5. Three
vertical dashed lines (in the upper panel) correspond to the
critical probability Πc (from right to left) for Q = 20, 50,
and 100, respectively; b Collapse of datum after re-scaling
with respect to Πr = (Π − Πc)Q in a linear scale, using
the same data as in (a). The re-scaled critical probability
Πc is labeled with dashed line. The scaling of 〈S〉 versus
Πr = (Π − Πc)Q is obvious

5 Conclusions and remarks

To sum up, although Schelling’s segregation model has
long been considered as a simple prototype for illus-
trating the segregation phenomenon, our present study
demonstrates a considerable inhibition of segregation
phase in a metapopulation version of Schelling’s model
with a star-shaped underlying topology. The degree of
suppression is dependent on occupancy density, and it
is even more significant at higher densities. We dis-
tinguish between two types of topological effects in
Schelling’s segregation model and identify their influ-
ences on agents’ migration paths. Based on the con-
straints imposed by the heterogeneity of the underly-
ing star-shaped network on agents’ migration routes,

we propose a scheme that significantly suppresses the
emergence of segregation phase. Our numerical simula-
tions confirm the effectiveness of this scheme.

In addition, we also investigated the impact of a ran-
domly adding-link mechanism and discovered a scaling
law that relates the average stationary interface density
to the re-scaled probability of adding links. This scaling
law helped us understand to what extent the extreme
heterogeneity of the underlying network structure sup-
presses the emergence of segregation. Interestingly, we
found that the scaling law in the present model is quite
similar to the one discovered in Ref. [23]. However, we
have to point out that the mechanisms behind the scal-
ing laws in the two Schelling models (with different util-
ity functions) are not the same. In our current study,
we used a simple step function for our utility func-
tion, while in Ref. [23], the utility function was a non-
monotonic, ρ-dependent function. It remains unclear if
there exists a deeper connection between these appar-
ent similarities, and further studies along this line are
currently ongoing.

Finally, we want to acknowledge an important issue
that we did not consider in our study, which is the influ-
ence of temperature (or noise) on the segregation phase
transition in Schelling’s metapopulation model. Intro-
ducing environmental noise to an agent’s decision can
affect their behavior and preferences. A possible way
to incorporate this is using a Fermi–Dirac-like function
for the dynamical rule allowing agents to move between
blocks, to be specific, P ∼ 1/

(
1 + e−β�G

)
, where G

represents the “free energy” and β is the inverse envi-
ronmental temperature. While a naive expectation may
seem that this modification will not fundamentally alter
the overall physics picture, a detailed numerical inves-
tigation is necessary to explore the phase structure and
segregation dynamics that could emerge. Currently, we
are actively investigating this issue, and plan to report
our findings in the near future.
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