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Abstract. Advances in synthesizing colloidal nanoparticles with tailored interactions through surface mod-
ifications provide vast possibilities to create new materials through self-assembly. Alongside experimental
advances, computational methods are contributing to rational materials-by-design by inversely optimizing
building blocks capable of self-assembling into target structures. Radially symmetric (isotropic) pair poten-
tials are commonly used to model interacting particles in such a design process. In this work, we apply an
inverse design approach called ‘digital alchemy’ to a generalized Fourier potential (FP) to search a broad
design space of isotropic pair interactions targeting 23 crystal structures spanning a range of complexities.
Digital alchemy (DA) is a method for optimizing nanoparticle attributes (such as interaction strength and
range, and even particle shape) for a target structure in a generalized thermodynamic framework where
the attributes are treated as fluctuating thermodynamic variables in situ. Using DA, we find six optimized
isotropic interaction potentials that produce six corresponding targeted crystal structures via self-assembly.
Importantly, these six are those cases where the optimized potential for the target structure and the ground
state structure at zero temperature for the corresponding potential coincide. In these cases, the optimized
pair potential is the “best” potential for the crystal structure and the crystal structure is, conversely, the
“best” structure for the pair potential. For other cases, we show that although most of the optimized
isotropic pair potentials stabilize their corresponding target structures, the structures do not self-assemble
when the target structure has structurally similar polymorphs. In such cases, we obtain a family of nearly
identical optimized potentials for the set of similar structures, and only one of them—the structure that
minimizes the energy (i.e. is “best”) for the obtained potential-—can be successfully self-assembled. We
discuss and provide insight into these limitations inherent in using isotropic pair potentials for inverse

design.
1 Introduction

There have been many advances in the ability to syn-
thesize particles on colloidal scales with various inter-
actions, greatly expanding the range and complexity
of colloidal crystal structures possible via self-assembly
[1]. At the same time, the concept of inverse design [2]
has become increasingly important, as it tries to answer
the question: Given that we can make so many differ-
ent types of nanoparticles (NPs), what NPs should we
make to achieve the self-assembly of a certain material
with a specific structure and properties? The answer
to this question could directly guide the development
of experimental systems and potentially save time and
effort by significantly reducing the trial and error pro-
cess of standard forward discovery-based approaches.
In soft matter simulation, inverse design methods
typically use isotropic pairwise interaction potentials—
simplified models developed originally to describe inter-
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atomic interactions—to model colloidal interactions
between spherical nanoparticles [3-7]. Various
approaches to optimize isotropic pair potentials for dif-
ferent target structures have been reported in the litera-
ture, such as pair potential optimization through energy
minimization [3,4], artificial evolution algorithms [8,9],
inverse optimization methods that transform statistical
models into the optimizer [10,11], and relative entropy
methods [5,6]. Each of these methods has been used to
target specific sets of crystal structures in 2D or 3D sys-
tems, e.g. square, hexagonal, honeycomb and kagome
lattices in 2D, and 3D crystal structures ranging from
the very simple (e.g. ¢cP1-Po, cI2-W) to the complex
(e.g. diamond structure, tP30-CrFe and ¢P54-K4Sis3
[3-7]. Here, we attempt to design isotropic interac-
tion potentials for crystals using a previously reported
method named ‘digital alchemy’ that has been imple-
mented in molecular dynamics simulations (Alch-MD)
[7,12], where the thermodynamic ensemble is general-
ized to include fluctuating particle attributes. In this
case, the generalized thermodynamic variables are tun-
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able parameters that define the pair interactions and
are allowed to fluctuate during the simulation. Running
an MD simulation in an ‘alchemical’ ensemble allows
the system to find the optimal pair interaction for a
given structure at a given thermodynamic state point.

Digital alchemy was first implemented in Monte
Carlo simulations to optimize particle shape for a target
structure. Previous work applied the Alch-MD method
[7] to two empirically defined isotropic pair interaction
functions: the Oscillating Pair Potential (OPP) [13—
15] and the Lennard-Jones—Gauss Potential (LJGP)
[15,16]. Other pair potentials, such as the Jagla poten-
tial [17,18], the Fomin potential [19], and piecewise
pair potentials [5] have also been explored for self-
assembly of different structures using different inverse
design approaches, and exhibited the ability to form
2D and 3D crystal structures at different thermody-
namic state points. While these short-range, oscillatory
forms of pairwise interaction potentials are relatively
simple for simulations and thus ideal candidates for
inverse design, they cover a very small portion of the
design space available for an isotropic pairwise interac-
tion potential. In such cases, failure to find a suitable
pair potential (or a better potential) may arise sim-
ply because of the limited design space explored, and
not because of issues associated with the inverse design
method or the nature of the target structure. In some
other cases where more complex forms of potentials are
used, constraining pairwise interactions in Fourier space
has been used to restrict the complexity of the poten-
tial function and smooth it out by filtering out the high
frequency components in Fourier space [6,20,21].

In this work, we use a general oscillatory pair poten-
tial written as a Fourier series in real space (a “Fourier
potential”) and apply the Alch-MD method to opti-
mize isotropic pair interactions for 23 target crystal
structures. This work is not aimed at finding realis-
tic, experimentally feasible potentials for colloidal par-
ticles. Rather, our goal is to demonstrate issues inher-
ent in inverse design using any type of isotropic pair-
wise interaction potential. Using the Fourier potential
allows us to give the greatest number of degrees of free-
dom to an oscillatory pair potential to obtain the best
case scenario in terms of design. In cases where we are
unable to find a reliable pair potential parameteriza-
tion for a given target crystal structure, we are then
able to rule out the possibility that the approach failed
due to too many constraints on the form of the poten-
tial. We show that out of these 23 structures, we can
design pair potentials that allow only six of them to
self-assemble (i.e. crystallize) from a liquid phase, and
these structures are those for which the target struc-
ture and the ground state structure given by the found
potential are the same. Although the optimized poten-
tials obtained using inverse design by digital alchemy
can stabilize the majority of the target structures (18
out of 23), reliable self-assembly from liquid phases can-
not be observed with the optimized pair potentials for
structures beyond those six. We show that this fail-
ure of inverse design occurs when optimized simple
isotropic pair potentials for two similar but distinct
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structures are nearly identical, resulting in polymor-
phism and competition among crystal structures, such
that no crystal is able to form [22]. In such cases, there
is only one structure for which, simultaneously, the opti-
mized pair potential is the “best” potential for the crys-
tal structure and the crystal structure is, conversely, the
“best” structure for the pair potential. We believe this
work provides important guidance for future endeavors
in inverse design of isotropic pair potentials for colloidal
self-assembly.

2 Models and methods

2.1 Fourier potential

We used the software package HOOMD-blue [23,24]
to perform digital alchemy using molecular dynamics
(Alch-MD) [7,12] and a general pair potential written
in terms of a Fourier series. The Fourier Potential (FP)
is comprised of a short range repulsion and a slowly
decaying nth order Fourier series:

11 iTr
VFouricr(T) = T‘ﬁ + 7"72 Z (G,Z' COSs <R>
=1

() o

with the following constraints to ensure that the Fourier
term has a value of zero at a cutoff distance R:

n

a1 = (-1)"(a) (2)

i=2
and additionally, we set
by =0. (3)

To explore the large design space effectively while still
permitting complexity in ultimate form of the poten-
tial, we fixed the degree of the Fourier term to be 10 in
this work. This gives a FP with 18 independent design
parameters: [ag, as, ..., a1g, b2, b3, ..., big]. The parti-
cles are treated as point particles, and we set the cutoff
R = 3 in units of length D in all simulations, similar
to that used in Ref. [15]. A cutoff of R = 3 and FP
degree = 10 usually produced a smooth pairwise inter-
action potential with one to three attractive wells. Such
interaction potential shapes are, in principle, achievable
using various colloidal synthesis techniques, e.g. using
DNA functionalization.

2.2 Target structures

In this work, we chose a set of 23 crystal structures
to target for inverse design of isotropic pair potentials.
The unit cells for each of the 23 structures are shown in
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Fig. 1 Visualization of the unit cells of the 23 targeted crystal structures

Fig. 1. The space group and number of Wyckoff posi-
tions for each crystal structure are listed in Table 1. The
set of structures were selected to have a diverse repre-
sentation of crystal structures that are both found in
nature and observed in previous simulations using var-
ious forms of isotropic pairwise interactions [15,25,26].
In addition to distinct structures, the set includes some
structures that, despite being different, have similar
radial distribution functions (RDFs), as shown in Fig. 2
(left). The reason for this will become apparent in later
sections.

Examination of the RDF's of each target structure
allows us to visually identify some similar features. One
way to quantify these similarities is to calculate the
overlap of two RDF curves and use the percentage of
shared area under the curve as a similarity score. How-
ever, such a criterion could be too strict as only the
RDF peaks that are at the exact same locations would
contribute to the similarity score, while any RDF peaks
that are closely but not identically positioned would
not be considered. To address that, we used a Gaus-
sian curve to smooth out the RDF data at each posi-
tion using all nearby RDF peaks, where the new and
smoothed RDF value at each position is a weighted
average of all the RDF peak values around that posi-
tion, with the weight inversely related to the distance
from that given position as defined by the Gaussian
curve. We then calculated the ratio of shared area under
the Gaussian smoothed RDF curves for all possible

Table 1 Space group and number of Wyckoff positions
(obtained from [15,25]) for all structures targeted in this
work

Structure Space Number of
group Wyckoff positions
cP1-Po Pm3n 1
cl2-W Im3m 1
cF4-Cu Fm3m 1
cP4-IL1 P4132 1
cF8-C Fd3m 1
cP8-Cr3Si Pm3n 2
cl16-S1 Ta3 1
cP20-Mn P4,32 2
cF24-MnCus Fd3m 2
cI52-CusZnsg 143m 4
CP54*K4 S’i23 ngn 5
tI2-Pa I4/mmm 1
tI2-CdHyg I4/mmm 1
tI4-Sn I41/amd 1
tP30-CrFe P4y /mmm 5
hPl*Cao,15Sno,85 P6/mmm 1
hP2-Myg P63 /mmc 1
hP3-AlB> P6/mmm 2
hP4-NiAs P63 /mme 2
hPT-ZrsAls P6/mmm 3
hP12-MgZns P63 /mmc 3
hP24-MgNis P63 /mmc 5
oP8-FeB Pnma 2
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Fig. 2 (Left) RDFs for the 18 targeted crystal structures that were successfully stabilized, but only some of which self-
assembled, using their optimized isotropic pair potentials. (Right) Similarity matrix for the RDFs at left. The similarity
matrix has a value between 0 and 1, where 1 indicates the same RDF and 0 indicates no similarity. Each off-diagonal block
represents the similarity score of two structures, and the blocks on the diagonal show the maximum similarity score for each
structure when compared to all other structures considered in this work. The structures are ordered by the diagonal value,
from the most distinctive structure to the least distinctive structure. For visual clarity, structure pairs with a similarity

value of less than 0.4 are not shown in this figure

pairs of structures. The similarity scores calculated in
this way have values between 0 and 1, with 0 indicat-
ing that two RDFs (and, presumably, their correspond-
ing structures) are completely different and 1 indicat-
ing that two RDF's are the same. We plot the similarity
score summary in Fig. 2 (right) in the form of a similar-
ity matrix, with the diagonal blocks showing the maxi-
mum similarity score for each structure when compared
to all other structures considered in this work.

2.3 Simulation protocols

We performed all simulations at number density ¢ =
% = 0.7, where N is the number of point particles and
V' is the volume. We chose this density because it is close
to the average density at which the self-assembled crys-
tal structures formed using the Oscillating Pair Poten-
tial (OPP) in a previous study [15]; the OPP shares
similar features with the FP used in this work, i.e. a
short range repulsion and longer range (cutoff at R = 3)
oscillatory interaction. We performed four main simu-
lation steps for each of the target structures:

Step 1—Alch-MD step: We constructed the ideal
crystal structures using a minimum of 1000 particles
in a periodic box with symmetries matching that of the
target crystal structures. In digital alchemy, we keep the
structure fixed while running a MD simulation, simul-
taneously allowing the parameters of the pair poten-
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tial to fluctuate in situ as the system tries to minimize
its free energy in the alchemical ensemble. This ther-
modynamic optimization is achieved by simulating the
fixed crystal in a generalized thermodynamic ensemble
(an alchemical ensemble) where the number of particles
N, system volume V', temperature 7', and “alchemical
potentials” p; conjugate to the pair potential variables
(coefficients a; and b;) are held fixed throughout the
simulation. For a general and detailed derivation of the
alchemical ensemble and its implementation in MD, we
refer the reader to Ref. [7]. Because it is important that
the structure not be “frozen”, as though at zero T, we
attached each particle to its ideal position in the struc-
ture using a spring with an initial spring constant value
of 128, which allows the particles to freely move about
their equilibrium positions but not so much as to allow
the structure to fall apart when the simulation begins.
The springs are slowly weakened during optimization
to ensure the structure remains stable without them.
For each of the 23 target crystal structures, we ran
Alch-MD simulations with 10 replicas, each using a ran-
domized initial set of FP parameters: [az, as, ..., aio, b2,
b3, ...,b1o] and corresponding alchemical potentials for
6 x 10° MD time steps in the NVTy; ensemble at T* =
0.1 (we report the reduced temperature T* = k,T /e,
with units of energy ¢), reducing the spring constant
by half every 6 x 10* time steps. The initial forms of
these 10 pair potentials, which were used for all target
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Fig. 3 Initial potentials used for digital alchemy simula-
tions

structures, are shown in Fig. 3. Because the 10 poten-
tial functions used for each target structures 10 repli-
cates are so different, we can rule out any dependence
on initial conditions. We used the final frame of each
simulation to check if the system remained in the ini-
tial target structure and recorded the optimized pair
potential at the end.

Step 2—DMelting test step: If the target structure
remained stable in step 1, we then ran a standard NVT
simulation with HOOMD-blue using the last simulation
frame of the system in step 1 and the corresponding
optimized pair potential from step 1 with a tempera-
ture ramp from 7% = 0.1 to T" = 2.5 to obtain the
melting temperature. We identified the melting tem-
perature by plotting the derivative of potential energy
against temperature and used the temperature with the
peak derivative as the melting temperature [27].

Step 8—>Self-assembly step: After obtaining the melt-
ing temperature, we then ran self-assembly simulations
via a temperature ramp using the last simulation frame
of the system in step 1, performed a temperature ramp
from T* = 0.1 to T* = 0.2 + Tetting in 5 X 10° time
steps to melt the system, and then cooled it back to
T* = 0.1 in 4.5 x 105 time steps to allow the system to
self-assemble. We used the final frame to check if the
self-assembled structure matches with the target struc-
ture.

Step 4—Crystal growth step: If the target crystal
structure did not form in step 3 via self-assembly but
was found stable during the Alch-MD optimization in
step 1, we performed a crystal growth simulation where
we combined two simulation boxes using the last frame
in both step 1 (the target crystal structure) and step
3 (the final frame from self-assembly simulation) and
put them next to each other in an extended simulation
box. This artificially creates a crystal seed equivalent
to 1/2 of the box. We then ran an NVT simulation
around the melting temperature to test if the target
crystal grew from the large, fixed seed using the opti-
mized pair potential found in step 1. We used the final
frame to identify whether the target crystal indeed grew
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from the seed. If it did, this means the optimized poten-
tial can, in principle, self-assemble the target structure,
but was kinetically unable to do so in Step 3.

3 Results and discussion

The success rates for each target structure in steps 1,
3 and 4 for all 23 target crystals with 10 replicas, and
a summary of the results, are shown in Fig. 4. In the
summary figure, success is defined by at least 50% of
the 10 replicates for each target structure remaining in
the target crystal structure.

For 18 of the 23 target structures, digital alchemy
with the Fourier potential found a parameterization of
the pair potential that stabilized the target structure.
However, only four of the 18 optimized pair potentials
resulted in successful self-assembly in step 3 into the
target crystal structure (¢P1-Po, cI2-W, ¢P8-Cr3Si
and hP1-Cag155n0.85). Two more crystal structures
(¢F4—Cwu and ¢I16-S7) were obtained in Step 4 when
seeded with the target crystals used to optimize their
pair potentials. To check for the convergence of all six
successful cases, we plot the 10 final optimized pair
potentials for each of the six successfully targeted struc-
tures in Fig. 5 (left). As can be seen by enlarging the
figure, all replicates for a given successfully targeted
structure converged to the same optimized FP. We plot
the optimized pair potentials for these six ‘successful’
target crystal structures and their corresponding RDF's
in Fig. 5 (right). We see that these six RDFs are distinct
relative to each other, suggesting that for unique tar-
get structures, Alch-MD applied to the FP has a higher
chance of finding a successful pair potential.

However, comparison of the RDFs of the 18 suc-
cessfully stabilized target crystal structures (Fig. 2)
shows that many of the RDFs are similar to each other.
When we compare the structural similarity results and
the structures for which an optimal pair potential was
found through digital alchemy, we see that the six suc-
cessfully targeted crystal structures are either unique
structures with low similarity scores (Fig. 2 (right))
against all other targeted structures (¢cP1-Po, cF4-Cu
and hP1-Cag.155n0.85) or they are the only successfully
targeted structure among a group of crystal structures
that share similar RDF's (¢P8-Cr3Si, cI2-W and ¢I16-
Si). This suggests that the Alch-MD method using the
FP is more effective in finding optimized potentials for
structurally unique crystals. We expect that this same
conclusion applies to any inverse method of obtaining
a pair potential for a target structure. In other words,
when an inverse design method like Alch-MD is applied
to a set of structures that are very similar to each other
in terms of their RDFs, merely optimizing an isotropic
pair potential—regardless of method—has inherently
limited power to tailor for the nuanced differences of
each crystal structure, and is likely to result in very sim-
ilar potentials for the whole set of similar crystal struc-
tures. This is because the potential energy for these
isotropic pair interacting systems can be written as [28]:
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Fig. 4 (Top left) Alch-MD step success rate by structure. (Top right) Self-assembly step success rate by structure. (Bottom
left) Crystal growth step success rate by structure. (Bottom right) Summary of results. a Alchemy run result for each target
structure after alchemy optimization with decaying spring constant. A success label indicates that after the alchemy run,
the last frame of the simulation is still identified as the target structure. This suggests that the alchemy method can at
least find an optimized pair interaction that stabilizes the target crystal structure. b Self-assembly result for each target
structure with the optimized potential. A success label indicates that when using the optimized pair potential, we can get
the target crystal to self-assemble from a disordered liquid phase. ¢ Growth competition result between the target structure
and the self-assembled frame with the optimized potential. A success label indicates that using the optimized pair potential,
we can get the target crystal structure to grow in a simulation box

U= ;V—V /u(r)g(r)47r7“2dr (4)
0

and optimizing pair potentials (u(r)) for structures with
similar RDFs (g(r)) will inevitably lead to similar pair
potentials. Such an optimized potential will then only
lead to the self-assembly of one of the target structures
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in the best case scenario (as is the case for all eight ¢cP8-
Cr3Si-like structures, as shown in Fig. 6). We further
analyze the case among the eight ¢ P8—C'rsSi-like struc-
tures (¢cP8-Cr3Si, tP30-CrFe, hPT7-Zr,Als, cP20-
Mn, cI52-CusZng, cF24-MgCus, hP12-M gZny and
hP24-M gNis). While the Alch-MD optimization finds
eight almost identical pair potentials that can stabilize
all of these eight structures, cP8-Cr3Si remains the
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and optimized pair potentials using Alch-MD for each structure. Right: Comparison of their potential energies

lowest energy structure for all of these optimized poten-
tials, as is shown by both the self-assembly result and
the calculated potential energy comparison using each
optimized pair potential for the corresponding target

structure and cP8-C'r3Si, as shown in Fig. 6.

We see the same result in the other two pairs of sim-

ilar structures: (cI2-W-tI2-Pa pair) and (cI16-Si—
c¢P54-K,Sis3 pair). The optimized potentials within
each pair of similar structures remain similar, in Figs. 7
(left) and 8 (left), respectively. The successfully assem-
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Fig. 8 RDFs and final optimized pair potentials (left) and potential energies (right) after Alch-MD run for the two
structurally similar structures: cI16-Si and cP54-K4Si23

For the three cases (cP4-Li, hP3-AlBy and t12—
CdHg), where Alch-MD does not find the optimal
potential even though the structure targeted is unique

bled structure has the lowest energy of the pair, as
shown in Figs. 7 (right) and 8 (right), for ¢c/2-W and
cI16-St, respectively.
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among all the structures considered in this work, we
find that the self-assembly simulations usually result
in denser crystals. The target structures are still effec-
tively stabilized in step 1 with their optimized poten-
tials, but when no density constraint is applied, the
systems are inclined to form more energetically favored
high-density configurations during assembly.

4 Conclusions

In this work, we presented the use of Alch-MD with an
isotropic pair potential expressed as a Fourier series of
degree 10 to inversely design pairwise interaction poten-
tials for 23 different target crystal structures. We found
that in six out of 23 cases, our method optimized pair
interactions that led to the self-assembly of the tar-
get crystal structures. Importantly, for these six, the
optimal pair potential found for each structure is also
the pair potential for which the target structure has
the lowest potential energy at zero temperature. For
other cases, however, while most of the optimized pair
potentials stabilized the target crystal structures, the
structures are not the lowest energy structures for their
optimized pair potentials, and a lower energy structure
either at the same or higher density is thermodynam-
ically preferred. This demonstrates the importance of
not only finding the “best” potential for a given struc-
ture, but also ensuring that the structure is the “best”
one for that potential.

Our results show the inherent limitation of inverse
design using simple isotropic pair potentials, where it
becomes difficult to tailor the potential to address the
nuanced differences between structures with very sim-
ilar RDF's. As is well known, the RDF provides only
a coarse description of a crystal structure.The same is
true for isotropic pair potentials, which do not account
for the non-isotropic features of the target crystal struc-
tures. Yet RDFs and isotropic pair potentials are still
widely used in attempts at inverse design. To address
these limitations and refine the pairwise interaction
potentials that will self-assemble different structures
that were not successful in this work, we advise identi-
fying other structural features that can further differen-
tiate structures with similar RDFs. For example, intro-
ducing design features such as binary or type-specific
interactions [25,29-31], or patchy interactions with spe-
cific directional constraints [32-35] may be required to
optimize and design interactions that will permit crys-
tal self-assembly and be experimentally attainable.
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