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Abstract. Due to the continuous development of economy and society, the pace of life is also accelerated,
so people pay more and more attention to the time cost, and the transportation time cost is also a
very important part of it. The traffic system is an important carrier to realize the traffic operation. The
increase of automobile ownership requires the traffic system to be higher and higher. Moreover, vehicles in
congested traffic flow inevitably start and stop operations with high frequency, which undoubtedly increases
vehicle exhaust emissions, environmental pollution, noise pollution and other problems. For today’s traffic
system, vehicle dynamics information is also an important factor which affects the traffic system. Therefore,
adding throttle, vehicle dynamics information, to the macro-traffic flow modeling research in this paper is
a supplement and improvement to the current traffic flow theory research. By analyzing the equilibrium
point, this paper proves the conditions for the existence of Hopf branch and saddle junction branch. Finally,
numerical simulation is carried out, and the space–time diagram of density and phase plane are obtained
through simulation, which can be used to describe the actual traffic phenomenon. Through numerical
simulation, it is found that this model can better describe the congestion phenomenon of the actual traffic
system, and provide scientific theoretical support for macroscopic traffic flow state analysis.

1 Introduction

With the acceleration of urbanization, daily travel has
caused great pressure on the urban road traffic system,
which eventually leads to more complex and crowded
traffic flow. Traffic congestion will not only lead to
accidents, but also aggravate environmental pollution,
which is bound to have a negative impact on people’s
lives. To explore the intrinsic characteristics of traffic
flow and the causes of traffic congestion, and take effec-
tive measures to curb it. It is necessary to develop more
realistic traffic flow models, such as micro model [1–12]
and macro model [13–19]. In addition, to reduce fuel
costs and carbon emissions, researchers have developed
fuel consumption models and emission models [20–22].

At present, complex nonlinear traffic phenomena
have been the focus of research in recent years. Many
traffic engineers, physicists and mathematicians have
conducted in-depth nonlinear research on macroscopic
traffic flow models. For traffic, a complex nonlinear sys-
tem, the problem of traffic congestion can be essen-
tially solved only by starting from its nonlinear nature.
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Branch Analysis Method can describe and predict non-
linear traffic phenomena from the perspective of the
global stability of the system, which will provide the-
oretical basis for fundamentally helping to solve traf-
fic problems. In 1999, Yuji Igarashi et al. [23] studied
the branch phenomenon of traffic flow based on the
optimal velocity model proposed by Bando et al. [24].
Yuji Igarashi et al. proved the existence of Hopf branch
in the model and described the traffic phenomenon.
In 2010, Jin et al. [25] used the full-speed difference
model to study the divergence problem, and carried
out Hopf divergence analytic calculation on the model
with Hopf theorem. In 2015, Ai et al. [26] proposed
a branch analysis method based on macro-traffic flow
model to describe and predict nonlinear traffic phenom-
ena on highways from the perspective of global stabil-
ity of the system, and obtained Hopf branch and saddle
node branch of the model using this method. Then in
2018, Ge et al. carried out Hopf branch analysis and
obtained Hopf branch points. The effects of delay time
and velocity difference sensitivity in the model are dis-
cussed from Hopf branch. In 2021, Ge et al. [27, 28],
based on the analysis of a micro traffic flow model, car-
ried out Taylor expansion on the micro model to obtain
the branch analysis of the macro model, and obtained
the existence conditions and stability of the model Hopf
branch.
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Macro traffic flow modeling is also a method to
describe traffic phenomena. Generally, macro-traffic
flow modeling describes the behavioral evolution of traf-
fic flow according to the relationship among traffic flow,
average speed and average density in traffic flow. The
research on macroscopic traffic flow model has been
carried out for several decades, and many models have
been proposed successively. The Fluid Dynamics The-
ory in the macroscopic model was proposed by Lighthill,
Whitham and Richards [29, 30]. Therefore, in terms of
macroscopic traffic flow modeling, current studies focus
more on the mechanism of action and evolution char-
acteristics of traffic flow, etc. Traditional macro-traffic
flow models pay more attention to the average density,
average speed, traffic flow and other vehicle state infor-
mation and road structure information, etc. The impact
factors are relatively simple, and the impact of throt-
tle dynamics information on traffic flow evolution has
not been considered at the macro level. Centering on
the idea of macroscopic traffic flow modeling, this paper
takes the influence of electronic throttle dynamics infor-
mation [31, 32] on traffic flow evolution into considera-
tion in macroscopic traffic flow modeling research.

In the field of macro-traffic flow modeling, most stud-
ies mainly consider the influence of factors such as vehi-
cle state information and road structure information
[33–35]. In the actual traffic system, vehicle dynamics
information is also an important factor affecting the
traffic system. Therefore, adding the vehicle dynamics
information of throttle valve into the research of macro-
scopic traffic flow modeling is a supplement and perfec-
tion to the current research of traffic flow theory. The
throttle dynamics information is added to the macro-
scopic traffic flow modeling. By considering the vehicle
state information and throttle dynamics information at
the same time, the evolution behavior of traffic flow is
analyzed, and then the influence of throttle dynamics
information on the evolution of traffic prevalence is ana-
lyzed. It has important research significance to provide
scientific theoretical support for the macroscopic traffic
flow state analysis.

2 Establishment of model

Electronic throttle is an important control component
of vehicle engine, and electronic throttle system in the
throttle opening accurate control is conducive to reduc-
ing vehicle exhaust emissions. It is worth mentioning
that the more accurate throttle opening control, the
more responsive the vehicle can meet the requirements
of the public. Therefore, it is very necessary to add the
dynamic information of electronic throttle into traffic
flow modeling [36, 37].

We added throttle dynamics information into the
research of macro-traffic flow modeling, and then car-
ried out the design from the relationship model ET
model of vehicle state information and vehicle dynam-
ics information. ET model [38] was studied and pro-
posed by Ioannou et al. which mainly described the

relationship between the dynamic information of elec-
tronic throttle and vehicle speed and acceleration. The
driver can control the speed of the vehicle by controlling
the opening of the electronic throttle valve. According
to the ET model, at time t , the acceleration of car i can
be expressed as:

ai(t) = −b[vi(t) − v0] + cθi + di (1)

Among it, ai(t) and vi(t) respectively represent the
acceleration and speed of the number i car at time t ,
θi is the deviation for throttle, θi = θi − θ0, θ0 is con-
stant, v0 is the vehicle speed in stable state, b and c
changes over time, and di is the other perturbation not
considered.

By analyzing the above ET model, the expression of
electronic throttle deviation can be obtained, and then
the expression of electronic throttle difference regarding
vehicle speed and acceleration can be obtained:

θi = {[ai(t) + b(vi(t) − v0)] − di}/c + θ0 (2)

It follows that:

Δθi = θi+1 − θi = [ai+1(t) − ai(t) + bΔvi(t)]/c
(3)

where the velocity difference Δvi(t) = vi+1(t) − vi(t).
In addition, we know that the expression of T-FVD
microscopic model [39–43] is:

ai(t) = k[V (Δxi(t)) − vi(t)] + λΔvi(t) + βΔθi

(4)

As the V (Δxi(t)) is the best velocity function and
position difference Δxi(t) = xi+1(t) − xi(t), β > 0,
k > 0, λ > 0 is for sensitive coefficient.

Substituting Eq. (3) into Eq. (4) we can get a
microscopic model that takes into account the throt-
tle dynamics:

(5)

dvn (t)
dt

= k[V (Δxi (t)) − vi (t)] + λΔvi (t)

+ k{[ai+1 (t) − ai (t) + bΔvi (t)]/c}

Starting from the improved model, to obtain the cor-
responding macro-traffic flow model, a single discrete
variable needs to be converted into a continuous vari-
able. Specifically, first assume that the instantaneous
speed of the i + 1 vehicle at the position x is equal to
the average speed on the

[
x − Δ

2 , x + Δ
2

]
section, and

the speed of the
[
x − Δ

2 , x + Δ
2

]
section depends on the

average speed of the
[
x + Δ

2 , x + 3Δ
2

]
section, where Δ

corresponds to Δx in the microscopic traffic flow model,
and changes with the spacing between different contin-
uous vehicles.
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From the connection between micro and macro, accel-
eration can be expressed as:

(6)

ai (t) =
du (x, t)

dt
=

∂u (x, t)
∂x

∂x

∂t
+

∂u (x, t)
∂t

=
∂u (x, t)

∂x
u (x, t) +

∂u (x, t)
∂t

ai+1 (t) =
du (x + Δ, t)

dt

=
∂u (x + Δ, t)
∂x (x + Δ)

∂ (x + Δ)
∂t

+
∂u (x + Δ, t)

∂t

=
∂u (x, t)

∂x
u (x + Δ, t) +

∂u (x + Δ, t)
∂t

(7)

And there is

vi(t) → v(x, t), vi+1(t) → v(x + Δ, t) (8)

v(x + Δ, t) = v(x, t) + Δv′
x(x, t) +

1
2
Δ2v′′

x (9)

We bring this into the formula and ignore the non-
linear term to get:

dv(x, t)
dt

=
1
T

(ve − v) +
(

λ +
bk

c

)(
Δv′

x +
1
2
Δ2v′′

x

)

+ kv′′
xΔv

(10)

Organize the above equation as follows:

dv(x, t)
dt

=
1
T

(ve − v) +
(

λΔ +
bk

c
Δ
)

v′
x

+
(

λ

2
Δ2 +

bk

2c
Δ2 + kΔv

)
v′′

x (11)

Expand the left side of the above equation as follows:

dv(x,t)
dt = ∂v(x,t)

∂t + v ∂v
∂x

(12)

Among them: k = λ = 1
T , Δ

T = c0, Δ2

2T = μ

Combined with conservation equations, we can get
new macroscopic traffic flow models

{
∂ρ
∂t + ∂(ρv)

∂x = 0
∂v
∂t + v ∂v

∂x = 1
T (ve − v) +

(
b
c c0 + c0

)
∂v
∂x +

(
μ + b

c μ + c0v
)

∂2v
∂x2

(13)

This model uses the periodic boundary condition,
and the traffic phenomenon generated by the fulcrum
is actually more obvious on the open loop section than
the closed loop section, so this paper assumes that the

main road section is an open boundary condition, that
is:

ρ (1, t) = ρ (2, t) , ρ (L, t) = ρ (L − 1, t) , v (1, t)

= v (2, t) , v (L, t) = v (L − 1, t)

Assume that model (13) has traveling-wave solution
ρ(z) and v(z), in which z = x − ct and traveling-wave
velocity c < 0. Using the above results and substituting
them into Eq. (13), we can obtain:

−cρz + qz = 0 (14)

(15)

−c
∂v

∂z
+

(
v − b

c
c0 − c0

)
∂v

∂z

=
1
T

(Ve (ρ) − v) +
(

μ +
b

c
μ + c0v

)
∂2v

∂z2

From the formula, we get:

qz = cρz (16)

The derivative of ρv = q with respect to z at both
ends of the equation yields:

qz = ρvz + vρz (17)

Available from:

Vz = cρz

ρ − qρz

ρ2 (18)

Vzz = cρ−q
ρ2 ρzz (19)

Meanwhile, in the formula, z is integrated, then:

−cρ + q = const = q∗ (20)

At the same time, it obtains:

q = q∗ + cρ (21)

So, bring it in, and after rewriting, you get:

(22)

(
v − c1 − b

c
c0 + c0

)(
c1

ρ
− q

ρ2

)
ρz

=
1
T

(Ve (ρ)−v)+
c1ρ − q

ρ2

(
μ+

b

c
μ+ c0v

)
ρzz

Simplification yields about second-order ordinary dif-
ferential equations:

ρzz − G(ρ, q∗)ρz − F (ρ, c, q∗) = 0 (23)

Among it:

G(ρ, q∗) = cq∗+2c1cρ+c0ρ(b+c)
ρμ(c−b)+cc0(q∗+c1ρ) (24)
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Table 1 Types of
equilibrium points and their
stability when it gives
model parameters

Δi = Gi
2 + 4Fi

′
, i = 1, 2, 3

(c, q∗) ρ1 ρ2 ρ3

(−1.371,0.2) 0.0065

F
′
i > 0, saddle

point
Unstable for z →
± ∞

0.0938
Δi < 0,Gi < 0, spiral
point
Stable for z → + ∞
Unstable for z → − ∞

0.1447

F
′
i > 0, saddle

point
Unatable for z →
± ∞

(−1.38,0.64) 0.0223

F
′
i > 0, saddle

point
Unstable for z →
± ∞

0.0594
Δi < 0,Gi < 0, spiral
point
Stable for z → + ∞
Unstable for z → − ∞

F (ρ, c, q∗) = ρVe(ρ)−q∗−c1ρ
Tq∗

∗ ρ2c
(ρμ(c−b)+cc0(q∗+c1ρ))

(25)

Let y = dρ
dz , Eq. (1) can be converted to a system of

first-order ordinary differential equations:

{
dρ
dz = y

dy
dz = G(ρ, q∗)y + F (ρ, c, q∗)

(26)

Then, for the type of equilibrium point and its stabil-
ity, it is mainly determined from the equations formed
by Eq. (26), let the right end of Eq. (26) is 0, it is known
that y = 0 and F = 0, the equilibrium point coordinate
(ρi, 0) can be obtained. Then, according to the equi-
librium point coordinates, the Eq. (26) is expanded by
Taylor, and the linear representation of the system can
be obtained:

{
ρ′ = y

y′ = G(ρi, q∗)y + F ′(ρi, c, q∗)(ρ − ρi)
(27)

Thus, the Jacobian matrix of the system at the equi-
librium point can be written:

L =
[

0 1
F ′

i Gi

]
(28)

The corresponding characteristic equation is:

λ2 − Giλ − F ′
i = 0 (29)

where Gi(ρi, c, q∗) = G(ρ, c, q∗), F
′

= F (ρ, c, q∗) is
obtained:

Gi = cq∗+2c1cρi+c0ρi(b+c)
ρiμ(c−b)+cc0(q∗+c1ρi)

(30)

Fi
′ = 1

Tq∗

(3ρ2
i cVe(ρi) + cV ′

e (ρi) − 2ρicq∗
−2ρicc1)(ρiμ(c − b) + cc0(q∗ + c1ρi)

−(ρ3
i cVe(ρi) − ρ2

i cq∗ − cc1ρ2
i )(μ(c − b) + cc0c1

(ρiμ(c−b)+cc0(q∗+c1ρi))2

(31)

Because at the equilibrium point (ρi, 0), F = 0, then
ρiVe(ρ)−q∗−c1ρi = 0, according to the qualitative the-
ory of differential equation, it can determine the linear

system (26) the type of equilibrium point is as follows:
(a) when F

′
i > 0, the equilibrium point is the saddle

point; (b) When G2
i + 4F

′
i > 0 and F

′
i < 0, the equilib-

rium is the node; (c) When G2
i + 4F

′
i < 0 and Gi �= 0,

the equilibrium point is the focus; (d) When F
′
i < 0 and

Gi = 0, the equilibrium is centered. When z → ±∞,
the stability of linear systems at saddle points is unsta-
ble. When Gi < 0 (or Gi > 0)), the stability at nodes
and focal points is stable for z → +∞ (or z → −∞).

According to Hartman-Grossman linearization the-
ory, nonlinear system (26) and linear system (27) have
the same equilibrium point. For the equilibrium point
that is not the center, the stability case at the equi-
librium point, the nonlinear system (26) and the linear
system (27) are consistent. Given the values of any set
of traveling-wave velocity c and traveling-wave param-
eter q∗, the equilibrium ρ1, ρ2, ρ3 of the linear system
(26) can be solved. The equilibrium velocity function
proposed in literature [44] is selected as follows:

Ve[ρ] = vf

{[
1 + exp

( ρ
ρm

−0.25

0.06

)]−1

− 3.72 × 10−6

}

(32)

Here, vf represents the free flow velocity and ρm rep-
resents the maximum or congestion density.

The values of parameters in the model in this chapter
are as follows: vf = 30 m/s, ρm = 0.2 veh/m, T = 10 s,
c0 = 11 m/s, μ = 550. When ρ equals 0, this is a trivial
equilibrium point, and it has no practical significance,
so this paper only needs to discuss other equilibrium
points. Based on the above discussion and Eq. (31),
the type and stability of the equilibrium point can be
determined, as shown in Table 1, where the equilibrium
point is indicated by ρi(i = 1, 2, 3).

The two sets of parameters in Table 1 were selected
to numerically simulate the stability at the equilibrium
point of the nonlinear system (26).

Figure 1 corresponds to the first scenario in Table 1.
It can be seen from Table 1 that when z → ±∞, the
system is unstable at the equilibrium point (ρ1, 0) and
(ρ3, 0), and the nearby rails are far away from the point.
As z → +∞, there are several helical rails close to the
saddle point (ρ1, 0) tend to focus (ρ2, 0), and because
of the influence of the nearby saddle point (ρ3, 0), the
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Fig. 1 Phase ρ−y planar track diagram with traveling-wave
velocity c = −1.371, traveling-wave parameters q∗ = 0.2

Fig. 2 Phase ρ−y planar track diagram with traveling-wave
velocity c = −1.38 traveling-wave parameters q∗ = 0.64

helical state of the rails tend to focus is not obvious.
As z goes to z → −∞, the orbitals move away from the
focus and eventually approach infinity. It is shown that
the system is stable at (ρ2, 0) when z → +∞. As z goes
to z → −∞, these orbitals move away from the focus
and eventually approach infinity. These orbitals can be
regarded as the saddle-focal-saddle point solution of the
system. It is shown that the system is stable at the
equilibrium point (ρ2, 0) when z → +∞ and unstable
at the equilibrium point (ρ2, 0) when z → −∞.

Figure 2 corresponds to the second scenario in Table
1. Figure 2 also shows that the system is unstable at
the equilibrium point (ρ1, 0). The spiral triggered near
(0.05,0) tends to focus (ρ2, 0) when z → +∞, and the

system is stable at this point; As z → −∞, away from
the focus (ρ2, 0), the system is unstable.

The overall structure of multiple equilibrium points
interacting with each other can be clearly seen from
the two-phase planar graph, and the influence of the
equilibrium point on the curve trajectories around the
equilibrium point can be seen from the changes of the
curve trajectories around the equilibrium point, which
is consistent with the analysis results.

3 Hopf branching conditions for the model

Lemma 1 [45] Consider the system
.
x= f(x, λ), x ∈

Rn, λ ∈ R, λ as a variadic parameter. If (x0, λ)
the equilibrium condition is satisfied, f(x, λ)|(x0,λ0)

=
0n×1, it is noted L = Dxf(x, λ)|(x0, λ0) that its eigen-
value is, α(λ) ± iβ(λ) and if α(λ0) = 0 and β(λ0) =
ω > 0, then the system has c =

.
a (λ)|λ0 �= 0 Hopf

branch λ = λ0 at the place.

For the system (26) let q∗ be a variable parameter, it
for all q∗ equilibrium point (ρ0, 0), the derivative matrix
L(q∗) out of the equilibrium point is also the Jacobian
matrix of the system at the equilibrium point, as shown
below:

L(q∗) =
(

0 1
F (ρ, c, q∗) G(ρ, q∗)

)
|

ρ = ρ0

q∗ = q∗ 0

�
(

A1 A2

A3 A4

)

(33)

Among it:

G(ρ, q∗) = cq∗+2c1cρ+c0ρ(b+c)
ρμ(c−b)+cc0(q∗+c1ρ) (34)

F (ρ, c, q∗) = ρV ′
e (ρ)−q∗−c1ρ

T ∗ ρ2c
(ρμ(c−b)+cc0(q∗+c1ρ))q∗

(35)

Let its eigenvalue be λ, λ = α(q∗) ± jβ(q∗) then its
eigenequation is:

λ2 − (A1 + A4)λ + (A1A4 − A2A3) = 0 (36)

The equation has a pair of complex eigenvalues
α(q∗) ± jβ(q∗) then:

α(q∗) = A1+A4
2 = 1

2

(
cq∗+2c1cρ+c0ρ(b+c)
ρμ(c−b)+cc0(q∗+c1ρ)

)
(37)
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β(q∗) =

√

(A1A4 − A2A3) − (A1 + A4)2

4

=

√

−ρV ′
e (ρ) − q∗ − c1ρ

T
∗ ρ2c

(ρμc − bρμ + cc0(q∗ + c1ρ))q∗
− 1

4

(
cq∗ + 2c1cρ + c0ρ(b + c)
ρμ(c − b) + cc0(q∗ + c1ρ)

)2

(38)

c =
.
α (q∗)q∗0

= 1
2

(ρμc−bρμ)c−(c1cρ+c0bρ+c0cρ)cc0
(ρμ(c−b)+cc0(q∗+c1ρ))2

�= 0
(39)

Cause α(ρ0, q∗0) = 0, namely:

α(ρ0, q∗) = 1
2

(
q∗c+2c1cρ0+c0ρ0(b+c)

ρ0μc−bρ0μ+cc0(q∗+c1ρ0)

)
|q∗ = q∗0 ≈ 0

(40)

From this, we get:

q∗0 = − 2c1cρ0+c0ρ0(b+c)
c

(41)

At the same time,

β(ρ0, q∗0)

=

√
−ρV ′

e(ρ) − q∗ − c1ρ

T
∗ ρ2c

(ρμc − bρμ + cc0(q∗ + c1ρ))q∗∣∣∣∣∣ ρ = ρ0

q∗ = q∗0

(42)

Because the V
′
e (ρ) < 0, so when −ρ2Ve

′
(ρ0) > q∗0 >

0β(ρ0, q∗0) > 0. In this case, the system has Hopf
branch at q∗ = q∗0.

4 Hopf branch types for models

For Hopf branch problem, since N -dimensional systems
can be restricted to two-dimensional central manifolds
by the central manifold method, only Hopf branch of
two-dimensional systems is considered.

Lemma 2 [45]: Set up a two-dimensional system with
parameters

x′ = f(x, γ), x = (x1, x2)
T ∈ R2, γ ∈ R (43)

The equilibrium point of is the origin O(0, 0), and the
eigenvalues at the origin are α(γ)±iω(γ). At that time,
γ = 0 the partial derivative matrix of the system has
a pure virtual eigenvalue, iω0 that is α(0) = 0, ω(0) =
ω0 > 0. By means of coordinating transformation, the
system (43) can be written as

{
x′

1 = α(γ)x1 − ω(γ)x2 + f̃1(x1, x2, γ)
x′

2 = ω(γ)x1 + α(γ)x2 + f̃2(x1, x2, γ)
(44)

where f̃1, f̃2 = O(x1
2 + x2

2).

Theorem 1 (ODE’s Hopf branching theorem) Let the
partial matrix at the re-origin of the system (Eq 43)
have eigenvalues D(γ) and satisfy α(γ)±iω(γ) the sum
α(0) = 0, ω(0) = ω0 > 0, then there is an analytic
function c = α

′
(0) �= 0

γ(ε) =
∞∑

k=0

γkεk (45)

Such that γ = γ(ε) �= 0 for the pair, the system (42)
has a unique closed orbit within the sufficiently small
neighborhood of the origin of Γε its period

T (ε) = 2π
ω0

(
1 +

∞∑

k=0

γkεk

)
(46)

When ε → 0,γ(ε) → 0 comes, Γε tends to the ori-
gin. γk1 is denoted as the first coefficient in expansion
Eq. (45) that is not equal to zero.Γε is a stable limit
ring when γk1 is the same sign with c, Γε is an unstable
limit when γk1 is different with signc.

Literature [46] gives a proof of theorem one and the
equations for calculating the coefficients γk1, τk, espe-
cially when k = 2,

γ2 = −a
c , τ2 = − b+γ2ω′(0)

ω0
(47)

Among them, the first Lyapunov index of the system
can be calculated as follows:

a =
(

1
16

)[
f̃1xxx + f̃1xyy + f̃2xxy + f̃2yyy

]

+
(

1
16ω0

)[
f̃1xy

(
f̃1xx + f̃1yy

)

− f̃2xy

(
f̃2xx + f̃2yy

)
− f̃1xxf̃2yy + f̃1yy f̃2yy

]

(48)

where f̃1xxx, f̃2xxx etc. are the partial derivative at
f̃1, f̃2 (0, 0, 0). Here, a is an important parameter for
judging the stability of the limit ring, assuming that
the theorem condition is true, according to the Hopf
branch, there are the following stability conclusions:
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If a < 0(> 0). then the limit ring Γε is stable (unstable).
If a is different (same) sigh with the c, the Hopf branch
is supercritical (subcritical);
If a = 0 so, the Hopf branch is degenerate.

For system (26), set q∗ as variable parameter, It has
an equilibrium (ρ0, 0) for everything q∗, make ρ̃ = ρ−ρ0

coordinate translation, the equilibrium point moves to
the origin, then the system can be expressed as follows:

{
ρ̃′ = y,

y′ = G̃(ρ̃, q∗)y + F̃ (ρ̃, c, q∗).
(49)

By (ρ̃, y) = (0, 0) performing a Taylor unfolding at
the equilibrium point, the system can be linearized to:

x̃′ = L(q∗)x̃ + f (50)

where f is a smooth vector function whose con-
stituent elements f1,2 are the Taylor expansion of the
least quadratic term with respect to x̃, which can be
expressed as follows:

f =

⎡

⎣
0

k11ρ̃
2 + k22y

2 + k12ρ̃y + k111y
3 + k112ρ̃

2y

+k122ρ̃y2 + O(ρ̃, y)4

⎤

⎦

(51)

The Jacobi matrix L(q∗) can be expressed as follows:

L(q∗) =

⎛

⎜
⎝

0 1
ρV ′

e(ρ)−q∗−c1ρ
T

∗ ρ2c
(ρμ(c−b)+cc0(q∗+c1ρ))q∗

cq∗+2c1cρ+c0ρ(b+c)
ρμ(c−b)+cc0(q∗+c1ρ)

⎞

⎟
⎠

=
(

0 1
b(q∗) d(q∗)

)
(52)

Its eigenvalues are the root of the following charac-
teristic equation:

λ2 − σλ + Δ = 0 (53)

thereinto, σ = σ(q∗) = d(q∗) = trL(q∗), Δ = Δ(q∗) =
−b(q∗) = detL(q∗),

λ1,2(q∗) = 1
2

(
σ(q∗) ± √

σ2(q∗) − 4Δ(q∗)
)

(54)

Obtained by the Hopf branching condition:

σ(0) = 0,Δ(0) = ω0
2 > 0 (55)

For smaller |q∗| ingestible variables:

α(q∗) = 1
2σ(q∗), ω(q∗) = 1

2

√
4Δ(q∗) − σ2(q∗)

(56)

This results in the following eigenvalue expression:

λ1(q∗) = λ(q∗), λ2(q∗) = λ(q∗) (57)

Thereinto:

λ(q∗) = α(q∗) + iω(q∗), α(0) = 0, ω(0) = ω0 > 0
(58)

Let ωre+iωim be the eigenvector of L(q∗) correspond-
ing to the eigenvalue λ(q∗), and have:

L(ωre + iωim) = iω0(ωre + iωim) (59)

Considering that the real and imaginary parts on
both sides of the above equation equal sign are equal,
we get:

{
Lωim = ω0ωre

Lωre = −ω0ωim
(60)

The collation Eq. (60) is as follows:

L
[
ωim ω

re

]
=

[
ωim ω

re

]
[

0 −ω0

ω0 0

]
(61)

From this:

[
ωim ω

re

]−1
L
[
ωim ω

re

]
=

[
0 −ω0

ω0 0

]
(62)

Cause:

ỹ =
[
ωim ω

re

]−1
x̃ (63)

Namely:

ỹ′ =
[
ωim ω

re

]−1
x̃′ (64)

Bringing Eq. (50) into Eq. (64) yields:

(65)

ỹ′ =
[
ωim ω

re

]−1
L
[
ωim ω

re

]
ỹ +

[
ωim ω

re

]−1
f

=
[

0 −ω0

ω0 0

]
ỹ +

[
ωim ω

re

]−1
f

In addition, L(q∗) the eigenvectors can be calculated
as follows:

ωre + iωim =
[

0
1

]
+ i

[
− 1√

−b(q∗)

0

]

(66)

Bringing the values of Eq. (51) and sum into equation
ωim(ωre65) yields:
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ỹ′ =

[
0 −ω0

ω0 0

]
ỹ +

⎡
⎢⎣ 0

k11ρ̃2 + k22y2 + k12ρ̃y + k111y3

+k112ρ̃2y + k122ρ̃y2 + O(ρ̃, y)4

⎤
⎥⎦
(67)

Equation (67) is in the same form as Eq. (44), so
according to Eq. (48), the system (26) can a be calcu-
lated as follows:

(68)

a =
(

1
16

)[
f̃2ỹ1ỹ1ỹ2 + f̃2ỹ2ỹ2ỹ2

]

+
(

1
16ω0

)[
−f̃2ỹ1ỹ2

(
f̃2ỹ1ỹ1 + f̃2ỹ2ỹ2

)]

Further, the value of c can be calculated as follows:

c = α′(q∗) = 1
2

(
cq∗+2c1cρ+c0ρ(b+c)
ρμ(c−b)+cc0(q∗+c1ρ)

)
|q∗ = 0 > 0

(69)

Therefore, for the system (26), the Hopf branch is
supercritical when a < 0 and subcritical when a > 0.

5 Saddle branching conditions
for the model

Lemma 3 [45]:Consider the system x
′

= f(x, λ), x ∈
Rn, λ ∈ R, λ is a variable parameter. If (x0, λ) satisfies
the equilibrium condition f(x, λ)|(x0, λ0) = 0n×1 , note
L = Dxf(x, λ)|(x0, λ0) , make Ψ and Φ L about unit
characteristic vectors, respectively, namely ΨL = 0 and
LΦ = 0, is when the following conditions to satisfy,
λ = λ0 is saddle section branch of the system.

(i)a = Ψ ∂
∂q∗

f(x, λ)|(x0,λ0)
�= 0 (70)

(ii)b = Ψ ·
n∑

i=1

ei

[
ΦT ∂2

∂x2 fi(x, λ)|(x0, λ0)Φ
]

�= 0

(71)

Is for any small ε > 0, the solution of curve near
(x0, λ0), approximate expression for:

x = εΦ + o
(
ε2
)
, λ = ε2b

2a + o
(
ε3
)
. (72)

For system (26), set q∗ to variable parameters, the
matrix of derivatives at the equilibrium point is shown

in Eq. (33). When q∗ = −ρ2Ve

′
(ρ) there is Φ =

(
1
0

)

satisfaction LΦ = 0.
At this point,

ΨL = 0 ⇒ Ψ =
(

cq∗+2c1cρ+c0ρ(b+c)
ρμ(c−b)+cc0(q∗+c1ρ) 1

)
(73)

Substituting the variables Ψ and Φ into Eqs. (70) and
(71) gives:

a =Ψ
∂

∂q∗
f(x, q∗)|(x0,q∗0)

=
(

cq∗+2c1cρ+c0ρ(b+c)
ρμ(c−b)+cc0(q∗+c1ρ) 1

)
(

0
− ρ2c

T (ρμ(c−b)+cc0(q∗+c1ρ))

)

= − ρ2c

T (ρμ(c − b) + cc0(q∗ + c1ρ))
�= 0 (74)

b =ψ

n
∑

i=1

ei[Φ
T ∂2

∂x2
f1(x, λ)|(x0, λ0)Φ]

=
(

cq∗+2c1cρ0+c0ρ0(b+c)
ρ0μ(c−b)+cc0(q∗+c1ρ0)

1
)

·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[

1 0
]

[

0 0

0 0

] [

1

0

]

[

1 0
]

[

Z L

L 0

] [

1

0

]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

cc0(q∗ + c1ρ0))
2 + cV

′
e (ρ0) − 2ρ0cq∗ − 2c1cρ0)(ρ0μ(c − b))

+(3ρ
2
0cVe(ρ0) + cV

′
e (ρ0) − 2ρ0cq∗ − 2c1cρ0)(μ(c − b) + cc0c1)

+cc0(q∗ + c1ρ0) − (ρ3
0cVe(ρ0) − ρ

2
0cq∗ − c1cρ

2
0)

(μ(c − b) + cc0c1) − 2(ρ0μ(c − b) + cc0(q∗ + c1ρ0))(μ(c − b)

+cc0c1)(3ρ
2
0cVe(ρ0) + ((3ρ

2
0cV

′
e (ρ0) + 6ρ0cVe(ρ0) + cV

′′
e

(ρ0) − 2cq∗ − 2cc1)ρ0μ(c − b) + cc0(q∗ + c1ρ0))

−(3ρ
2
0cVe(ρ0) + ρ

3
0cV

′
e (ρ0) − 2ρ0cq∗ − 2c1cρ0)

(μ(c − b) + cc0c1)(ρ0μ(c − b)

(ρμ(c − b) + cc0(q∗ + c1ρ))4

�=0 (75)

Thereinto

Z(ρi, c, q∗)

=

cc0(q∗ + c1ρ)) + cc0(q∗ + c1ρ))2

−(ρ30cVe(ρ0) − ρ20cq∗ − c1cρ20)(μ(c − b) + cc0c1)

−2(ρμ(c − b) + cc0(q∗ + c1ρ))(μ(c − b) + cc0c1)

(3ρ20cVe(ρ0) + (3ρ20cVe(ρ0) + cV ′
e(ρ0)

−2ρcq∗ − 2c1cρ)(μ(c − b) + cc0c1)

+((3ρ20cV ′
e(ρ0) + 6ρ0cVe(ρ0) + cV ′′

e (ρ0) − 2cq∗ − 2cc1)

ρμ(c − b) + cc0(q∗ + c1ρ0))
2 + cV ′

e(ρ0)

−2ρcq∗ − 2c1cρ)(ρ0μ(c − b) + cc0(q∗ + c1ρ))

−(3ρ20cVe(ρ0) + ρ30cV ′
e

(ρ0) − 2ρcq∗ − 2c1cρ)(μ(c − b) + cc0c1)(ρμ(c − b)

(ρμ(c − b) + cc0(q∗ + c1ρ))4

(76)

And

L(ρi, c, q∗) =

(2c1c + c0(b + c))(ρμ(c − b) + cc0(q∗ + c1ρ))

−(cq∗ + 2c1cρ + c0ρ(b + c))(μ(c − b) + cc0c1)

(ρμ(c − b) + cc0(q∗ + c1ρ))4

(77)

So when the q∗0 = −ρ0
2Ve

′
(ρ0) system (26) exists in

q∗ = q∗
0 the saddle branch.
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6 Numerical simulation

First, to verify that our newly proposed model can
reproduce the stop-and-go phenomenon of real traffic
flow under different initial densities, we choose differ-
ent initial densities to simulate the density space–time
diagram. The figure shows the spatio-temporal plot of
density when the initial density is 0.01veh/m < ρ0 <
0.09veh/m.

The numerical results under different initial densities
are shown in the figure. According to the figure, we
find that the traffic condition will be unstable when
the initial density is 0.01veh

m < ρ0 < 0.09veh/m.
Under the given initial boundary conditions men-

tioned above, the following conclusions can be drawn
according to the simulation diagram of the density
waveform of the new model shown in Fig. 3a–f:

(1) As can be seen from Fig. 3a–f, when the initial
density value is small, the new model can elim-
inate the external disturbance well, as shown in
Fig. 3a, b. However, with the increase of the ini-
tial density, the traffic flow gradually becomes less
stable, and the disturbance does not decrease with
the passage of time, but produces greater fluctu-
ations, as shown in Fig. 3c–e. When the initial
density continues to increase, the initial density
value reaches the stable interval of the macro-
scopic traffic flow model. The disturbance wave
of the density space–time diagram gradually dis-
appears, eliminating external interference, and the
traffic flow gradually returns to a stable state, as
shown in Fig. 3f.

(2) As shown in Fig. 3c–e, within a certain range,
with the increase of the initial density, the dis-
turbance does not decrease, but instead as time
goes on, multiple aggregation waves as shown
in Fig. 3c, multiple disturbance waves as shown
in Fig. 3d, and an increase in disturbance as
shown in Fig. 3e are generated. When the traf-
fic flow density is lower than the critical density,
the small disturbance will dissipate quickly and
evolve into a uniform flow. When the initial den-
sity increases to ρ0 = 0.04586veh/m, a complex
local structure consisting of two or more clus-
ters is formed. Therefore, the local clustering phe-
nomenon of traffic flow is reproduced in Fig. 3c,
and the actual traffic state will eventually appear
congestion. However, when the initial density con-
tinues to increase, as shown in Fig. 3f, the dis-
turbance gradually disappears and the traffic flow
gradually returns to a stable state as time goes
by. In summary, through numerical simulation,
the stable state of traffic flow described by the
macro model proposed in this paper is observed,
and its boundary stability conditions are obtained.
When the initial density ρ0 > 0.09veh/m, or
ρ0 < 0.01veh/m, the disturbance in the traffic flow
will not be amplified; When ρ0 is not in the stable
condition area, the disturbance will be amplified,

and even appear local cluster effect, stop-and-go
vehicle phenomenon.

(3) As shown in the Fig. 3g–j, 3g, i are the density
space–time diagram of macro model considering
throttle information, Fig. 3h, j are the density
space–time diagram of FVD macro model. We find
that under the same parameter conditions, as the
density decreases or increases, the small perturba-
tions develop into single clusters and multiple clus-
ters; under the same initial density ρ, the influence
of throttle opening angle can effectively suppress
traffic congestion.

According to the simulation results of the FVD macro
model and the throttle macro model, the following con-
clusions can be drawn: whether the traffic flow is in a
stable state (Fig. 3i, j) or an unstable state (Fig. 3g, h),
under the same initial density conditions, the fluctua-
tion of the density waveform of the macro model consid-
ering the throttle is smaller than that of the FVD macro
model when the disturbance diverges or the distur-
bance disappears. Therefore, it can be concluded that
the macroscopic traffic flow model considering the influ-
ence of electronic throttle dynamics can effectively curb
traffic congestion. The stability, anti-interference abil-
ity and ability to eliminate external disturbances of the
new macro model are stronger than those of the FVD
macro model without considering the throttle dynam-
ics information, which further verifies the effectiveness
of the new model.

Next, we choose different equilibrium points as start-
ing points to study various branch of nonlinear systems
(26). In the beginning, we use the above equilibrium
point as an example to plot the following figure, where
the parameters are selected as variable parameters with
an initial value of 0.2. You can find three special points
in this range which respectively are a Hopf branch point
(H) and two limiting branch points (LP), as shown in
Fig. 4.

When q∗ is 0.817848, the state variables for Hopf
branch point is (0.050047,0), at this time, the vehicle
density is ρ0 = 0.050047eh/m, and two eigenvalues were
4.4729e−08 + 0.019825i and 4.4729e−08−0.019825i.
The real part of a pair of conjugate eigenvalues is con-
sidered to be 0, which is the sign of judging it as a
Hopf branch, and its maximum lyapunov exponent is
5.555356e + 01.

The first limit branch occurs when the vari-
able parameter is 0.891695. The state variables is
(0.040665,0), the corresponding vehicle density is ρ0 =
0.040665eh/m. The eigenvalues were − 1.8044e−05 and
0.018863, respectively. Obviously the previous eigen-
value is 0, which is the sign for the branch of the limit
point. In addition, the second normalization coefficient
is a = −7.303210e−01.

A second limit branch occurs when the vari-
able parameter is 0.172588. The state variables is
(0.112377,0), and the corresponding vehicle density is
ρ0 = 0.112377eh/m. The eigenvalues are −6.0878e−05
and 0.038439, respectively. It is also clear that the first
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Fig. 3 a–f Spatio-temporal graph of density under different initial densities. g–j Under the same density, the FVD model
is compared with the space–time diagram considering the density of the throttle model
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Fig. 3 continued

Fig. 4 a The branch diagram where q∗ takes the state variable of a large range of parameters as; b Branch graphs with
appropriate parameter interval q∗
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eigenvalue is 0, which is a sign that it is a branch of the
limit point. The second normalization coefficient is a =
3.502079e−01.

Below, this paper analyzes the stability changes of
the traffic system when the parameters pass some
branch critical points calculated above. First, to study
the effect of Hopf branch on traffic flow, the stability
of the system on the phase plane is investigated in this
paper when parameter q∗ passes 0.817848.

Figure 5a shows that when the parameter is q∗ <
0.817848, point (0.036995, 0) is an equilibrium node.
Meanwhile, the equilibrium point (0.044323, 0) is
a spiral point, and all curves approach the point
(0.044323, 0) within the red line. Therefore, the system
inside the red line is stable, and the system outside the
red line is unstable.

As can be seen from Fig. 5b, when parameter q∗ >
0.817848, no new equilibrium point appears at Hopf
branch point, but periodic solution exists (black region
in Figure). This is because in Fig. 5b, when z → +∞,
one spiral trajectory starts from the point (0.030112, 0)
and approaches the focus (0.051189, 0), and eventually
evolves into constant amplitude oscillation as z → −∞,
while the other spiral trajectory approaches the periph-
ery of the constant amplitude oscillation region as z →
−∞ and approaches infinity as z → +∞. So there’s
a limit cycle between the blue and black lines. These
theoretical analyses are also consistent with the above
numerical results.

By selecting some branch points as the initial average
density of density time evolution, it is helpful for us to
better understand the complex phenomena in congested
traffic. We analyze the application of local perturbation
under the condition of initial uniform density. The ini-
tial density is shown below [47].

ρ(x, 0) = ρ0 + Δρ0

{
cosh−2

[
160
L

(
x − 5L

16

)]

−1
4
cosh−2

[
40
L

(
x − 11L

32

)]}
(78)

v(x, 0) = V (ρ(x, 0))x ∈ [0, L] (79)

where ρ0 is the initial density, Δρ0 = 0.01veh/m is the
disturbance density, L = 32.2km is the section length,
and the dynamic near boundary condition is given by
the following formula:

(80)

ρ (1, t) = ρ (2, t) , ρ (L, t) = ρ (L − 1, t) , v (1, t)

= v (2, t) , v (L, t) = v (L − 1, t)

To facilitate simulation implementation, the space
spacing is equal to 100 m, and the time interval is 1 s.
The values of other parameters in the model are as fol-
lows: T = 10s, c0 = 11m

s , μ = 550, vf = 30m
s , ρm =

0.2veh/m.
The state variable ρ0 = 0.050047veh/m correspond-

ing to Hopf branch point is selected as the initial uni-
form density value, and a local small disturbance with

amplitude Δρ0 = 0.01veh/m is applied to draw the
density space–time diagram of the system, as shown in
Fig. 6:

We know from the property of Hopf branching that
the system generates a periodic solution from the equi-
librium point when the parameter passes through the
branching point. Since the initial density value at this
time is within the unstable range of the model, the small
disturbance on the initial uniform density is amplified,
as shown in Fig. 6, and then evolves into periodic oscil-
lation of constant amplitude, which is consistent with
the characteristics of the limit cycle solution, indicating
that under the initial uniform traffic condition, when
the parameter passes Hopf branch point, the small dis-
turbance will change into walking and stopping wave. It
is also shown that the results are in agreement with the
actual phenomenon and the numerical results, which
verifies the correctness of the theoretical analysis.

Next, this paper studies the effect of limit cycle
branch on traffic flow when parameter q∗ passes
0.891695. When the traffic system passes through the
first LP bifurcating point with parameter 0.891695,
the stability of the traffic flow will change signifi-
cantly. First, consider q∗ < 0.891695. At this point,
we set q∗ = 0.79, the system has two point, one is a
saddle point (0.029518,0), the other is a spiral point
(0.051791,0), as shown in Fig. 7a. All curve within the
red line point to point (0.051791,0). Therefore, the traf-
fic system inside the Red Line is stable, while the traf-
fic system outside the Red line is unstable. With the
increase of the parameter, the two equilibrium points
gradually move towards the middle. When the parame-
ter is q∗ = 0.891695, the two equilibrium points shown
in Fig. 7a merge into one equilibrium point and a sad-
dle knot branch occurs, as shown in Fig. 7b. Again, the
traffic system inside the Red Line is stable, while the
traffic system outside the Red line is unstable. With the
continuous increase of parameter value, when parame-
ter q∗ > 0.891695, the equilibrium point disappears, as
shown in Fig. 7c, and the whole traffic system becomes
unstable.

According to the Hartman-Grossman linearization
theorem, when the real part (29) of the eigenvalue of
the equation is non-zero, the stability of the equilibrium
point of the nonlinear system (26) can be approximated
by the saturation of the corresponding linearized sys-
tem (27). When the equilibrium point is not the central
point, the two systems are uniformly stable or uniformly
unstable at these equilibrium points. We can solve the
equilibrium point of Eq. (26). The optimal speed func-
tion in the model is specified as follows:

Ve(ρ) = vf

{[
1 + exp

(
ρ/ρm−0.25

0.06

)]−1 − 3.72 × 10−6
}

(81)

In the original model:

Ve

(
ρ(x, t)

1 + δ

)
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Fig. 5 Phase planar graph of Hopf branch with parameter q∗ < 0.817848 and parameter q∗ > 0.817848 a phase planar
graph with variable parameter q∗ = 0.80; b phase plan for variable parameter q∗ = 0.88

Fig. 6 The space–time
diagram of density with
Hopf branch as the initial
value

= vf

{[
1 + exp

(
ρ/(1 + δ)ρm − 0.25

0.06

)]−1

− 3.72 × 10−6

}

(82)

vf represents the free flow velocity and ρm represents
the maximum crowding density.

This may help improve our understanding of complex
phenomena in heavy traffic by selecting some branch
points as the initial average density of the time evolu-
tion of density. We analyze the application of local per-
turbation under the condition of initial uniform density.
The initial density is used as follows [47]:

ρ(x, 0) = ρ0 + Δρ0

{
cosh−2

[
160
L

(
x − 5L

16

)]
− 1

4
cosh−2

[
40
L

(
x − 11L

32

)]}
x ∈ [0, L] (83)

v(x, 0) = V (ρ(x, 0)), x ∈ [0, L] (84)

where ρ0 is the initial mean density, Δρ0 is the ampli-
tude of the local disturbance, and L = 32.2km is the
length of the considered section. The dynamic approx-
imate boundary conditions are given by Eq. (84).

For calculation purposes, the space domain is divided
into equal intervals of 100 m in length, and the time
interval is selected as 1 s. Relevant parameters of this
model are as follows:

Δ = 5m, c0 = 11m/s, p = 0.2, vf

= 30m/s, ρm = 0.2veh/m, δ = 0.5

When parameter q∗ passes LP bifurcating point
0.891695, Vehicle density ρ0 = 0.040668, saddle junc-
tion bifurcating occurs. From the above data, it can be
seen that before and after the vehicle density passes the
saddle junction branch, the fluctuation range of traffic
flow density becomes significantly larger, which indi-
cates that when the system passes the saddle junction
branch, the traffic flow system changes from a stable
state to an unstable state, as shown in Fig. 8.

Secondly, when parameter q∗ passes through another
LP branch point 0.172588, the stability of traffic flow
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Fig. 7 Phase plan of saddle junction branch when variable parameters q∗ > 0.891695, q∗ = 0.891695 and q∗ < 0.891695
change from small to large

Fig. 8 Density fluctuation state near saddle junction branch under different initial densities. a ρ0 = 0.040225veh/m,
b ρ0 = 0.041231veh/m
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Fig. 9 Phase plane plan of saddle junction branching when variable parameters q∗ > 0.172588, q∗ = 0.172588 and
q∗ < 0.172588 change from large to small

will also change obviously. Firstly, q∗ > 0.172588, set
q∗ = 0.20, the system has three balance point, a sad-
dle point (0.0065382,0), a focus (0.093766,0) and a sad-
dle point (0.14471,0), as shown in Fig. 9a. Due to the
monotonically increasing relationship between variable
q∗ and vehicle density, the traffic system on the left
of the first red line gradually changes from unstable
to stable, the traffic system between the two red lines
changes from stable to unstable, and the traffic system
on the right of the second red line is unstable. With the
decrease of the parameter q∗, the first red line moves to
the right, the second red line moves to the left, and the
two lines gradually move closer to the center. When the
parameter q∗ = 0.172588, As shown in Fig. 9a of the
two balance (0.093766,0) and point (0.14471,0) in point
(0.11229,0) fuse for a balance, a saddle node branch, as
shown in Fig. 9b. If the value of parameter q∗ continues
to decrease, that is, when q∗ < 0.172588, the equilib-
rium point disappears and all the solutions move to the
right, as shown in Fig. 9c, the traffic system becomes
unstable.

When parameter q∗ passes LP bifurcating point
0.891695, namely vehicle density ρ0 = 0.112290, the
second saddle junction bifurcating point appears. As
can be seen from Fig. 10, before the vehicle density
passes through the saddle junction branch, the traffic
system is in a stable state; after the vehicle density
passes through the saddle junction branch, the fluctu-
ation range of the traffic flow density becomes signif-
icantly larger, which indicates that when the system
passes through the saddle junction branch, the traffic
flow system changes from a stable state to an unstable
state, as shown in Fig. 10a, b.

7 Conclusion

Macro traffic flow theory studies the overall behavior of
vehicles in the traffic system, which mainly observes the
behavior evolution characteristics of traffic flow formed
by a large number of vehicles in road traffic. In this
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Fig. 10 Density fluctuation state near saddle junction branch under different initial densities. a ρ0 = 0.104885veh/m
b ρ0 = 0.12448531veh/m

paper, the throttle dynamics information of automo-
bile dynamics is studied at the macroscopic traffic level.
Firstly, a macro-traffic flow model considering throt-
tle dynamics information is proposed, and the effec-
tiveness of the model is analyzed. Secondly, in view of
the proposed macro model, the stability analysis of the
proposed macro-traffic flow model is carried out using
the small perturbation method, and the branch analy-
sis method is used to discuss the type and stability of
the equilibrium solution, and prove the existence con-
ditions of hopf branch and saddle node branch, and the
stability changes of the system when it passes through
the branch point are analyzed by numerical simulation.
Finally, it is concluded from the spatio-temporal dia-
gram of the system density that the new model has a
good effect on stability, elimination of external distur-
bance and anti-interference ability, which further veri-
fies the validity of the proposed continuous model and it
is consistent with the theoretical analysis results. How-
ever, vehicles in the actual complex traffic system are
affected by a variety of dynamic information, such as
wind resistance, tire side longitudinal force and other
dynamic information, which also are some directions
that need to be further understood in the future.
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