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Abstract. We study the thermodynamic quantities in the system of the N independent harmonic oscillators
with different frequencies in the Tsallis statistics of the entropic parameter q (1 < q < 2) with escort
average. The norm equations are derived, and the physical quantities are calculated with the physical
temperature. It is found that the number of oscillators is restricted below 1/(q − 1). The energy, the Rényi

entropy S
(R)
q , and the Tsallis entropy S

(T )
q are obtained by solving the norm equations approximately at

high physical temperature and/or for small deviation q − 1. The energy is q-independent at high physical
temperature when the physical temperature is adopted, and the energy is proportional to the number
of oscillators and physical temperature at high physical temperature. The form of the Rényi entropy is
similar to that of the von-Neumann entropy, and the Tsallis entropy is given through the Rényi entropy.
The physical temperature dependence of the Tsallis entropy is different from that of the Rényi entropy. The
Tsallis entropy is bounded from the above, while the Rényi entropy increases with the physical temperature.
The ratio of the Tsallis entropy to the Rényi entropy is small at high physical temperature. The relation
between the physical temperature Tph and the temperature T (the inverse of the Lagrange multiplier) is
obtained, and the quantity as a function of T and q can be obtained through Tph. We calculate the free

energy F
(R)
q which is defined with Tph and S

(R)
q and the free energy F

(T )
q which is defined with T and S

(T )
q .

The relation between ∂F
(R)
q /∂Tph and S

(R)
q and the relation between ∂F

(T )
q /∂T and S

(T )
q are shown.

1 Introduction

The various statistics have been proposed to describe
the phenomena which show power-like distributions.
For example, the power-like probability distribution
appears when the stochastic equation is solved [1–4].
An extension of the Boltzmann–Gibbs statistics is the
Tsallis statistics, and the statistics has been applied
in various branches of science [5]. The escort average
is often adopted to calculate the physical quantities
in the Tsallis statistics. The Tsallis statistics has the
entropic parameter q, and the statistics approaches the
Boltzmann–Gibbs statistic as q approaches one.

The entropic parameter q is often restricted. The nor-
malizability of the probability requires that q is less
than two [6]. The parameter q is also restricted because
physical quantities are restricted [6–9]. For example, the
energy density should be finite and the number of par-
ticles should be positive, and these requirements show
that the maximum value of q is smaller than two. The
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limitation of q was also derived using the conjugate vari-
ables theorem [10].

Simple systems have been adopted to study the
effects of statistics. The classical gas model was adopted,
and it was found that the energy is proportional to the
number of particles and the physical temperature [11–
20] in the Tsallis statistics. It was also found that the
number of the particles are restricted [12]. The thermo-
dynamic quantities for a classical harmonic oscillator
were also calculated in the Tsallis statistics with escort
average. The partition function was calculated and the
energy was obtained [21].

The calculations of the thermodynamic quantities
for the harmonic oscillators are required in the Tsallis
statistics. A field is decomposed into harmonic oscil-
lators with different frequencies to calculate physical
quantities. The results for the harmonic oscillators with
different frequencies in the Tsallis statistics will be help-
ful to calculate physical quantities in various systems.

The system of harmonic oscillators with different
frequencies should be studied in the Tsallis quantum
statistics by introducing the physical temperature Tph

which is a function of the temperature T and the
entropic parameter q, because a system of harmonic
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oscillators is the base of calculations and because the
physical temperature may be the observed tempera-
ture of the system. It is better to represent the physi-
cal quantities with Tph and q, though calculations may
not be easy for the power-like distribution, because the
distribution of N independent harmonic oscillators is
not decomposed into the product of the distribution of
a single harmonic oscillator even when the oscillators
are independent, where N is the number of harmonic
oscillators. The physical quantity as a function of Tph

and q can be represented with T and q when Tph is
represented with T and q. Like the restriction for free
particles, it is also important to study the restriction
of N for independent harmonic oscillators, because the
restriction does not exist in the conventional statistics.

In this paper, we study the thermodynamic quanti-
ties in the system of the N independent harmonic oscil-
lators in the Tsallis statistics of the entropic parame-
ter q. The range of q is set between one and two in
this study. The escort average is employed to obtain
physical values. In Sect. 2, we briefly review the Tsallis
statistics. In Sect. 3, we study the N independent har-
monic oscillators with different frequencies. The norm
equations are derived, and the equations are solved
approximately. The expression of the energy is obtained
with the physical temperature. The expressions of Tsal-
lis and Rényi entropies are represented with the parti-
tion function Z. The physical temperature Tph is rep-
resented with the temperature T (the inverse of the
Lagrange multiplier) and the entropic parameter q, and
free energies are calculated. In Sect. 4, the validity of
the results in this study is discussed and the results
in this study are compared with those in the previous
studies. The last section is assigned for conclusions.

2 Brief review of the Tsallis statistics

The Tsallis statistics [5,21] is based on the Tsal-
lis entropy S

(T )
q with the entropic parameter q. The

entropy S
(T )
q is defined by

S(T )
q =

1 − Tr [ρ̂q]
q − 1

, (1)

where ρ̂ is the density operator and Tr means trace.
The expectation value (escort average) of an operator
Â, 〈Â〉, is defined by

〈Â〉 =
Tr

[
ρ̂qÂ

]

Tr [ρ̂q]
. (2)

We apply the maximum entropy principle to obtain the
density operator. The density operator ρ̂ is obtained
by extremizing S

(T )
q under the normalization condition

Tr [ρ̂] = 1 and the energy constraint:

U =
Tr

[
ρ̂qĤ

]

Tr [ρ̂q]
, (3)

where U is the energy. The density operator ρ̂ in the
Tsallis statistics with the escort average is obtained:

ρ̂ =
1
Z

(
1 − (1 − q)

β

cq
(Ĥ − U)

) 1
1−q

, (4a)

Z = Tr

[(
1 − (1 − q)

β

cq
(Ĥ − U)

) 1
1−q

]
, (4b)

cq = Tr [ρ̂q] , (4c)

where β is the inverse temperature. This statistics is
often called Tsallis-3 statistics. The partition function
Z is related to cq:

cq = Z1−q. (5)

The inverse physical temperature is given by

βph = β/cq. (6)

The physical temperature Tph is given as 1/βph. It may
be worth to mention in relation to Lagrange multipliers
that different functionals can be adopted for a given
problem in the variational method.

The thermodynamic quantities are calculated with
the above density operator for the N independent har-
monic oscillators with different frequencies in the fol-
lowing section.

3 The independent harmonic oscillators
with different frequencies

3.1 Derivation of norm equations

We attempt to derive a norm equation by calculating
cq in two ways. One way is the method using the rela-
tion cq = Z1−q and the other way is the method by
calculating cq = Tr [ρ̂q] directly. We obtain the norm
equation by equating these results.

We treat the N independent harmonic oscillators
with different frequencies. The Hamiltonian Ĥ is

Ĥ =
N∑

j=1

�ωj

(
n̂j +

1
2

)
, (7)

where n̂j is the number operator with the subscript j.
We treat the above Hamiltonian in the Tsallis statistics
of 1 < q < 2: (2 − q)/(q − 1), 1/(q − 1), and q/(q − 1)
are positive.
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We introduce a parameter Eref and calculate the par-
tition function Z from Eqs. (4b) and (7) by using the
number states:

Z =
∞∑

n1,··· ,nN=0

{
1+(q − 1)βph

(
�

2
(ω1+ · · · +ωN )−U

)

+(q − 1)βph

(
�ω1n1 + · · · + �ωNnN

)} 1
1−q

= ((q − 1)βphEref)
1

1−q

×
∞∑

n1,··· ,nN=0

(λN + a1n1 + · · · + aNnN )
1

1−q , (8)

where

λN =

1 + (q − 1)βph

(
N∑

i=1

1
2

�ωi − U

)

(q − 1)βphEref
, (9a)

aj =
�ωj

Eref
. (9b)

Equation (8) is represented with Barnes zeta function
ζB(s, α|ωN ) (see Eq. (B.10)):

Z = ((q − 1)βphEref)
1

1−q ζB (1/(q − 1), λN |aN )
aN = (a1, a2, · · · , aN ). (10)

The condition s > N for the parameters of the Barnes
zeta function in the present case is

1
q − 1

> N. (11)

This means that the number of the oscillators is
restricted. We also calculate cq directly as

cq=Tr [ρ̂q] =Z−q ((q − 1)βphEref)
q

1−q ζB (q/(q − 1), λN |aN ) .
(12)

From Eqs. (5), (10), and (12), we have the following
norm equation:

((q−1)βphEref) ζB (1/(q−1), λN |aN ) =ζB (q/(q−1), λN |aN ) .
(13)

We obtain another norm equation from Eq. (3) in the
similar way:

U =

∑N

j=1
(1 − q)�ωj

∂

∂aj
ζB(

1

q − 1
, λN |aN )

ζB( q
q−1 , λN |aN )

+
N∑

j=1

1

2
�ωj .

(14)

We attempt to obtain the physical quantities by solv-
ing the norm equations in the next subsection.

3.2 Energy and entropies

We attempt to find the expressions of physical quanti-
ties in this subsection. For λN � 1, we have the follow-
ing expressions using Eq. (B.14):

ζB (1/(q − 1), λN |aN )

∼ (q − 1)N(∏N−1

j=0
((2−q)−j(q−1))

) (∏N

j=1
aj

)
(λN )

1
(q−1) −N

,

(15a)
ζB (q/(q − 1), λN |aN )

∼ (q − 1)N(∏N−1

j=0
(1 − j(q − 1))

) (∏N

j=1
aj

)
(λN )

q
(q−1) −N

.

(15b)

In Appendix B, the approximated expression for the
Barnes zeta function is given using the approximated
expression for the Hurwitz zeta function given in
Appendix A. We use these expressions of ζB to solve
Eq. (13) approximately.

3.2.1 Expression of the energy

We attempt to calculate the energy U by solving
Eq. (13). Substituting Eqs.(15a) and (15b) into Eq. (13),
we have

U =
Tph

(q − 1)

⎛
⎜⎝1 −

∏N−1

j=0
((2 − q) − j(q − 1))

∏N−1

j=0
(1 − j(q − 1))

⎞
⎟⎠

+
N∑

i=1

�ωi

2
, N <

1
(q − 1)

. (16)

It is noted that Eq. (16) does not contain Eref . We
obtain easily

∏N−1

j=0
((2 − q) − j(q − 1))

∏N−1

j=0
(1 − j(q − 1))

= 1 − N(q − 1). (17)

By substituting the above expression into Eq. (16), we
have the following expression of U :

U = NTph +
N∑

i=1

1
2

�ωi, N <
1

(q − 1)
. (18)

Equation (18) is the well-known form of the energy U
in the Boltzmann–Gibbs statistics. It is possible to esti-
mate λN using Eq. (18):
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λN =
1 − N(q − 1)
(q − 1)βphEref

. (19)

The numerator of the right-hand side of Eq. (19) is
positive, because N(q − 1) is less than one. Therefore,
the condition λN � 1 is satisfied for (q−1)βphEref � 1:
the condition is satisfied at high physical temperature
Tph and/or for small deviation (q − 1).

The energy U is also calculated directly from Eq. (14).
Using the approximated equations (15a) and (15b), the
right hand side of Eq. (14) (R. H. S. of Eq. (14)) is

R. H. S. of Eq. (14)

=
N

1 − N(q − 1)

⎛
⎝Tph + (q − 1)

⎛
⎝∑

j=1

1
2

�ωj

⎞
⎠

−(q − 1)U

⎞
⎠ +

∑
j=1

1
2

�ωj . (20)

Therefore, we have

U = NTph +
N∑

j=1

1
2

�ωj . (21)

3.2.2 Expressions of the entropies

The Tsallis entropy S
(T )
q is represented as

S(T )
q =

1 − cq

q − 1
=

1 − Z1−q

q − 1
. (22)

The Rényi entropy S
(R)
q , which is rarely called Rényi-

like auxiliary function, is related to the Tsallis entropy:

S(R)
q =

1
1 − q

ln(1 + (1 − q)S(T )
q ). (23)

It may be worth to mention that the entropies can be
defined without applying the maximum entropy princi-
ple. This equation is represented with cq as

S(R)
q =

1
1 − q

ln cq =
1

1 − q
ln e(1−q) lnZ = ln Z.

(24)

We calculate Z approximately using Eq. (15a):

Z =
1

(∏N−1

j=0
((2 − q) − j(q − 1))

) (∏N

j=1
(βph�ωj)

)(
1 + (q − 1)βph

(
1
2

N∑
i=1

�ωi − U

)) 1
q−1−N

. (25)

Substituting Eq. (16) into Eq. (25), we obtain

Z =

( ∏N−1

j=0
(1−j(q−1))

) 1
q−1

−N

( ∏N

j=1
(βph�ωj)

)( ∏N−1

j=0
((2 − q) − j(q − 1))

) q
q−1

−N
.

(26)

We find the relation between dU and dS
(R)
q . The

Rényi entropy is given by lnZ. For the fixed N and
q, we have

dS(R)
q = d ln Z = N

dTph

Tph
. (27)

With Eqs. (18) and (27), we have

dU = NdTph = TphdS(R)
q . (28)

We also have the following expression of Z using
Eqs. (25) and (18):

Z=
1(∏N

j=1
(1−j(q−1))

) (∏N

j=1
(βph�ωj)

)
(1−N(q−1))

1
q−1 −N

.

(29)

The Rényi entropy S
(R)
q is obtained by calculating

ln Z with Eq. (29). The Rényi entropy S
(R)
q for small

N(q − 1) is obtained by expanding the logarithm of
Eq. (29) with respect to N(q − 1):

S(R)
q = ln Z (30a)

= LN (Tph)+N+
1
2
N(q−1)+N × O((N(q−1))2),

(30b)

where LN (Tph) is defined by

LN (Tph) =
N∑

j=1

ln
(Tph

�ωj

)
. (31)

We remember that N(q − 1) is less than one.
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The Tsallis entropy S
(T )
q as a function of Tph and q

is obtained by calculating Z1−q with Eq. (29). With
Eq. (30b), the Tsallis entropy S

(T )
q is also given using

the following relation:

S(T )
q =

1 − e−(q−1)S(R)
q

q − 1
. (32)

It is found from Eqs. (29) and (30a) that the Rényi
entropy as a function of Tph is unbounded from the
above. It is also found from Eq. (32) that the Tsallis
entropy as a function of Tph is bounded.

We obtain the ratio of S
(T )
q to S

(R)
q . Hereafter, we

represent LN (Tph) as Lph
N for simplicity. The ratio

S
(T )
q /S

(R)
q from Eqs. (32) and (30b) is

S
(T )
q

S
(R)
q

=
1 − e−(q−1)S(R)

q

(q − 1)S
(R)
q

∼ 1−e−(q−1)Lph
N e−N(q−1)e− 1

2N (N(q−1))2eO((N(q−1))3)

(q−1)Lph
N +N(q−1)+ 1

2N
(N(q − 1))2+O((N(q−1))3)

.

(33)

We note that the quantity N(q − 1) is not negative
and less than one. The ratio S

(T )
q /S

(R)
q is approxi-

mately 1/((q −1)Lph
N ) at sufficiently high physical tem-

perature which satisfies (q − 1)Lph
N � 1. This ratio is

1 − (q − 1)Lph
N /2 for (q − 1)Lph

N � 1 at sufficiently
high physical temperature: the relation (q − 1)N �
(q − 1)Lph

N is satisfied at high physical temperature
because of Lph

N � N . The expression of the Tsallis
entropy can be obtained from Eq. (33), and the sim-
ple expressions of the Tsallis entropy can be obtained
for (q − 1)Lph

N � 1 and (q − 1)Lph
N � 1.

3.3 The physical temperature represented with the
temperature T and the entropic parameter q

It is possible to describe the physical temperature Tph

with the temperature T and the entropic parameter q.
The physical temperature is given by

Tph = cqT = Z1−qT. (34)

The energy and the entropies can be represented with
T and q instead of Tph and q. The physical temperature
Tph as a function of T and q is given when Z1−q as a
function of T and q is given . Therefore, we give the
expression of Z1−q.

To obtain the expression of Z, we rewrite βph using
the relation βph = β/Z1−q. With this replacement, we
have

∏N

j=1
βph�ωj = ZN(q−1)

∏N

j=1
β�ωj . (35)

Using the above relation, from Eq. (29), we have

Z1+N(q−1)

=
1(∏N

j=1
(1−j(q−1))

) (∏N

j=1
(β�ωj)

)
(1−N(q−1))

1
q−1

−N
.

(36)

This expression leads to

Z1−q =

(∏N

j=1
(1 − j(q − 1))

) (q−1)
1+N(q−1)

×
⎛
⎝

N∏
j=1

(β�ωj)

⎞
⎠

(q−1)
1+N(q−1)

(1 − N(q − 1))
1−N(q−1)
1+N(q−1) .

(37)

The expression of a physical quantity as a function of
T and q can be obtained with Eqs. (34) and (37) from
the expression with Tph and q.

It is also possible to obtain the relation between Tph

and T by using the expression of S
(R)
q . The partition

function Z is directly related to the Rényi entropy:
Z1−q = exp

(
−(q − 1)S(R)

q

)
. Therefore, Tph is related

to T : Tph = exp
(
−(q − 1)S(R)

q

)
T . With the expression

of S
(R)
q , Eq. (30b), we have

Tph = exp

(
− (q − 1)

(
Lph

N + N +
1

2
N(q − 1) + N

× O((N(q − 1))2)

))
T

= T
N(1−q)
ph

(∏N

j=1
(�ωj)

q−1
)

exp

(
−N(q− 1)− 1

2N
(N(q− 1))2+ O((N(q− 1))3)

)
T

≡ KT
N(1−q)
ph

(∏N

j=1
(�ωj)

q−1
)

T, (38)

where K is explicitly given by

K= exp

(
−N(q−1)− 1

2N
(N(q−1))2+O((N(q−1))3)

)
.

(39)

Therefore, we obtain

Tph = K
1

1+N(q−1)

(∏N

j=1
(�ωj)q−1

) 1
1+N(q−1)

T
1

1+N(q−1)

≡ e−(q−1)S(R)
q T. (40)
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Equation (40) gives the relation between Tph and T .

The expression of exp
(
−(q − 1)S(R)

q

)
as a function of

T and q is explicitly obtained from Eq. (40). The expres-
sion of a physical quantity as a function of T and q can
also be obtained with Eq. (40). The expressions of S

(R)
q

and S
(T )
q with T and q can be obtained using the fol-

lowing relation:

Z1−q = e−(q−1)S(R)
q

= K
1

1+N(q−1)

(∏N

j=1
(�ωj)

q−1

) 1
1+N(q−1)

T
−N(q−1)
1+N(q−1) .

(41)

3.4 Free energies

We calculate the free energy approximately. We have
the following relation:

TphdS(R)
q = TdS(T )

q . (42)

Therefore, it is possible to define the following functions
(free energies):

F (R)
q = U − TphS

(R)
q , (43a)

F (T )
q = U − TS(T )

q . (43b)

The function F
(R)
q with Eqs. (18) and (30b) is

F (R)
q =

(
NTph +

N∑
j=1

1

2
�ωj

)

− Tph

(
Lph

N +N+
1

2
N(q−1)+N × O((N(q−1))2)

)
.

(44)

Therefore, F
(R)
q at high Tph is

F (R)
q ∼ −Tph

N∑
j=1

ln
(

Tph

�ωj

)
− 1

2
TphN(q − 1).

(45)

From Eq. (45), we calculate ∂F
(R)
q /∂Tph:

∂F
(R)
q

∂Tph
= −

N∑
j=1

ln
(

Tph

�ωj

)
− 1

2
N(q − 1) − N.

(46)

The right-hand side of Eq. (46) equals −S
(R)
q from

Eq. (30b). Therefore, we have

∂F
(R)
q

∂Tph
= −S(R)

q . (47)

The function F
(T )
q is calculated using the relation

Tph = exp
(
−(q − 1)S(R)

q

)
T . The function F

(T )
q with

Eq. (18) is

F (T )
q =

(
NTph +

N∑
j=1

1

2
�ωj

)
− T

(
1 − e−(q−1)S

(R)
q

q − 1

)

=

(
N+

1

(q − 1)

)
e−(q−1)S

(R)
q T − T

(q − 1)
+

N∑
j=1

1

2
�ωj .

(48)

Therefore, F
(T )
q with Eq. (40) is

F (T )
q =

(
N +

1
(q − 1)

)
K

1
1+N(q−1)

×
(∏N

j=1
(�ωj)q−1

) 1
1+N(q−1)

T
1

1+N(q−1) − T

(q − 1)

+
N∑

j=1

1
2

�ωj . (49)

In the same way, we calculate ∂F
(T )
q /∂T :

∂F
(T )
q

∂T
=

(
1

q − 1

)
e−(q−1)S(R)

q − 1
q − 1

= −S(T )
q .

(50)

We have the relations, ∂F
(R)
q /∂Tph = −S

(R)
q and

∂F
(T )
q /∂T = −S

(T )
q , with Eqs. (45) and (49).

4 Validity and comparison of results

4.1 Validity of the results

The validity can be checked by taking the Boltzmann–
Gibbs limit (q → 1) and by comparing the results in
this study with the results given in the previous study.

First, we take the Boltzmann–Gibbs limit. The quan-
tity Z1−q approaches one as q approaches one, and the
physical temperature Tph approaches the temperature
T as q approaches one. The Boltzmann–Gibbs limit of
the partition function Z is

lim
q→1

Z = exp(βUq=1)Tr
[
exp(−βĤ)

]
, (51)

where Uq=1 is the value of the energy at q = 1. There-
fore, the Boltzmann–Gibbs limit of the Rényi entropy
S
(R)
q is

lim
q→1

S(R)
q = βUq=1 + ln

(
Tr

[
exp(−βĤ)

])
. (52)
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This equation indicates

Sconv = lim
q→1

S(R)
q , Sconv = −Tr [ρconv ln ρconv] ,

(53)

because Uq=1 is equivalent to Uconv which is the energy
in the conventional statistics, where ρconv is the den-
sity operator in the conventional statistics. This equiv-
alence is explicitly shown by taking the Boltzmann–
Gibbs limit. From Eq. (18), at high temperature, we
have

lim
q→1

U = NT. (54)

The right-hand side of Eq. (54) is just the energy in
the conventional statistics. The energy, Eq. (54), is the
same as the energy for the harmonic oscillators with the
same frequencies [22]. From Eq. (30b), at high temper-
ature, we have

lim
q→1

S(R)
q = LN (T ) + N. (55)

The right-hand side of Eq. (55) is just the entropy in
the conventional statistics.

Next, we compare the results in this paper with the
results for a classical harmonic oscillator in the previous
work [21]. The results in Ref. [21] correspond to the
results for N = 1 in this paper. The energy U and the
partition function Z in Ref. [21] are given by

U/ε = (2 − q)
1
q t

1
q , (56a)

Z = (2 − q)
1

q(1−q) t
1
q , (56b)

where t = T/ε. The quantity ε corresponds to �ωj=1.
We can calculate the physical temperature Tph to

describe the quantities with the physical temperature
from Eq. (56b). The physical temperature calculated
from Eq. (56b) is given by

Tph = Z1−qT = (2 − q)
1
q ε1− 1

q T
1
q . (57)

The energy from Eq. (56a) is represented as follows:

U = (2 − q)
1
q ε1− 1

q T
1
q . (58)

Therefore, we have the energy represented with Tph:

U = Tph. (59)

The partition function Z, Eq. (56b), is

Z = (2 − q)
1

q(1−q) ε− 1
q T

1
q = (2 − q)

1
1−q

(
Tph

ε

)
.

(60)

We can obtain the results for N = 1 from Eqs. (18)
and (29) for comparison. The same expression of the
energy is obtained by ignoring the zero-point energy
from Eq. (18). The same expression of the partition
function Z is also obtained from Eq. (29). The results
for a harmonic oscillator in the present study is consis-
tent with the results in the previous study.

4.2 Comparison between the results in this study
and the general results in the Rényi statistics

The Rényi statistics is based on the extremization of
the Rényi entropy with the conventional expectation
value of an operator Â, Tr

[
ρ̂Â

]
, under the normaliza-

tion condition Tr [ρ̂] = 1 [23,24]. In Ref. [24], the quan-
tities in the canonical ensemble were discussed with
z = 1/(q − 1) and the two cases were dealt: one is
that z is extensive, and the other is that z is intensive.
The requirement N(q − 1) < 1 exists in the present
calculations in the Tsallis statistics, and the entropic
parameter q goes to one when N goes to infinity. The
Tsallis statistics becomes to be the conventional statis-
tics when q approaches one.

First, we compare the energy in this paper with the
general result in Ref. [24] which is given under the con-
ditions N → ∞, V → ∞, ν = V/N = const., and
z̃ = z/N = const., when z is extensive, where V is the
volume. The quantity N(q − 1) is constant when z̃ is
constant, and q approaches one as N approaches infin-
ity. It was shown that a homogeneous function of first
degree is N [a(T, ν, z̃) + O(N−α)] (α > 0) in the limit.
In the present calculations, the energy U is given as
NT +

∑N
j=1 �ωj/2 for q = 1, because Tph equals T for

q = 1. The behavior of U is similar to the result in Ref.
[24] with fixed N(q − 1) in the limit.

Next, we compare the energy in this paper with the
general result in Ref. [24] which is given under the
conditions N → ∞, V → ∞, ν = V/N = const.,
and z = const., when z is intensive. It was also
shown that a homogeneous function of first degree is
N [a(T, ν, z)+O(N−α)] (α > 0) in the limit. The behav-
ior of U may also be similar to the result in Ref. [24] for
large N and small q − 1 when Tph is (approximately)
equal to T , though the limit N → ∞ cannot be taken
because of the condition N(q − 1) < 1 in the present
calculations. It may be natural that Tph is (approxi-
mately) equal to T , because the physical temperature
Tph is determined using the Rényi entropy and because
q is close to one for large N .

The calculations in the Rényi statistics are required
in the case of the harmonic oscillators for comparison,
because the probability in the Rényi statistics is differ-
ent from the probability in the Tsallis statistics.
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5 Conclusions

We studied the thermodynamic quantities in the system
of the N independent harmonic oscillators with differ-
ent frequencies ωj in the Tsallis statistics of the entropic
parameter q (1 < q < 2). The number of the oscillators
N was fixed and the escort average was adopted in this
study. We derived the norm equations, and the expres-
sions of physical quantities with the physical tempera-
ture were obtained. We obtained the partition function
Z, the energy U , the Rényi entropy S

(R)
q , and the Tsal-

lis entropy S
(T )
q by solving the norm equations approx-

imately at high physical temperature Tph and/or for
small deviation q − 1.

It was found from the condition for the parameters of
the Barnes zeta function that the number of harmonic
oscillators N is less than 1/(q − 1). The restriction of
the number of the harmonic oscillators exists, as the
restriction was previously given for the classical gas [12].
As expected, the supremum 1/(q − 1) goes to infinity
when q approaches one.

The energy U is q-independent at high physical tem-
perature when the physical temperature is adopted.
The energy is proportional to the number of har-
monic oscillators N and the physical temperature Tph

at high physical temperature when zero-point energy
is ignored: the expression of the energy is the well-
known expression, U = NTph +

∑
j �ωj/2. The Rényi

entropy S
(R)
q is given as

∑N
j=1 ln(Tph/(�ωj)) for the

independent harmonic oscillators at high physical tem-
perature. The Rényi entropy with the same frequencies,
ω ≡ ω1 = · · · = ωN , is given by N ln(Tph/(�ω)) which
is well-known expression for the N independent har-
monic oscillators with the same frequencies. The Tsallis
entropy S

(T )
q was obtained through the Rényi entropy.

The variation for the Rényi entropy is simply given
as dS

(R)
q = NdTph/Tph for the fixed N , and the well-

known relation between dU and dS
(R)
q is also obtained:

dU = TphdS
(R)
q .

The physical temperature dependence of the Tsal-
lis entropy is different from that of the Rényi entropy.
The Rényi entropy contains the term that is∑N

j=1 ln(Tph/(�ωj)). Therefore, the Rényi entropy
increases with the physical temperature, and is unboun-
ded from the above. In contrast, the Tsallis entropy
increases with the physical temperature, and is bounded
from the above. The ratio of the Tsallis entropy to the
Rényi entropy, S

(T )
q /S

(R)
q , is small at high physical tem-

perature. The difference between the Tsallis and Rényi
entropies is large at high physical temperature.

The quantity as a function of Tph and q can be rep-
resented with T and q. It may be useful to give the
relation between Tph and T . This relation was obtained
using the partition function Z, and also obtained using
the representation of the Rényi entropy because of
S
(R)
q = ln Z. The T -dependence of the quantity can

be found through the Tph-dependence of the quantity.

We calculated the function F
(R)
q defined as U −

TphS
(R)
q and the function F

(T )
q defined as U −TS

(T )
q . It

was shown that these functions have the same relations
as shown in the conventional free energy: the relations,
∂F

(R)
q /∂Tph = −S

(R)
q and ∂F

(T )
q /∂T = −S

(T )
q , are sat-

isfied. It is worth to mention that TphdS
(R)
q is equal to

TdS
(T )
q . These quantities are related to the first law of

thermodynamics. It was already shown that the Leg-
endre transform structure is robust against the choice
of the entropic form and the constraints such as energy
mean value [25].

The system of the independent harmonic oscillators
with different frequencies is basic, and the results in
this study will give the insight on other physical sys-
tems. The author believes that the present study will
be helpful for the reader to study the system repre-
sented with oscillators in unconventional statistics such
as the Tsallis statistics.

Data availability statement This manuscript has no
associated data or the data will not be deposited. [Authors’
comment: This study is theoretical, and no data is gener-
ated.]

Appendix A: Approximate expression of Hur-
witz zeta function

The Hurwitz zeta function [26–28] is defined by

ζH(s, α) :=
∞∑

n=0

1

(α + n)s
. (A.1)

We treat the case of s > 1 and α > 0 in this appendix.
Let Bn(x) be Bernoulli polynomials which are defined by

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (A.2)

The Bernoulli number Bn in this paper is defined 1 by

Bn := Bn(x = 1). (A.3)

We use the Euler–Maclaurin formula. Let a and b be inte-
ger with a < b and let f(x) be continuously differentiable
for M -times. The Euler–Maclaurin formula is

b∑
n=a

f(n) =

∫ b

a

dxf(x) +
1

2
(f(b) + f(a))

+

M−1∑
k=1

Bk+1

(k + 1)!
(f (k)(b) − f (k)(a))

− (−1)M

M !

∫ b

a

dxBM (x − [x])f (M)(x),

(A.4)

1 The Bernoulli number Bn is often defined as Bn(x = 0).
It may worth to mention that Bn(x = 0) = Bn(x = 1) for
n �= 1.
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where f (k) is k-th derivative and [x] is the Gauss symbol
(the floor function).

We attempt to find the expression of ζH(1+z, α) for z > 0
using the Euler–Maclaurin formula. The right-hand side of
Eq. (A.1) is an infinite series. Therefore, we first consider
the following finite series:

ζH,m(s, α) =
m∑

n=0

1

(α + n)s
. (A.5)

We set f(x) as 1/(α+x)1+z and apply the Euler–Maclaurin
formula. By taking the limit m → ∞, we have the expres-
sion of ζH(1 + z, α). The integral part converges when α is
positive. We finally obtain

ζH(1 + z, α)

=
1

zαz
+

1

2α1+z

+

M−1∑
k=1

(−1)k+1Bk+1

(k + 1)!

Γ (z + k + 1)

Γ (z + 1)

1

αz+k+1

− (−1)M

M !

∫ ∞

0

dxBM (x − [x])f (M)(x) (z>0, α>0).

(A.6)
The function ζH(1+z, α) can be rewritten [29]. For example,
ζH(1 + z, α) is given by

ζH(1 + z, α)

=
1

zαz
+

1

2α1+z
+

1

z

M∑
k=2

Bk

k!

Γ (z + k)

Γ (z)

1

αz+k

− (−1)M

M !

∫ ∞

0

dxBM (x − [x])f (M)(x) (z>0, α>0),

(A.7)

because B2n+1 is zero for n ≥ 1 and Γ (z + 1) = zΓ (z).
It is possible to estimate the integral of Eq. (A.6) by

setting M . For example, the upper value of the integral with
M = 2 is estimated:∣∣∣∣

1

2!

∫ ∞

0

B2(x − [x])f (2)(x)

∣∣∣∣ ≤ C2

2!

∫ ∞

0

∣∣∣f (2)(x)
∣∣∣ ,

(A.8)

where C2 is the maximum value of |B2(x)| in the range of
0 ≤ x ≤ 1.

From Eq. (A.6), we find that the ζH(1 + z, α) for α 	 1
behaves

ζH(1 + z, α) ∼ 1

zαz
. (A.9)

Appendix B: Approximate expression of
Barnes zeta function

The Barnes zeta function [30,31] is defined by

ζB(s, α|ωN )

:=
∞∑

n1,··· ,nN=0

1

(α + ω1n1 + · · · + ωNnN )s
,

ωN = (ω1, ω2, · · · , ωN ), (B.10)

where s > N , α > 0, and ωj > 0.
We define ΩN as

ΩN := α + ω1n1 + · · · + ωNnN . (B.11)

The function ζB is represented as

ζB(s, α|ωN ) =

∞∑
n1,··· ,nN=0

1

(ΩN )s

=
1

(ωN )s

∞∑
n1,··· ,nN−1=0

∞∑
nN=0

1

((ΩN−1/ωN )+nN )s

=
1

(ωN )s

∞∑
n1,··· ,nN−1=0

ζH(s, ΩN−1/ωN ).

(B.12)

We have ζH(1 + z, α) ∼ 1/(zαz) for α 	 1. Therefore, for
sufficiently large α, we have

ζB(1 + z, α|ωN ) ∼ 1

(ωN )1+z

∞∑
n1,··· ,nN−1=0

1

z(ΩN−1/ωN )z

=
1

zωN
ζB(z, α|ωN−1). (B.13)

Using the recurrence relation, Eq. (B.13), we have the
approximate expression of ζB for α 	 1:

ζB(1 + z, α|ωN )

∼ 1

z(z − 1) · · · (z − (N − 1))

1

ω1ω2 · · · ωN

1

αz−(N−1)

=
1(∏N−1

j=0
(z − j)

)(∏N

j=1
ωj

)
αz−(N−1)

(z−(N−1)>0).

(B.14)

The condition z − (N −1) > 0 is rewritten as 1+z −N > 0.
This condition is equivalent to the condition s > N with
s = 1 + z for ζB(s, α|ωN ).
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