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Abstract. In this paper, we investigate the effect of the nearest-neighbor biquadratic interactions on the
one-dimensional Nagle–Kardar model and study how the interactions affect the the global phase diagram
of this generalized model. For the system given in this paper, the mean-field ferromagnetic interactions of
strength J competes with the nearest-neighbor interactions of strength K and the biquadratic interaction
of strength Δ. Due to the biquadratic coupling, a new ordered state with distinct spin configuration named
the stripe ferromagnetic phase emerges. Three regions with different properties are distinguished by the
parameter Δ and in each region rich characteristics about different first- and second-order phase transition
lines and significant critical points are presented. The triple points and re-entrant phase transitions are
also found in the canonical phase diagrams.

1 Introduction

Phase transitions (PTs) are very common in nature.
Classic examples are the solid–liquid and liquid–vapor
PTs which can be easily demonstrated by water, and
ferromagnetic–paramagnetic PT in ferromagnetic sub-
stances. A PT is an intense state change of a thermody-
namic system with the variations of its parameters like
the temperature and the pressure [1–4]. Generally, ana-
lytic discontinuities or singularities in the derivatives of
the thermodynamic functions (such as the free energy
and the Gibbs free energy) of a system with respect to
relevant parameters are the typical properties of PT.
This characteristic can be utilized to determine the type
of PT according to Ehrenfest [5].

Regarding PT phenomena, an old but still complex
and variable type of system, Ising model, has received
continuous attention from researchers. Among differ-
ent attractive models, spin systems with competing
short- and long-range interactions are of great theo-
retical interest [6–30]. An early spin model, the so-
called Nagle–Kardar (NK) model, is a quite represen-
tative example and remains under research. Accord-
ing to Nagle [31], spin models consisting of compet-
ing long- and short-range interactions with ferromag-
netic and antiferromagnetic preference, respectively, are
shown to hold multicritical behaviors. There exists a
magnetization transition in the finite temperature field
of such a system in a linear spin-1/2 chain. In another
work by Kardar [32], a multicritical phase diagram can
be observed in an Ising model with mean-field inter-
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actions and nearest-neighbor interactions in both one-
dimensional space and two-dimensional space.

The Hamiltonian of the NK model including both
the specific competitive mean-field ferromagnetic inter-
actions and the short-range antiferromagnetic interac-
tions reads [33]

H = −K

2

N∑

i=1

(SiSi+1 − 1) − J

2N

(
N∑

i=1

Si

)2

, (1)

where Si = ±1, K < 0, J > 0 and N is the number of
spins. For d = 1 dimension, the system exhibits many
interesting phenomena such as temperature jump and
negative heat capacity in the microcanonical ensemble.
In the canonical ensemble, a frontier line separates the
ferromagnetic phase and the paramagnetic phase in the
phase diagram, while the nearest-neighbor interactions
are antiferromagnetic, and a tricritical point appears
on that frontier line. Moreover, the system is solved to
show ensemble inequivalence that refers to differences
between phase diagrams in the canonical and the micro-
canonical ensemble [33,34]. The diagram becomes more
complex for d = 2 dimensions, since the tricritical point
separates the above two phase and the antiferromag-
netic phase with zero magnetization [35,36].

Another intriguing research field is the competition of
two different forces interacting on similar scales such as
two short-range interactions, which can lead to frustra-
tion [37]. A prime example called J1−J2 model has been
well studied in classical and quantum domains [38–44].
It contains two different short-range couplings and can-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjb/s10051-022-00452-4&domain=pdf
http://orcid.org/0000-0002-7844-5363
mailto:jxhou@seu.edu.cn


190 Page 2 of 7 Eur. Phys. J. B (2022) 95 :190

not exhibit any PT in one-dimensional space, which is
quite different from the NK model.

In this paper, we extend the one-dimensional NK
model in two aspects and study it via the canonical
approach to obtain its rich thermodynamical phenom-
ena of phases. One extension is the shift from spin-
1/2 model to spin-1 one and the other is the addition
of a new nearest-neighbor biquadratic interaction that
exists in another classic model called Blume–Emery–
Griffiths model [7–9,16,45,46]. The two short-range
interactions can be extensively found in the spin sys-
tems and lattice-gas mixture [47] and each interaction
in the model can be found in some alloys and metallic
compounds [48–50]. Due to the presence of the addi-
tional interaction, the extended NK model consists of
the frustration from two types of short-range interac-
tions on the same scale, and the competition with a
mean-field ferromagnetic coupling of a long range. The
model should show more interesting and complicated
behaviors in phase transitions and phase diagrams.

The rest of the paper is organized as follows. In
Sect. 2, we analyze the extended NK model in the
canonical ensemble and obtain the free-energy density
by means of the transfer-matrix method. In Sect. 3, we
show the ground states of the system and discuss the
main properties of the phase diagrams with regard to
different parameters in the (K,T ) plane. Section 4 is
reserved for brief conclusion and summarizing.

2 The extended Nagle–Kardar model

Let us start by considering the extended NK model of
N spins variable Si = −1, 0,+1. The Hamiltonian of
the model is as follows:

H = − J

2N

(
N∑

i=1

Si

)2

− K

2

N∑

i=1

SiSi+1

−Δ
2

N∑

i=1

S2
i S2

i+1, (2)

where the parameter J denotes the mean-field long-
range coupling and K denotes ferro- or antiferromag-
netic nearest-neighbor interaction. Compared with the
NK model, the last sum is an additional biquadratic
nearest-neighbor coupling with the parameter Δ. Due
to the first term of the Hamiltonian, the universality
class of the model belongs to mean field and the corre-
sponding critical exponent is 1/2 [51]. Without losing
generality, the parameter J is set to be unity for sim-
plicity in this paper.

If the third term of the Hamiltonian is ignored (Δ =
0), the Hamiltonian returns to the ordinary spin-1 NK
model. The addition of nearest-neighbor biquadratic
coupling can result in more complex situations and rich
phase transitions. If parameters J , K and Δ are set
appropriately, we can obtain a system with compet-
ing interactions. For instance, the mean-field long-range

coupling prefers ferromagnetic spins as J is positive and
the former nearest-neighbor interaction favors antifer-
romagnetic alignments when K < 0, whereas the lat-
ter one with parameter Δ < 0 prefers the “0 - and -
±1” stripes. This special preference will generate a new
ordered magnetic state that can be named as the stripe
ferromagnetic phase graphically.

The characteristics of the model can be calculated
analytically in the canonical ensemble, and the parti-
tion function is

Z(β,N) =
∑

{Si}
e−βH =

∑

{Si}
exp

[
βJ

2N

(
N∑

i=1

Si

)2

+
βK

2

N∑

i=1

SiSi+1 +
βΔ
2

N∑

i=1

S2
i S2

i+1

]
, (3)

where β = (kBT )−1, T is the absolute temperature and
kB is the Boltzmann constant that is set to be unity.
Using the Gaussian identity (Hubbard–Stratonovich
transformation [9,16])

eba2
=

√
b

π

∫ ∞

−∞
dx · e−bx2+2abx, (4)

the partition function of the system can be rewritten as

Z =

√
βJN

2π

∫ ∞

−∞
dx · e− βJN

2 x2 ·
∑

{Si}

N∏

i=1

exp
(
βH̃i

)
,

(5)

where H̃i = Jx
∑N

i=1 Si + K
2

∑N
i=1 SiSi+1 + Δ

2

∑N
i=1

S2
i S2

i+1. With the help of the transfer matrix method,
the partition function can be deduced in the following
form:

Z =

√
βJN

2π

∫ ∞

−∞
dx · e− βJN

2 x2 · Tr
{
MN

}
, (6)

where M is the transfer matrix which reads

M

=

⎛
⎜⎜⎜⎝

exp
(
−βJx + βK

2 + βΔ
2

)
exp

(
− βJx

2

)
exp

(
− βK

2 + βΔ
2

)

exp
(
− βJx

2

)
1 exp

(
βJx

2

)

exp
(
− βK

2 + βΔ
2

)
exp

(
βJx

2

)
exp

(
βJx + βK

2 + βΔ
2

)

⎞
⎟⎟⎟⎠

(7)

and Tr
{
MN

}
denotes the trace of the matrix MN

that is expressed as

Tr
{
MN

}
= λN

1 + λN
2 + λN

3 . (8)

In the thermodynamic limit (N → ∞), the contribution
of the other eigenvalues can be neglected except the
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largest one λm = max (λ1, λ2, λ3). Finally, the partition
function of the system can be written as

Z =

√
βJN

2π

∫ +∞

−∞
dx · e−Nβf̃(β,x), (9)

where f̃(β, x) = J
2 x2 − 1

β ln λm(x). Moreover, the free
energy per spin (the free energy density) is

f(β) = min
x

(
J

2
x2 − 1

β
ln λm(x)

)
. (10)

It is noteworthy that for given parameters K and Δ,
the free energy per spin takes to the minimum value
when x equals the magnetization m in Eq. (10). There-
fore, ferromagnetic and stripe ferromagnetic phase can
be distinguished by the magnetization m. An equilib-
rium state with m approaching 1 refers to a ferromag-
netic one, while the magnetization of a stripe ferromag-
netic state is close to a half.

3 Results

In this section, we discuss the ground states and the
phase diagrams of the extended NK model. The phase
diagrams are all shown in the two-dimensional (K,T )
plane for different parameters Δ. Since the nearest-
neighbor biquadratic coupling is an additional one in
the extended model, it is an effective way to fix Δ and
compare with the original one (Δ = 0) in the same two-
dimensional (K,T ) plane to gain a better understanding
of the various structures of PTs.

3.1 Ground state

The ground state is equivalent to the equilibrium state
at zero temperature (T = 0), which can be expressed
as a function of parameters in the Hamiltonian and
the order parameters. The investigation of the ground
states is rather significant, as it might provide valuable
hints for further study of the phase transitions and dia-
grams. According to the Hamiltonian given by Eq. (2),
one can easily determine the spin configurations of the
ground states for different parameters K and Δ which
correspond to the minimum of the energy per spin ε.

The result of the ground states includes three differ-
ent types of phases. The ferromagnetic phase F refers
to all spins pointing upward (Si = 1,∀i) or down-
ward (Si = −1,∀i), and the energy per spin is εF =
−J

2 − K
2 − Δ

2 . Alternate pointing of nearest-neighbor
spins appears in the antiferromagnetic state AF and
its energy per spin is εAF = K

2 − Δ
2 , as the contri-

bution of the first long-range coupling vanishes. More-
over, the stripe ferromagnetic state SF occurs when
spins taking the value as ±1 and 0 are alternately
arranged (e.g. S2i = 0 and S2i+1 = ±1 or S2i =
±1 and S2i+1 = 0,∀i), and it holds the constant energy

Fig. 1 Diagram of the ground state in the (K, Δ) plane.
The respective corresponding ground state of each region
has been indicated by letters in the margin, while three lines
distinguishing the ground state intersect at the triple point
represented by the hollow circle

per spin εSF = −J
8 , which is lower than that of the

paramagnetic state (Si = 0,∀i and εP = 0).
The result of ground state in the extended NK model

is shown in Fig. 1. The system has only two ground
states AF and F with regard to different K when Δ
takes a higher values (Δ > −0.25), which is the same as
the ordinary NK model. However, the additional ground
state SF appears for a lower value of Δ (Δ < −0.25). It
may result in two intersections of the phase transition
line and zero temperature line (T = 0) in one phase
diagram.

3.2 Phase diagram

3.2.1 Δ < Δ1 = −0.25

The structure of the phase diagram for Δ larger than
Δ1 = −0.25 in this region has two separate phase tran-
sition lines. The ground states shown in Fig. 1 cor-
roborate the phenomenon, as there are three different
ground states in this range of Δ. We analyze this case
by showing the phase diagram in Fig. 2 for Δ = −2 as
an example. When T = 0, the system first experiences
a first-order phase transition from an antiferromagnetic
state AF to a stripe ferromagnetic one SF, and then
to a ferromagnetic state F, by increasing K. For the
left transition line, it changes from a first-order phase
transition line into a second-order one as T increases
after passing the canonical tricritical point (CTP). The
left transition line has the same form as that of the
ordinary NK model, apart from a little difference close
to (K = −2.25, T = 0) (the transition point of ground
states AF and SF) which is to be discussed later. As for
the right transition line denoted by red solid line in the
figure, it indicates that a small-scale first-order phase
transition starting at T = 0 ends at a critical point
(CP). This line separates the two ferromagnetic states
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Fig. 2 (K,T ) phase diagram of the extended NK model in
the canonical ensemble with Δ = −2.0. Solid and dashed
lines denote the first- and second-order PT lines, respec-
tively, in this and the other phase diagrams. The second-
order transition line ends at the canonical tricritical point
(CTP), while the first-order transition line between two fer-
romagnetic states ends at the critical point (CP)

SF and F. Due to the existence of the critical point
and the absence of usual second-order phase transition
paths, the transition between SF and F can be con-
tinuous in the magnetization, as paths can connect the
two states without intersecting the red first-order phase
transition line in the (K,T ) plane. The coordinates of
significant points for Δ = −2 are: the canonical tricrit-
ical point (K � −2.160, T � 0.154) and the critical
point (K � −1.282, T � 0.099).

The overall trends of the transition lines’ movement
are also worth analyzing, as shown in Fig. 3a. Along
with Δ increases, the typical structure of the phase dia-
gram is preserved in this region Δ < Δ1 despite that
the second-order transition line becomes steeper. Addi-
tionally, the two separate lines (left and right) move
closer to the center K = −0.5. Phase diagrams show
that the two lines meet together in the next region.

Another property that deserves analysis of the PT
lines is re-entrant phase transition, which appears close
to the transition point of the ground state AF and SF.
Fig. 3b exhibits a typical re-entrant phase transition.
When −0.517 � Kr < K < −0.5, the system under-
goes two phase transitions form AF to SF and to AF
again by increasing T . In fact, the first-order re-entrant
phase transition exists for Δ < Δr � −0.2192, whereas
its strucure is not the same in different types of phase
diagram for Δ in other regions. So in this region of
Δ, all the left first-order transition lines contain a re-
entrant phase transition segment, though it may be not
obvious in phase diagrams for smaller Δ.

3.2.2 −0.25 = Δ1 ≤ Δ ≤ Δ2 � −0.2188

In this region, the phase diagram becomes more com-
plicated with the existence of a triple point (TP). The
behavior changes at the boundary value Δ = Δ1 =

(a)

(b)

Fig. 3 a (K,T ) phase diagram of the extended NK model
corresponding to three values of Δ: −2.0,−0.8,−0.26,
respectively. The black solid dots at the end of three red
transition lines are critical points (CP) and the others are
canonical tricritical points (CTP), related to different Δ. b
Partial enlargement of the phase diagram for Δ = −0.26.
Re-entrant phase transition can be seen clearly on the left
first-order phase transition line

−0.25 (Fig. 4a), where the ground state is a triple point
and the two first-order phase transition lines, converge
exactly there.

For Δ larger than the boundary, we choose Δ =
−0.23 as a sample case to illustrate the rich features
of the system in this region. As shown in Fig. 4b, the
first-order line starts at (K = −0.5, T = 0) and bifur-
cates at the triple point (TP). The inset in Fig. 4b
shows the regional enlargement near the triple point.
The right red branch of the two first-order lines ter-
minates at the critical point (CP), while the other, as
before, ends at the canonical tricritical point (CTP)
where it meets the second-order line. The coordinates
of relevant points for Δ = −0.23 are: the canonical
tricritical point (K � −0.428, T � 0.255), the triple
point (K �= −0.496, T � 0.084) and the critical point
(K �= −0.484, T � 0.102).
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(b)

(a)

Fig. 4 (K,T ) phase diagram of the extended NK model in
the canonical ensemble. a Δ = −0.25; b Δ = −0.23, three
phase transition lines near the triple point (TP) is further
zoomed in the inset

For some specific situation like K = −0.497, the sys-
tem undergoes three phase transitions when the tem-
perature increases. The plots of the magnetization m
as a function of temperature T and the temperature T
as a function of the energy per spin ε can give a better
demonstration. It can be seen in Fig. 5a that the mag-
netization steps are from close to 1 (ferromagnetic state
F) to 0, then jump to different values near 0.6 (stripe
ferromagnetic state SF) and go back to 0 finally, with
T increasing. The canonical caloric curve is shown in
Fig. 5b where red horizontal lines denote three phase
transitions of the system. Since all phase transitions are
first order, the magnetization changes abruptly and the
energy jumps in the caloric curve.

As Δ gets larger, the triple point (TP) moves up to
the right and the critical point (CP) to the left and
down in the (K,T ) plane. When Δ reaches the other
boundary value Δ2 � −0.2188, the two meet in one
point.

(a)

(b)

Fig. 5 Two canonical curves for Δ = −0.23 and K =
−0.497. a The magnetization m vs. the temperature T . b
The temperature T vs. the energy per spin ε

3.2.3 Δ > Δ2 � −0.2188

In this range of Δ, the phase diagram is normal and
similar to that of the ordinary NK model. As shown in
Fig. 6, the position of the first- and second-order phase
transition lines and the canonical tricritical points
(CTP) vary depending on different Δ, while the phase
diagram has the same form apart from that. By increas-
ing Δ, both the two transition lines move upward.
Moreover, the first-order transition line always starts
at (K = −0.5, T = 0), which is determined by ground
state shown in Fig. 1.

4 Conclusion

In this paper, we have studied the extended spin-
1 Nagle–Kardar model with an additional nearest-
neighbor biquadratic coupling. The partition function

123



190 Page 6 of 7 Eur. Phys. J. B (2022) 95 :190

Fig. 6 (K,T ) phase diagram of the extended NK model
corresponding to different values of Δ: −0.2, 0, 0.2, 0.8,
2.0 respectively. Black solid dots at the intersection of first-
and second-order transition lines are the canonical tricritical
points (CTP)

of the model and various properties in the phase tran-
sitions and phase diagrams pertaining to the canonical
ensemble have been investigated analytically. Though
the phase diagram should be represented in 3-
—dimensional plane for two changeable parameters in
the Hamiltonian, we fix the value of nearest-neighbor
biquadratic coupling parameter Δ for the sake of con-
venience and better comparison with the ordinary NK
model.

Three regions are separated by Δ based on the char-
acteristics of the phase transition and phase diagram.
For Δ < Δ1 = −0.25, the phase diagram has two sep-
arate transition lines. One of them has the structure
similar to that of the ordinary model except for the
re-entrant phase transition near the transition point of
two ground state AF and SF, while the other one is a
simple first-order phase transition line. When −0.25 =
Δ1 ≤ Δ ≤ Δ2 � −0.2188, the triple point connect-
ing three different first-order lines exists in the phase
diagram and re-entrant phase transition remains. Thus,
the system can undergo three phase transitions for spe-
cific parameters while T increases. The phase diagram
has the same form as that of the ordinary model for
Δ > Δ2 � −0.2188, since the extra first-order transi-
tion line disappears.

In summary, the additional nearest-neighbor
biquadratic interaction in the Hamiltonian has a sig-
nificant effect on the system compared to the ordinary
NK model. The two most prominent and distinctive
phenomena of the new system are the new stripe ferro-
magnetic state and re-entrant phase transition. In the
Hamiltonian, the antiferromagnetic nearest-neighbor
coupling distinguishes between the spins pointing
upward or downward. However, the contribution to the
biquadratic interaction of the two non-zero spins is
the same in the spin-1 system. Therefore the differ-
ence between the two short-range interactions gener-

ates the new state and complex phase transitions in the
first and second ranges of Δ. For Δ in the third range,
the impact of the biquadratic interaction is fading and
the system gradually resembles the original one, as the
sum of squared terms is non-negativity in the added
coupling. In terms of re-entrant phase transition, the
range of parameters in the Hamiltonian corresponding
to the occurrence of re-entrance is quite narrow and
usually difficult to be observed. A rough estimate is
that the re-entrant phase transition no longer occurs
when Δ > −0.219.

The new model leads to a better general understand-
ing of competition with different forms of interactions at
different scales. We can believe that in higher dimen-
sional spin lattices the additional coupling and corre-
sponding extended NK model will present richer phase
behaviors. Moreover, it would be quite interesting to
consider the solution of the extended model in the
microcanonical ensemble and on the spin-S case where
S is higher than one.
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