
Eur. Phys. J. B (2022) 95 :134
https://doi.org/10.1140/epjb/s10051-022-00397-8

THE EUROPEAN
PHYSICAL JOURNAL B

Regular Article – Solid State and Materials

Fluxon dynamics in long Josephson junctions with
nontrivial current-phase relation
A. Shutovskyi1,a , V. Sakhnyuk1,b , and Y. Zolotaryuk2,c

1 Lesya Ukrainka Volyn National University, 13 Voli Avenue, Lutsk 43025, Ukraine
2 Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14-b Metrologichna street,

Kyiv 03143, Ukraine

Received 8 June 2022 / Accepted 6 August 2022 / Published online 23 August 2022
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany,
part of Springer Nature 2022, corrected publication 2022

Abstract. A novel second-order partial differential equation that describes the phase dynamics in the long
Josephson junction and takes into account the flow of unpaired electrons across the junction is proposed.
It has the form of the modified sine-Gordon equation with the nontrivial current–phase relation. The
spatial behavior of the penetrated magnetic flux quantum (Josephson vortex or fluxon) is analyzed for the
different values of the insulating layer transparency. The proposed equation of motion is used to investigate
the dependence of the equilibrium fluxon velocity on the constant bias current for the different values of the
insulating layer transparency. The self-consistent approach where the dissipation coefficient also depends on
the layer transparency is applied. The resulting current–voltage characteristics (CVCs) have demonstrated
better fluxon mobility for smaller values of the transparency coefficient.

1 Introduction

The SIS (superconductor/insulator/superconductor)
tunnel junction is a superconducting structure contain-
ing a thin insulator film placed between two massive
superconductors. Existence of the dissipationless cur-
rent [1–4] flowing through a SIS tunnel junction is one
of the most remarkable phenomena in superconductiv-
ity. The value of this current depends on the difference
ϕ = ΘL − ΘR between the phases ΘL,R of the macro-
scopic wave functions of the left and right superconduc-
tors (also known as Josephson phase). In the simplest
case, this dependence is considered to be sinusoidal [5].
The sinusoidal law is used in the main textbooks [3,4]
and in the majority of scientific papers on the Joseph-
son effect. In reality, the phase difference ϕ adjusts to
an absolute value of a dissipationless current flowing
through the SIS type tunnel junction connected to a cir-
cuit with a current source. In general, when the Joseph-
son junction is placed in an external magnetic field, the
phase difference ϕ depends on the spatial coordinates.
This dependence is governed by the so-called Ferell–
Prange equation or stationary sine-Gordon equation
[6]. It is a second-order differential equation containing
a physical quantity λj called a Josephson penetration
depth. This characterizes a typical depth of a magnetic
field penetration into the Josephson junction.
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The critical current IC of the junction can also be
less than the current IB set by an external source. As a
result, a voltage drop across the junction appears and
the Josephson phase ϕ becomes a time-dependent func-
tion [6]. In this case, the phase difference ϕ evolution
is a solution of a nonstationary sine-Gordon equation
[7,8]. This equation is completely integrable with the
help of the inverse scattering transform [7]. In addition
to the Josephson penetration depth λj , the so-called
Swihart velocity c̄ appears as a maximal velocity of the
electromagnetic waves in the junction. The nonstation-
ary sine-Gordon equation supports topological soliton
solutions that describe the penetration of the external
magnetic field into the junction in the form of individual
vortices (fluxons) carrying a magnetic flux quantum.
Fluxons are topologically protected against small per-
turbation and their remarkable stability leads to their
application in various quantum computing applications
[11–13]. Although a huge number of publications have
been already devoted to the fluxon dynamics in the
Josephson junctions, most of those papers consider the
supercurrent–phase IS (ϕ) dependence to be sinusoidal
[7–9].

Within the last 2 decades, the non-sinusoidal cur-
rent–phase relations have been studied for different
variants of the superconducting tunnel junctions [14–
16]. For example, the biharmonic current–phase rela-
tion can appear in the SFS (superconductor/ferro-pg
magnet/superconductor) and SIFS (superconductor/
insulator/ferromagnet/superconductor) junctions [17,
18] and in asymmetric arrays of three-junction SQUIDs
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[19]. Such a relation brings about new interesting phe-
nomena such as relativistic time dilation [19], radiation-
less fluxon propagation [20,21], or significant change
of the escape rate [22]. A more complex current–phase
relation appears in [23] for the SIS type junctions and in
[24] for the SISIS type junctions that contain a two-gap
superconductor.

In this paper, we present a novel equation for the
Josephson phase dynamics with the non-sinusoidal cur-
rent–phase relation. Such a nontrivial current–phase
relation can appear in the problems where the so-called
depairing effects [25,26,28,29] are important. The influ-
ence of the insulating layer transparency on the mathe-
matical structure of the current–phase relation in pure
SIS superconducting tunnel junctions was investigated
in [26,27]. A Josephson junction with an arbitrary con-
centration of nonmagnetic impurities was considered in
[29]. The aim of this paper is to investigate the proper-
ties of Josephson vortices (fluxons) of the nonstation-
ary modified sine-Gordon equation with the nontrivial
current–phase relation obtained in [29]. Moreover, we
would like to approach in the self-consistent way the
fluxon dynamics in the presence of dc bias and normal
electron flow. The latter will bring a dissipative term
into the sine-Gordon equation that contains a coeffi-
cient inversely proportional to the junctions resistance
which naturally must depend on the electron transmis-
sion ratio. This dependence will be taken into account
when the fluxon velocity is computed as a function of
the dc bias.

This paper is organized as follows. The next section
describes the model and the basic equations of motion.
In Sect. 3, the properties of the fluxon solutions are dis-
cussed. The dissipative and dc-biased fluxon dynamics
is studied in Sect. 4. Conclusions are given in the last
section.

2 Model and basic equations

2.1 Derivation of the current–phase relation

In this paper, the non-sinusoidal dependence of the
supercurrent IS on the Josephson phase ϕ obtained in
paper [29] will be used

IS(ϕ) = IC

√
1 − ε2

sin ϕ

1 − ε cos ϕ
. (1)

Here, the dimensionless parameter ε (0 < ε < 1)

ε =
1

√
1 + 2τ2q2∞

(2)

measures the deviation of the current–phase relation
from the sinusoidal form. We need to define the param-
eters τ and q∞ that appear in Eq. (2). It is worth-
while to discuss briefly the origin of this formula. In
our investigation, we will consider an SIS type junction

without impurities. The dimensionless parameter τ was
obtained in papers [26,29] and has the following form:

τ2 =
[

ξ0
ξ (T )

]2
=

12
7ζ (3)

(
1 − T

Tc

)
, (3)

where the coherence length is given by ξ0 = vF /2πTc,
vF is Fermi velocity, Tc is superconducting critical
temperature, and ξ (T ) is the characteristic length of
the Ginzburg-Landau theory. The constant ζ (3) ∼=
1.2 is defined by the Riemann zeta function ζ (s) =∑+∞

n=1 n−s. It is important to note that the nontrivial
current–phase relation (1) is valid for T � Tc.

The constant q∞ [26,29] is defined by the following
expression:

q∞ =
21ζ (3)

π2

⎛

⎝
1∫

0

y2R (y) dy

⎞

⎠

2⎛

⎝
1∫

0

yD (y) dy

⎞

⎠

−1

+
π4

28ζ (3)

1∫

0

y3R (y) dy. (4)

The insulator film is modelled by the potential U (z) =
U0δ (z). The function D (y) = y2/

[
y2 + (mU0/pF )2

]

defines the transparency of the insulating layer as a
function of the electron incidence angle θ on the IS
interface (y = cos θ). Here, pF is the Fermi momen-
tum and m is the electron mass. The function R (y) =
1 − D (y) is the reflection coefficient. We introduce the
transmission coefficient D ≡ D (1) for the electrons
incident in the normal direction of the IS interface.
Hence, the following identity takes place: (mU0/pF )2 =
1/D−1. After computing the three integrals in Eq. (4),
we arrive to the final expression for the constant q∞

q∞ =
π4

56ζ (3)

(
1
D

− 1
)

×
[
1 +

(
1
D

− 1
)

ln (1 − D)
]

+
42ζ (3)

π2

(
1
D

− 1
)3

×

{√
D

1 − D
− arctan

√
D

1 − D

}2

1 +
(

1
D

− 1
)

ln (1 − D)
. (5)

As a result, we have a functional dependence that
links the parameter ε = ε (D) used in Eq. (1) and the
transparency of the insulating barrier D. As can be
seen from Fig. 1, it is a monotonic increasing function
defined over the interval ε ∈ [0, 1] with ε (0) = 0 and
ε (1) = 1. Because of Eq. (3), this function depends
also on the ratio T/Tc. If the temperature is close to
critical, this dependence is sufficient if D � 1/2. For
D � 0.8, the parameter ε almost reaches its saturation
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Fig. 1 Parameter ε as a function of the [see Eqs. (1–3)
and (5)] barrier transparency D for three different values of
temperature

value ε = 1. We will keep T = 0.98 Tc throughout the
paper.

2.2 Modified sine-Gordon equation

We are interested in the magnetic flux dynamics in the
large Josephson junction. In this case, the Josephson
phase depends both on space and time. For the non-
trivial current–phase relation (1), it is governed by the
modified sine-Gordon equation

ϕxx − 1
c̄2

ϕtt −
√

1 − ε2

λ2
j

sin ϕ

1 − ε cos ϕ
= 0, (6)

where λj is the Josephson penetration depth and c̄
is the Swihart velocity. The subscripts x and t corre-
spond to the space and time differentiation, respec-
tively. It should be noted that various modifications
of the sine-Gordon equation are not uncommon in
physics beyond the Josephson junctions. They have
been used to describe the dynamics of dislocations [30],
spin waves in 3He [31], or nonlinear electromagnetic
waves in Dirac-like superlattices [32]. It is convenient
to introduce the dimensionless variables x → x/λj

and t → c̄t/λj . As a result, we obtain the following
dimensionless second-order partial differential equation
(PDE):

ϕtt − ϕxx = −
√

1 − ε2
sin ϕ

1 − ε cos ϕ
= −U ′ (ϕ) , (7)

where the auxiliary potential U (ϕ)

U (ϕ) =
√

1 − ε2

ε
ln
(

1 − ε cos ϕ

1 − ε

)
, (8)

has been introduced to simplify the analysis of this
equation. This potential is presented in Fig. 2. The
parameter ε varies within the interval [0, 1]. In the limit
ε → 0, the standard sine-Gordon equation is restored:

Fig. 2 Potential U (ϕ) [see Eq. (8)] for different values of
ε

lim
ε→0

U (ϕ) = 2 sin2 (ϕ/2). In the limit ε → 1, the wells

of U (ϕ) become more narrow and barrier height ΔU =
U (π)−U (0) =

√
1 − ε2 ln [(1 + ε) /(1 − ε)] /ε tends to

0. The Josephson plasmon frequency is given by the fol-
lowing equation ω (q) = {[(1 + ε) / (1 − ε)]1/2 + q2}1/2.
Here, the plasma frequency in the long wave limit ω (0)
increases when ε increases.

3 Solutions of the modified sine-Gordon
equation

We have introduced the modified sine-Gordon equa-
tion (7) that describes the fluxon dynamics in the long
Josephson junctions with the nontrivial current–phase
relation (1). We are interested in the particular case
of the traveling wave solutions ϕ = ϕ (x − V t) ≡ ϕ (ξ)
that propagate with the constant dimensionless veloc-
ity V . As a result, the second-order PDE turns into
the ordinary differential equation (ODE) with respect
to the new spatial variable ξ = x − V t

(
1 − V 2

) d2ϕ

dξ2
= U ′ (ϕ) =

√
1 − ε2

sin ϕ

1 − ε cos ϕ
. (9)

This equation can be interpreted as a newtonian equa-
tion of motion for the particle with mass 1 − V 2 > 0
moving in the potential −U (ϕ). It is known that the
magnetic flux quantum in long Josephson junctions is
carried by topological solitons (fluxons). Solitons are
spatially localized waves that should satisfy the follow-
ing boundary conditions:

lim
ξ→−∞

ϕ (ξ) = 0, lim
ξ→+∞

ϕ (ξ) = ±2π, lim
ξ→±∞

dϕ

dξ
= 0.

(10)
Here, the signs “+” and “−” corresponds to a fluxon
or antifluxon, respectively. Without loss of generality,
we will focus only on fluxons. As a result, the modified
sine-Gordon equation (9) can be rewritten as a first-
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order ODE

(
dϕ

dξ

)2

=
2

1 − V 2
U (ϕ) =

2
1 − V 2

√
1 − ε2

ε

× ln
(

1 − ε cos ϕ

1 − ε

)
. (11)

In the limit ε � 1, the right side of a first-order dif-
ferential equation (11) can be expanded in the Taylor
series

(
dϕ

dξ

)2

=
2
√

1 − ε2

1 − V 2
{1 − cos ϕ

+
+∞∑

n=1

1 − (cos ϕ)n+1

n + 1
εn

}

. (12)

The limiting case of an infinitesimal dielectric layer
transparency means that D � 1. In this particular case,
a formula (5) for the constant q∞ can be replaced by
the following asymptotics:

q∞ ∼= 28ζ (3)
3π2

1
D

, D � 1. (13)

Thus, the constant q∞ tends to infinitely large val-
ues, and, consequently, the dimensionless parameter ε
is infinitesimally small [see Eq. (2)]. As a result, the
differential equation (12) can be simplified. If only the
lowest order of ε in expansion (12) is taken into account
we end up with the standard sine-Gordon equation
ϕtt − ϕxx + sin ϕ = 0. The soliton solutions of this
equation are well known [7]: ϕ (x, t) = 4 arctan (exp z),

z = ±x − x0 − V t√
1 − V 2

.

Taking into account the O (ε) terms yields the ODE

(
dϕ

dξ

)2

=
2 (1 − cos ϕ)

1 − V 2

(
1 + ε

1 + cos ϕ

2

)
. (14)

which is equivalent to the double sine-Gordon equation.
The solution of this equation is well known ([31])

ϕ(x, t) = −2 arctan

⎡

⎢
⎢
⎣

√
1 + ε

sinh
(

±x − x0 − V t√
1 − V 2

√
1 + ε

)

⎤

⎥
⎥
⎦ .

(15)
For the further expansion, the O (

ε2
)

terms should be
taken into account. That will lead to the triple sine-
Gordon equation and so on.

Let us now assume that D � 1. In this particular
case, a formula (5) for the constant q∞ can be replaced
by the following asymptotics:

q∞ ∼= π4

56ζ (3)
(1 − D) , D � 1. (16)

Table 1 Values of the barrier transparency D and the
dimensionless parameter ε to be used in Figs. 3-4

D 0.01 0.2 0.5 0.8

ε 0.037 0.67 0.96 0.997

Fig. 3 Spatial distribution of the phase difference ϕ for
one fluxon in the long Josephson junction with the different
values of the barrier transparency D. The temperature is
T = 0.98 Tc and the dimensionless fluxon velocity equals
V = 0.5

Unfortunately, it is impossible to solve Eq. (11)
explicitly for an arbitrary ε. Therefore, we have to use
numerical methods. This have been done for several val-
ues of ε that include the extreme values and the inter-
mediate ones. These values are also given in Table 1.

The respective coordinate dependence of the Jose-
phson phase for the fluxon solutions with different ε is
given in Fig. 3. The penetrated magnetic field distri-
bution H (ξ) = H0dϕ/dξ in the fluxon core is shown
in Fig. 4. Here, we have the quantity H0 = �/2eμ0λjΛ
that contains the total penetration depth Λ = λ1+λ2+
d, where λ1,2 are the London penetration depth for the
superconductors and d is the thickness of the insulating
area.

These figures allow us to make several conclusions. (i)
As the parameter ε grows, the approximate width of the
fluxon increases. This increase is well seen in the limit
ε → 1, but is insignificant otherwise. (ii) Significant
departure from the sinusoidal law makes the fluxon bor-
ders more sharp. In particular, the phase distribution
for ε � 1 is almost linear in the fluxon core. The mag-
netic field distribution in the limit ε → 1 is more box-
like. For small and intermediate values of ε, the fluxon
borders are rather blurred. At the same time, the max-
imal value of the penetrated magnetic field H (ξ = 0)
decreases.

Considering the asymptotics (16), we can see that
the constant q∞ tends to infinitely small values when
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Fig. 4 Spatial distribution of the dimensionless magnetic
field H/H0 = dϕ/dξ for one fluxon in the long Josephson
junction with the different values of the barrier transparency
D. The system parameters are the same as in Fig. 3

D � 1. This means that the values of the dimensionless
parameter ε are close to 1. Due to the fact that in the
limit ε � 1, the potential barrier U (ϕ) becomes sig-
nificantly flat we can approximate it around the value
ϕ = π

U (ϕ) ≈ U (π) +
U ′′ (π)

2
(ϕ − π)2

=
√

1 − ε2

ε
ln
(

1 + ε

1 − ε

)
−
√

1 − ε

1 + ε

(ϕ − π)2

2
.

(17)

Taking into account the numerical results shown in Fig.
3 where the phase distribution in the fluxon core is
almost linear, we restrict ourselves only with the con-
stant term in (17). It should also be mentioned that
in the limit ε → 1, or, alternatively, δ ≡ 1 − ε → 0,
the constant term in the expansion (17) decreases as
δ1/2 ln (1/δ), while the quadratic term decreases faster,
as δ1/2. The first-order differential equation (11) in the
fluxon core can be replaced by the more simplified ver-
sion

dϕ

dξ
=

√
2U (π)
1 − V 2

=

√
2
√

1 − ε2

ε (1 − V 2)
ln
(

1 + ε

1 − ε

)
≡ C (ε) ,

(18)
which yields the following solution: ϕ (ξ) = C (ε) ξ + π.
The fluxon slope is defined by the constant C (ε) and
it decays as δ1/4

√
ln (1/δ) as δ = 1 − ε → 0. Elsewhere

away from the vortex core, we assume the linear approx-
imation of Eq. (9) around the minima of the potential
U . Hence, the phase distribution in the fluxon tails will
be exponential. Finally, the whole approximate solution
can be written as

ϕ(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A exp
[(

1+ε
1−ε

) 1
4 ξ√

1−V 2

]
, ξ < −ξi,

C(ε)ξ + π, |ξ| < ξi,

2π − A exp
[
−
(

1+ε
1−ε

) 1
4 ξ√

1−V 2

]
, ξ > ξi,

(19)
where the parameters A and ξi are obtained from the
boundary conditions ϕ(ξi +0) = ϕ(ξi − 0), ϕ′(ξi +0) =
ϕ′(ξi − 0). The fluxon core is located in the interval
[−ξi, ξi]. From the above boundary conditions, we get
the fluxon halfwidth

ξi = −
√

1 − V 2

(
1 − ε

1 + ε

) 1
4

+ π

[
2

1 − V 2

√
1 − ε2

ε
ln
(

1 + ε

1 − ε

)]− 1
2

, (20)

and the parameter A

A = C(ε)
√

1 − V 2

(
1 − ε

1 + ε

) 1
4

e
( 1+ε

1−ε )
1
4 ξi√

1−V 2

= χ exp
(

π

χ
− 1

)
, χ =

√
2(1 − ε)

ε
ln
(

1 + ε

1 − ε

)
.

(21)

One can observe from Eq. (20) that ξi > 0 if ε → 1,
because the first term in that equation becomes negli-
gibly small, while the second one increases. The value
of the fluxon halfwidth obtained from Eq. (20) yields
ξi ≈ 2.74 for the parameters of Fig. 3 which is close to
the numerical result.

4 Dc-driven fluxon dynamics and the
current–voltage characteristics

The physically realistic case should take into account
the flow of unpaired electrons across the junction. Also,
the junction can be biased by the spatially uniform dc
bias IB . In this case, the evolution equation for the
Josephson phase should be rewritten as

ϕtt − ϕxx +
√

1 − ε2
sin ϕ

1 − ε cos ϕ
+ αϕt + γ = 0.

(22)

The dimensionless parameter α = �ωj/[2eR (D) IC ] is
responsible for the normal electron contribution to the
total current and γ = IB/IC is the dimensionless exter-
nal current. The Josephson plasma frequency is con-
nected to the Josephson penetration depth and Swi-
hart velocity: ωj = c̄/λj . The dimensionless parame-
ter α ∝ R−1 (D) depends on the transmission ratio D.
Since D and ε are mutually and uniquely connected
through Eqs. (2),(3) and (5) [see also Fig. 1], we may
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write α = α (ε). The junction resistance as a function
of D was obtained in [33]

R(D) =
1

e2vF N(0)
1∫

0

zD (z) dz

,

1∫

0

zD(z)dz =
1
2

[
1 +

(
1
D

− 1
)

ln (1 − D)
]

. (23)

The integral in (23) is a monotonically increasing func-
tion that varies from 0 at D = 0 when there is no
normal electron transmission to 1/2 at D = 1 (max-
imal transmission). Thus, the damping parameter α
varies from α (ε = 0) = 0 till some constant α1 ≡
α (ε = 1) = �ωjevF N (0) /4IC . This constant α1 will
be considered as some maximal value which is attained
when transmission is maximal. For our computations,
we will choose it to be α1 = 0.2 as it corresponds to
the most common order of the dissipation parameters
in long Josephson junctions [8].

The driven and damped sine-Gordon equation (22)
has been studied in detail first in Ref. [7]. If we are inter-
ested in the fluxon dynamics on large times t → +∞,
we can use the energy balance approximation discussed
in the above paper. As a result, we arrive to the equa-
tion for the junction energy E time evolution

dE

dt
= −γ

∫ +∞

−∞
ϕtdx − α(ε)

∫ +∞

−∞
ϕ2

t dx, (24)

E =
∫ +∞

−∞

[
ϕ2

t + ϕ2
x

2
+ U (ϕ)

]
dx. (25)

We suppose that there is only one fluxon in the junc-
tion and it satisfies the boundary conditions (10). Thus,
the first integral in (24) reduces to ±2πγV . The sign
“+” corresponds to a fluxon and “−” to an antifluxon.
Without the loss of generality, we will consider only
fluxons. At large times t � α−1 (ε), the system will
settle on the attractor that corresponds to the fluxon
moving with some equilibrium velocity V∞. The dissi-
pative energy losses due to the normal electron tunnel-
ing [second integral in (24)] will be compensated by the
energy input due to dc bias. Hence, the total energy
must be constant, dE/dt = 0. As a result, using Eq.
(11) one can obtain from Eq. (24) the following equa-
tion for the equilibrium velocity V∞:

2πγV∞ = α(ε)

+∞∫

−∞
ϕ2

t dx = α(ε)V 2
∞

2π∫

0

ϕξdϕ

= α(ε)V 2
∞

√
2
√

1 − ε2

ε(1 − V 2∞)

2π∫

0

√

ln
(

1 − ε cos ϕ

1 − ε

)
dϕ.

(26)

Fig. 5 Dependence of the equilibrium fluxon velocity on
the dc bias for ε = 0.037, ε = 0.67, ε = 0.97 and ε = 0.997.
The inset illustrates the function Φ (ε) [see Eq. (28)]

This equation can be easily solved with respect to V∞.
Thus, the equilibrium velocity expression reads

V∞ =
sign (γ)

√

1 +
[
4α(ε)
πγ

Φ(ε)
]2

, (27)

where the function Φ (ε) is given by the following inte-
gral:

Φ (ε) =
1

4
√

2

√√
1 − ε2

ε

2π∫

0

√

ln
(

1 − ε cos ϕ

1 − ε

)
dϕ

→
{

1 + ε
6 + O(ε2), ε → 0,

0, ε → 1.
(28)

If ε → 0 (in the usual model of the driven damped
Josephson junction), it can be seen that the result (27)
for the equilibrium velocity V∞ reduces to the well-
known McLaughlin–Scott formula [7].

The equilibrium fluxon velocity as a function of the
dimensionless bias is presented in Fig. 5.

The auxilliary function Φ (ε) defines the behavior of
the slope of the V∞ (γ) in the limit |γ| � 1, V∞ ≈
πγ/4α (ε) Φ (ε). As one can see from the inset of Fig.5,
this function Φ has a maximum at ε � 1. It is slightly
larger than 1 for almost all values of ε except some
small interval when ε → 1. Within this interval, the
function Φ (ε) sharply decreases to zero. In the limit
of small transparency, the superconductivity is strong
and the dissipative effects due to the normal electron
flow are weak. Thus, the product α (ε) Φ (ε) → 0 and
the slope of the velocity dependence is large. Hence,
the fluxon is highly mobile. This occurs in the standard
sine-Gordon limit. As ε increases, the fluxon velocity
decreases, because the superconductivity is significantly
suppressed. In the high transparency limit (ε → 1)
Φ (ε) → 0, we again must observe increase of the fluxon
velocity. It should happen for very high transparencies
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D > 0.99 which are very unlikely to be achieved. This
happens, because the fluxon energy (|γ| � 1, α � 1)
which is given by the equation

E (V∞) ≈ 8
√

1 − V 2∞
=

2πγ

α (ε) Φ (ε)

√

1 +

[
4α (ε)

πγ
Φ (ε)

]2

,

(29)
diverges as Φ (ε) → 0. Although the maximum of the
penetrated magnetic field decreases with ε → 1 as sho-
wn in Fig. 4, the fluxon size drastically increases. Since
the real Josephson junction length studied in experi-
ments hardly exceeds 30λj , it is very unlikely that such
large fluxons can ever be studied. We conclude that the
fluxon velocity increase in the limit ε → 1 is a mathe-
matical artifact irrelevant for real physical setups.

5 Conclusions

The modified sine-Gordon equation that describes the
fluxon dynamics in the long Josephson junctions with
the nontrivial current–phase relation is derived. This
relation originates, because the depairing effects are
taken into account. The dimensionless parameter ε
measures the deviation from the standard sinusoidal
current–phase relation. This parameter is related to
the normal electron transmission coefficient through
the insulating barrier, D, in such a way that for the
zero transparency, we are in the sine-Gordon limit,
while for high transparency, the current–phase rela-
tion is strongly non-sinusoidal. Since it is not possible
to solve explicitly the resulting modified sine-Gordon
equation, the numerical methods are used to analyze
the fluxon (Josephson vortex) spatial behavior. The
analytical results can only be obtained in the case of
the small dielectric layer transparency. In that case,
the modified sine-Gordon equation is reduced to the
standard sine-Gordon or double sine-Gordon equation.
In the case of high transparency, the fluxon shape is
strongly distorted as compared to the soliton solution
of the standard sine-Gordon equation. The penetrated
magnetic field distribution has smaller amplitude in the
fluxon center, but the fluxon width is larger and its bor-
ders are rather sharp.

The dependence of the fluxon velocity on the uni-
formly applied dc bias is derived, as well. We have
developed the self-consisted approach when the dissipa-
tion constant in the modified sine-Gordon equation also
depends on the transmission coefficient. In the small
transparency limit, the superconducting effects are stro-
ng, and as a result, the fluxon is highly mobile. As the
transparency increases, the role of the normal electron
current increases, and, consequently, the superconduct-
ing effects are suppressed. This leads to decreasing of
the fluxon velocity.
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