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Abstract. Based on a model Hamiltonian including the on-site repulsive interaction among the electrons,
we investigate the spatial configurations of mixed spin-triplet (dominant p-wave) and spin-singlet (coex-
isted s-wave and d-wave) pairing symmetries in bulk superconducting systems by numerically solving the
Bogoliubov-de Gennes equations. The influences of the Zeeman field and the next-nearest-neighbor hop-
ping on the order-parameter modulations are mainly discussed. Besides the quantized vortex states with
point-like cores, the unclosed vortex chains and enclosed skyrmionic modes can remain stable in the present
bulk sample. Furthermore, nonuniform patterns of the vortex lattice and the elliptical-like vortices can be
obtained at appropriate applied flux. The corresponding zero-energy local density of states as well as the
relative phase differences useful to display the skyrmionic texture are provided

1 Introduction

In recent years, the vortical and skyrmionic states in
superconductors with two or more coupled conden-
sates have drawn a lot of attention [1]. Different from
conventional superconducting states, the domain walls
separate different chiral states [2-8] and the coreless
skyrmionic structures [9-12] can be stabilized in spin-
triplet p, +ip,-wave superconductors with broken time-
reversal symmetry. Cantilever magnetometry measure-
ments have revealed evidence for the existence of half-
quantum vortices in Sro RuO4 which is most-likely
a spin-triplet chiral p-wave material [13]. The half-
quantum vortices may host Majorana states at exactly
zero energy as bound states inside the vortex cores [14].
Moreover, several striking features, such as the vor-
tex coalescence into clusters [15-18] and the type-1.5
behavior with attractive (repulsive) intervortex inter-
action at long (short) ranges [19], have been reported
in Sro RuO,4 samples. Particularly, in the presence of
mesoscopic boundaries, the spatial configurations of
topological defects are strongly influenced by the geo-
metric effect [20,21]. At the boundary of superconduct-
ing domains of opposite chirality, the locally suppressed
condensate can produce an intrinsic Josephson junc-
tion [6,22]. Due to the interplay between the circular
symmetry of the applied magnetic field and noncircular
boundaries, unusual skyrmionic configurations contain-
ing half-quantum vortex—antivortex pairs can be found
in finite-size p-wave superconducting systems [23,24].
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In addition, the competition between different pair-
ing symmetries in s + is or s + id superconductors
with time-reversal symmetry breaking can result in rich
phenomena associated with the vortex matter [25-27].
Peculiar features of vortical configurations, such as the
skyrmionic chains, can be realized by tunning the rel-
ative strength of competing pairing symmetries [27].
The nematic skyrmion consisting of two spatially sep-
arated half-quantum vortices has also been predicted
in two-component superconductors [28]. When a mixed
s-wave and d-wave superconducting order is coupled
to the nematic order, the novel elliptical vortex and
oblique vortex lattice have been revealed in FeSe super-
conducting systems [29]. Furthermore, mixed singlet-
triplet pairing becomes possible in the superconducting
system with lifted spin degeneracy [30,31]. It has been
predicted that an additional p-wave component can be
generated by the surface induced spin-orbit coupling in
the case of s-wave or d-wave superconductors [32-36].
For the material (8-BisPd exhibiting classical s-wave
bulk superconductivity [37], the experimental signature
of Majorana zero modes [38] and half-integer magnetic
flux quantization [39] has revealed the occurrence of
a spin-triplet pairing symmetry. A novel vortex distri-
bution, distinctly different from the well-studied dis-
ordered and glassy phases, was recently demonstrated
in 3-BisPd [40]. Notably, for a square lattice system
with a nearest-neighbor attractive interaction, super-
conducting states with various symmetries can be found
by changing the band structure (i.e., the shape of the
Fermi surface) [41,42]. Several peculiar vortical pat-
terns have been obtained in a mesoscopic supercon-
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ducting square loop when the p-wave, s-wave and d-
wave pairing symmetries are coexisted [43]. However,
the configurations of topological defect states remain
little explored in bulk superconducting systems with
mixed pairing orders up to now. One may expect to
see whether the unusual vortical and skyrmionic modes
can still be observed for such bulk samples when the
quantum-confined effect is absent.

In the present work, we systematically investigate the
spatial patterns of topological defects in bulk super-
conducting samples with mixed pairing orders by solv-
ing the Bogoliubov-de Gennes (BdG) equations [44] in
a square unit cell with periodic boundary conditions
along the x and y directions. Based on a tight-binding
model Hamiltonian, the on-site repulsive interaction
among the electrons is introduced to generate the mixed
singlet-triplet pairing [43,45]. For an appropriate chem-
ical potential, the effect of next-nearest-neighbor (nnn)
hopping will be applied to tune the stable spin-triplet
p-wave superconducting order which can coexist with
spin-singlet s-wave and d-wave superconducting ones.
The influence of the Zeeman field on the order modula-
tion are also discussed. Our numerical analysis tackles
the issue of whether the novel topological defect struc-
tures similar to the features observed in recent exper-
iments can be present in such a bulk system based on
our microscopic model. The corresponding zero-energy
local density of states (LDOS) and the relative phase
differences useful to display the skyrmionic texture are
demonstrated. We expect that our present results may
provide useful information for future experiments.

2 The model and formulas

We start with an effective mean-field Hamiltonian:
eff = - Z tlJeXp 7/<le Clo-CJO' + Z nw
(ij),o
c ,Cic — h; Z 0. aocwcm

i 2T, o
+VZ JC CJL + Ajjejiair), (1)
where t;; = ¢ and t' are the nearest-neighbor (nn)

and nnn hopping integrals, respectively. ¢, (ciTa) are
destruction (creation) operators for electron of spin o
(c=1 or |). U represents the on-site repulsion interac-
tion, and the nearest-neighbor attraction V' is responsi-
ble for the superconducting pairing. ni, = CLCia is the
number operator, and u is the chemical potential deter-
mining the averaged electron density n. h, describes
the Zeeman site energy in the z direction, and o, the
Pauli matrix. The Peierl’s phase factor is given by
iy = m/Po [7 A(r) - dr, where the flux quantum ¢y =
he/2e and the vector potential A(r) = H(—y,z,0)/2
with magnetic filed H in the symmetric gauge. Here,
we have introduced the pairing amplitude on a bond
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Ai; = (cipegy). Using the Bogoliubov transformation:
cir = 2, [ufiynr — U?T*WLL iy =, [ufiyny + Uﬁ*ﬁn],
the Hamiltonian in Eq. (1) can be diagonalized by solv-
ing the resulting BdG equations self-consistently:

N
Hijo Ay uf, ull,
0% () -a (D). o

F ij ijo

where Hijo = —tijexp(igoij) + [U{niz) — ho — ,u]éij.
With the periodic boundary conditions, we can get the
eigenvalues {E, } with eigenvectors {u!",v!"}. The self-
consistent conditions are

(nir) Z |ug' ‘ f(E (3)
- Z 0 - (B, ()
1_] _ Z un n*

F(ER)], (5)

where f(E,) = (e¥»/F8T 1-1)~! is the Fermi-Dirac dis-
tribution function. From the order parameter Ay, it is
possible to build the spin-singlet (S) and spin-triplet
(T) pairing amplitudes in the S, = 0 sector, given by
[42,46]

Af = (A5 + Ap)/2, (6)
Af = (455 — Ap) /2. (7)

Then, the extended s—, dy2_2—, p,— and p,—wave
symmetry can be defined, respectively, at site i as

A1) = (A i+ A e i+ Afiie, +A0i6,)/4,
(8)
Ad(3) = (Ao s+ A o — Afipe, — Afie,) /4,
(9)
A, () = (Af. i — AL )/2, (10)
Ay, (1) = (Afite, — Afise,)/2: (11)

where ey denotes the unit vector along the x(y) direc-
tion. For sinp, =+ isinp,-wave superconductivity, we
can define the pairing potential as Ay (i) = A, (i) £
i, (0).

The LDOS, proportional to the local differential
tunneling conductance measured in a low-temperature
scanning tunneling microscopic (STM) experiment, can
be written as
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Fig. 1 Contour plots of the total p-wave order-parameter
amplitude |Ap| = v/|A+|? + |A=|? [column (I)], the relative
phase ¢zy = cos(ps — ¢y) between the p - and p,-wave
components [column (II)], the extended s-wave pairing A
[column (III)], the d-wave pairing Aq [column (IV)], and the
zero-energy LDOS p(0) [column (V)] in a 40 x 40 square unit
cell accommodating the magnetic flux & = 4& when ¢’ = 0
(first row), ¢ = 0.1 (second row), and ¢’ = 0.2 (third row).
The calculation is performed with V =4, U = 1.5, p = -2,
h, = 0, and the temperature T'= 0

p(E) =Y lluf,|*6(Ey — E) + |vj,[*3(E, + E)),

n,o

(12)

where the Dirac delta-function §(x) is taken as I' /7 (2% +
I'?) with the quasiparticle damping I" = 0.01.

Throughout this work, the distance is measured in
units of the lattice constant a, the energy in units of
t, and the magnetic flux in units of @5 = hc/e. In the
numerical calculations, we take kg = a = t = 1 for
simplicity. In what follows, we focus on the bulk super-
conducting system with a periodic N, x N, unit cell.
For an appropriate initial set of parameters n;, and
45, the Hamiltonian is numerically diagonalized and
the electron wave functions obtained are used to cal-
culate the new parameters for the next iteration step.
The calculations was repeated until the difference in the
order parameters between two consecutive iterations is
less than 1076,

3 Results and discussion

For a finite out-of-plane magnetic field, we investigate
the spatial profiles of topological defects in the bulk
superconducting system at zero temperature. Here, the
interaction strengths are chosen as V = 4, U = 1.5,
leading to a favorable spin-triplet p, +ip,-wave pairing
state. When the spin correlation is introduced, the spin-
singlet s- and d-wave components of the order param-
eter can appear at the same time since the spin rota-
tional symmetry is broken. It is known that the relative
strength of three different orders can be tuned by the
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chemical potential [41,42]. In contrast to our previous
work [43], the chemical potential is chosen as p = —2
in the present bulk case, that is, a subdominant s-wave
state and a coexisted d,2_,2-wave one can be stabilized.
We assume that each unit cell with NV, x Ny, = 40 x 40
can accommodate the magnetic flux & = m®,, where
m denotes an integer. First, we consider the case of the
Zeeman field h, = 0. For an applied flux & = 49, Fig. 1
displays the contour plots of the quantized vortex state
with point-like cores and the coreless skyrmionic state
as well as their hybrid case in a 40 x 40 unit cell when
the nnn hopping ¢ = 0 (first row), ¢ = 0.1 (second
row), and ¢ = 0.2 (third row), respectively. As seen
from column (I) when ¢ = 0, the total p-wave order-

parameter amplitude |A,| = /|A4|?2 + |A_]? shows a

multivortex state carrying four separated flux quanta in
the unit cell. For the dominant pairing symmetry, the
bulk order-parameter amplitude |A,(0)| ~ 0.18, i.e.,
the BCS coherent length £(0) = hvp/7|A,(0)| = 5.6a,
where vp is the Fermi velocity. Correspondingly, the
relative phase ¢,y = cos(¢, — ¢,) of the p-wave com-
ponents A, and A, exhibits cloverleaf patterns [see
column (II)]. Likewise, the quantized vortex states with
point-like cores appear in the profiles of s- and d-wave
components [see columns (III) and (IV)]. We also cal-
culate the distribution of the zero-energy LDOS p(0)
in column (V). One can find that the zero-bias LDOS
comes to peaks around the vortex cores, indicating the
occurrence of vortex bound states.

Notice that the configuration of the vortex lattice in
our simulation with the periodic boundary condition
deviates from the conventional triangular mode. This
is similar to the results revealed in FeSe superconduct-
ing systems [29], resulting from the anisotropic inter-
actions among the mixed superconducting orders. In
the second and third rows of Fig. 1, we introduce two
finite nnn hopping ¢’ in the effective model Hamilto-
nian and plot the spatial order-parameter distributions
when @/Py=4. Notably, the ratio between nn and nnn
hopping is an important electronic parameter charac-
terizing different superconducting materials [47,48]. In
contrast to the case of ¢ = 0 in row (I) at the same flux
value, the mixed parity pairings can still be realized for
an increased t' = 0.1, while the s- and d-wave orders are
suppressed. Four vortices located near the outer bound-
ary move toward the center in A,, A, and Ay plots.
Namely, the vortex lattice structure tends to evolve into
a triangular shape in the order-parameter space. Fur-
thermore, in the case of ¥ = 0.2, one can easily find
that the mixed s- and d-wave orders almost disappear
inside the sample. As a consequence, two bottom vor-
tices transit to an enclosed skyrmionic structure and a
hybrid mode with skyrmionic and vortex states can be
obtained, similar to the feature obtained in the pure
chiral p-wave state [49]. In this case, the chiral domain
walls separating Ay and A_ regions occur, which can
be clearly revealed by the |A, | profile in column (I). Dif-
ferent from the conventional Abrikosov flux, four one-
component vortex cores in the p,- and p,-wave pairings
are spatially separated on the domain wall for a single-
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Fig. 2 Contour plots of |A,| [column (I)], ¢zy [column
(I1)], As [column (III)], Ag [column (IV)], and p(0) [col-
umn (V)] in a 40 x 40 lattice accommodating ¢ = 4%, when
t' = 0 (first row), ' = 0.1 (second row), and ¢’ = 0.2 (third
row). The chosen parameters are the same as in Fig. 1 except
h. =02

(U 1A

av) i,

skyrmionic structure, leading to a coreless vortex state
carrying two flux quanta with the topological charge
Q = 2 [21,23,24]. Correspondingly, the relative phase
¢zy In column (II) alternates four times between neg-
ative and positive values for the enclosed chain. More-
over, from the spatial variation of p(0) depicted in col-
umn (V), the zero-energy peaks mainly emerge at the
circular-loop-like domain walls as a result of the exis-
tence of domain-wall bound states.

Next, we would like to examine the configurations of
topological defects at @ = 49 for a nonzero h, = 0.2.
It is noted that the Zeeman field has a particularly
important effect on the spin structure of the Cooper
pairs [34-36,50,51]. Figure 2 displays the spatial pro-
files of quantities same as in Fig. 1 when ¢/ = 0 (first
row), t' = 0.1 (second row), and ¢t = 0.2 (third row).
Clearly, in contrast to the case of h, = 0 with ¢ = 0
[first row in Fig. 1], four flux quanta in the multivor-
tex state tend to move inside the sample and try to
assemble a triangular-like vortex lattice when a Zee-
man filed is included into the system. When the com-
bined effect of nnn hopping and Zeeman field is pre-
sented, the situation becomes quite different resulting
from the modification of the relative strength of com-
peting pairing symmetries. With increasing the finite
', the system will gradually achieve its minimum free
energy by further arranging the vortices. Consequently,
the vortex lattice favors the triangular one for the case
of t/ = 0.2 [see the third row of Fig. 2]. Interestingly, an
enlarged ¢’ also results in the change in the vortex struc-
ture from isotropic to the twofold anisotropic. As seen
from the |A,| profile shown in the column (I), two diag-
onal (antidiagonal) vortices are stretched along the ver-
tical (horizontal) direction, i.e., the elliptical-like vor-
tices show up. Simultaneously, the s-wave and d-wave
orders with an elliptical-like shape are only generated
in the regions of the vortex cores, as displayed in the
columns (IIT) and (IV). Moreover, the corresponding
spatial variations of ¢, [column (II)] and p(0) [column
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Fig. 3 Contour plots of |A,| [column (I)], ¢zy [column
(I1)], As [column (III)], Ay [column (IV)], and p(0) [col-
umn (V)] in a 40 x 40 lattice accommodating ¢ = 5&, when
h. =0 and ¢ = 0 (first row), h. = 0 and ¢’ = 0.2 (second
row), h, = 0.2 and ¢’ = 0 (third row), as well as h, = 0.2
and ¢’ = 0.2 (fourth row). The other chosen parameters are
the same as in Fig. 2

(V)] are depicted, and one can clearly observe these
unique vortex states.

In the following, we turn to discuss the vortical pat-
terns when the applied magnetic flux is enlarged. For a
perpendicular flux, ® = 5@y when h, = 0 and ¢’ = 0,
a multivortex state carrying singly quantized vortices
still shows up as compared to the above 49, case, and
the general picture of this state is depicted in the first
row of Fig. 3. To keep five flux quanta in a 40 x 40
square unit cell, a singular vortex with the point-like
core always appears at the square corner [see the clover-
leaf profiles of the relative phase in column (II)]. Mean-
while, the other four vortices move inside the square due
to the repulsion effect from the corner vortices. Once
the nnn hopping effect is considered, the mixed s-wave
and d-wave pairing symmetries are highly suppressed,
and a multiskyrmionic state tends to stabilize inside
the unit cell. As seen in the second row of Fig. 3 when

= 0.2, one can clearly find two separated enclosed
chains along the vertical direction, that is, two coreless
@ = 2 skyrmions carrying four flux quanta are formed.
Notice that the enclosed skyrmionic chains, especially
the upper one, are stretched along the horizontal direc-
tion. Consequently, the elliptical-loop-like skyrmionic
configurations are obtained. One can also clearly see
this pattern in the zero-energy LDOS profile shown in
column (V).

Furthermore, for a finite h, = 0.2, another type of
stable topological-defect states can be found in such
systems, and the two bottom rows of Fig. 3 depict the
corresponding evolution of this state with increasing ¢'.
Similar to the mode obtained in the first row of Fig. 2
when t’ = 0, the singly quantized vortices tend to rear-
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Fig. 4 Spatial profiles of the amplitude [columns (I) and
(III)] and phase [columns (II) and (IV)] for the p-wave
components Ay, and A, correspondmg to the enclosed
skyrmionic state with hz =0 and ' = 0.2 (the upper row)
as well as the state with unclosed vortex chains (the bottom
row)

range in the presence of finite h,. Remarkably, for the
case of ' = 0.2, one can find that two unclosed vor-
tex chains take place with comparison to the enclosed
skyrmionic configuration. In Fig. 4, we also display the
amplitude and phase for the p, and p, order-parameter
components since they are very useful in the analysis
of unique topological defect states. As clearly displayed
in the upper row of Fig. 4 corresponding to the case of
the second row in Fig. 3, four individual one-component
vortices can exist inside A, and A, , respectively.
Consequently, all eight one-component vortices gener-
ate two separated enclosed chains carrying two flux
quanta each. In contrast, for the case of h, = 0.2
(the bottom row of Fig. 4), one can see that four one-
component vortices inside A, ~try to stretch along the
horizontal direction and the four ones in A, do not
nucleate aligning along the vertical direction, giving rise
to two separated horizontal vortex chains in the order-
parameter space as shown in the third row of Fig. 3.

Finally, for further increased external flux, more vor-
tices nucleate inside the present mixed-parity system
and peculiar skyrmion-vortex coexisting modes can
occur. In Fig. 5, we present the spatial distributions for
such stable states when /&y = 6. Besides the multi-
vortex states consisting of six singly quantized vortices,
two types of hybrid topological structures are depicted
for the ¢ = 0.2 cases when h, = 0 (the second row)
and h, = 0.2 (the fourth row). Similar to the @ = 2
case, the A, and A, components of the order param-
eter both contain three (or five) vortices which do not
overlap in space, leading to the occurrence of a single-
skyrmionic pattern with a larger @ = 3 (or 5). Also,
these hybrid states can be easily distinguished accord-
ing to their signatures in the phase difference and LDOS
plots.
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Fig. 5 Contour plots of |4A,| [column (I)], ¢zy [column
(I1)], As [column (III)], Ay [column (IV)], and p(0) [col-
umn (V)] in a 40 x 40 lattice accommodating ¢ = 6&y when
h. =0 and ¢ = 0 (first row), h. = 0 and ¢’ = 0.2 (second
row), h, = 0.2 and ¢’ = 0 (third row), as well as h, = 0.2
and ¢’ = 0.2 (fourth row). The other chosen parameters are
the same as in Fig. 2

4 Conclusions

In summary, we have investigated the spatial config-
urations of topological defects in bulk superconduct-
ing systems with mixed pairing orders by numerically
solving the BAG equations self-consistently. The on-site
repulsive interaction among the electrons is introduced
into the model Hamiltonian, giving rise to the mixed
spin-triplet (dominant p-wave) and spin-singlet (sub-
dominant s-wave and coexisted d-wave) pairing sym-
metries by suitable choice of the chemical potential.
The influences of the Zeeman field and the next-nearest-
neighbor hopping on the order-parameter modulations
are mainly discussed. With increasing the applied mag-
netic flux in a periodic unit cell, the quantized mul-
tivortex states with point-like cores and the coreless
@ = 2 skyrmionic structures as well as their hybrid
modes can remain stable in such mixed-parity systems.
Interestingly, the unclosed vortex chains and enclosed
skyrmionic modes with ) > 2 can be obtained when
the external magnetic flux becomes stronger. In partic-
ular, nonuniform patterns of the vortex lattice and the
elliptical-like vortices take place at appropriate perpen-
dicular flux. All these topological configurations can be
resolved by the zero-energy peaks in the LDOS plots.
It is noted that using the tight-binding model allows
us to take certain aspects of the real band structure
into account. Our theoretical calculations may be use-
ful for some materials containing several competing
order parameters, such as the proximity-induced two-
dimensional topological superconducting systems near
the surface of s + d or s + id superconductors as well
as the noncentrosymmetric superconductors in which
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the singlet and the triplet components are intrinsically
mixed [52]. We expect that our theoretical results will
be verified experimentally in the future.
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