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Abstract. In this paper we propose a non-conservative kinetic model of wealth exchange with saving of
production as an extension of the Chakraborti–Chakrabarti model of money exchange. Using microeco-
nomic arguments, we achieve rules of interaction between economic agents that depend on two exogenous
parameters, the exchange aversion of the agents (λ) and the saving of production (s), such that in the limit
s = 0, these rules can be reduced to the ones of the Chakraborti–Chakrabarti model. The non-conservative
dynamics are approached analytically through a mean field approximation and the Boltzmann kinetic
equation. Both approximations allow us to compute a theoretical rate of exponential growth (g) and to
fit the emergent distributions of wealth to a gamma probability density function, in such a way that g,
the fit parameters and the Gini index can be expressed analytically in terms of λ and s. In general, the
emergent distributions do not reach a stationary state, however it is possible to study the emergence of self-
similar distributions that hold the gamma pattern and maximize the Shannon entropy. With the purpose
of addressing labor income, we explore additionally the effect of salary income in the model by defining
a two-class structure where population is separated into workers and producers. This assumption leads to
an emergent rate of economic growth g̃e. The macroeconomic implications of this model are studied by
means of the wealth/income ratio, which can be predicted as s/g̃e, in accordance with the Solow model of
economic growth. The results in this paper allow to tie some of the important facts of the modern economic
speech, as well as the microeconomic theory, with some methods and ideas developed in the context of
non-conservative exchange models.

1 Introduction

The study and development of agent-based models of eco-
nomic systems inspired by the statistical mechanics has
been an active field of research of econophysics since the
early XXIst century [1–4]. This approach has proposed
an important set of tools, most of them coming from
the kinetic theory of gases and the condensed matter
physics, aimed to understand the dynamics behind the
economic inequality from a microscopic point of view.
Certain class of these models imposes the conservation
of total wealth and total income as an analogy to the
energy conservation, due to elastic collisions in an ideal
gas [5–7]. Those closed economic dynamics constitute a
useful simplification, but with a restricted generalizability
in economics, that allows to model transaction processes
where money is locally conserved and there is no return
from wealth, for example, the distribution of salaries
or wages [8]. However, a more accurate approach to
macroeconomics requires non-closed dynamics, governed
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by the production of goods and return from wealth,
which inherently leads to non-conservative economic sce-
narios characterized by the presence of economic growth
[9].

A non-conservative approach to the study of the dis-
tribution of wealth and income is usually introduced in
econophysics through the return from wealth, which is
obtained as a consequence of stochastic multiplicative
processes that model the investment as a wealth injec-
tion to the system, in such a way that the evolution
in time of the average wealth describes an exponential
growth pattern [10–12]. The effects of this general scheme
of stochastic processes on the wealth distributions have
been extensively investigated by different studies, which
include important economic factors as taxation and loan
[13–16]. Nevertheless, the macroeconomic phenomenon of
economic growth has not been enough explored within the
scenario of econophysics, and only until recent years the
study of the microeconomic dynamics associated to the
emergence of these exponential growth patterns and its
relation to the phenomenon of economic inequality has
attracted some attention [17–19].
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In this work we propose a kinetic wealth-exchange
model driven by the saving of production, one of the
key factors governing the economic growth, in neoclas-
sical macroeconomics [20,21]. This model states a non-
conservative extension of the gas-like model of money
exchange with marginal saving propensity λ developed by
Chakraborti and Chakrabarti [7] (henceforth referred as
CC model). With this in mind, we start from the microeco-
nomic formalism based on the production and exchange of
economic goods constrained to stochastic preferences that
has been introduced by Chakrabarti et al. [22]. Thus, each
economic agent that is involved in a trading saves a frac-
tion s of the goods that they produce and buy, in such a
way that these are not perishable anymore. As a result,
we obtain rules of interaction between economic agents,
which can be reduced to the ones of the CC model for the
particular case s = 0. However, we redefine the parameter
λ as the exchange aversion of the agents, in the frame of
this new non-conservative model, because it does not lead
to capitalization and only limits the available amount of
wealth of each agent at any transaction. The effect of this
new parameter tends to right-skew the emergent distribu-
tions, in spite of this, the distributions hold the original
gamma pattern of the CC model [23], in most of the cases,
and the Gini index can be computed in a similar way of
reference [24].

We present two analogous approaches to the main
results of the model, that connect with the methodologies
of study of non-conservative models. First, we investigate
the formation of wealth using a mean field approxima-
tion similar to the one proposed by Bouchaud and Mézard
in their model of wealth condensation [10], which allows
us to understand the exponential behavior of the aver-
age wealth, and to compute an analytical rate of growth
g in terms of λ and s. As a complementary analysis, we
use the Boltzmann equation approach presented in refer-
ences [25,26] to compute recursively higher moments. In
particular, we solve the differential equations for the first
and second moments, in order to calculate the parame-
ters of the gamma distribution pattern. As it is expected,
the emergent distributions do no reach a stationary state,
however, it is possible to study the emergence of a quasi-
steady state, where the Shannon entropy is maximized and
the distributions hold the gamma pattern, by defining the
self-similar wealth w

〈w〉 .

The exponential increasing of the total wealth and pro-
duction of the system is related to the phenomenon of
economic growth. However, with the purpose of addressing
the effect of labor income, we separate the total population
of the system into Nl workers and Np producers. In this
frame, every producer has associated Nl/Nw workers that
receive an average salary proportional to a fraction (1−α)
of the total production, where α is the share of capital
income. We study these dynamics within the framework of
neoclassical macroeconomics, as an approach to the recent
studies on economic inequality made by Piketty [27]. So,
we present their direct relation to the Solow Model of
economic growth [20], which states as a golden rule that
on the long run the ratio between wealth and income
(W (t)/Y (t)) tends to the ratio between the rate of saving
and rate of economic growth s/g̃e.

All the results are tested numerically using Monte Carlo
simulations. For this purpose, we proceed in the usual
way, considering a pool with a fixed number of economic
agents N , which interact pairwise according to the rules
established in the model. The evolution in time of the sys-
tem is studied by recording the wealth, production and
entropy at every time-step. The first two state variables
are computed as the sum over the individual wealth and
production of all the economic agents, which allows us to
measure the economic growth of the system, in absence of
population growth [28].

This paper is presented in the following structure. In
Section 2, we present the microeconomics of the model,
by extending the formalism of the CC model. The ana-
lytical approach to the moments of the distribution, using
both the mean field approximation and the Boltzmann
equation, is presented in Section 3. Section 4 is devoted
to the numerical analysis of the emergent distributions,
testing the underlying results from the previous sections.
On the other hand, the macroeconomic implications of
the model are discussed in Section 5, where we study the
wealth/income ratio. Conclusions and remarked ideas are
presented in Section 6.

2 Microeconomics of the non-conservative
gas-like model

We consider an economic system with a fixed number of
agents N that interact in a market by exchanging a frac-
tion of their wealth. The transactions between pairs of
economic agents occur following the dynamic of a pairwise
collision between molecules of a gas. At every time t, two
economic agents i and j are randomly selected to trade
in the market following the equations: w∗i = wi + ∆wi
and w∗j = wj + ∆wj , where wi,j ≡ wi,j(t) and w∗i,j ≡
wi,j(t+1) are, respectively, the wealth of each agent before
and after trading, and therefore these interaction rules are
well defined if ∆wi and ∆wj are known.

The economic transactions obey the production of
goods, in the same spirit of the CC model [7]. Thus, the
agent i produces an amount X of certain good, and the
agent j produces an amount Z of a different good. Each
agent tries to buy an amount of the good produced by the
other agent selling a fraction of their own good and using
a portion of their wealth, in such a way that at the end of
a transaction the agent i holds an amount xi of their own
good and an amount zi of the other good, and the agent
j ends with xj and zj . This market dynamic is governed
by the preferences of the agents for each good, which are
defined through the Cobb-Douglas utility functions:

Ui(xi, zi, w
∗
i ) = [Axi]

θ
[Azi]

φ
[w∗i ]λ, (1)

Uj(xj , zj , w
∗
j ) = [Axj ]

θ
[Azj ]

φ
[w∗j ]λ. (2)

The terms [Axi]
θ, [Axj ]

θ, [Azi]
φ, [Azj ]

φ establish
the preferences for consuming, such that the amounts
exchanged of the goods satisfy the market conditions
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xi + xj = X and zi + zj = Z, and the powers are normal-
ized to 1 as θ+ φ+ λ = 1. The last condition implies that
the utility functions are constant return to scale, which is
assume for simplicity as in [22,29]. Note that the factor
A that multiplies the exchanged amounts decreases the
proclivity of the agents to consume, in such a way that
if A = 1, then the goods are completely consumed after
trading, and if A = 1− s, the agents save a fraction s of
the production, such that sε[0, 1].

In general, the powers in the utility functions are
assumed to be equal for both agents. This fact allows to
simplify the dynamics of the model as in the CC model [7],
and to include the stochastic nature of the transactions by
means of θ and φ, as we show below. On the other hand,
the parameters λ and s are not determined within the
model, conversely both are set as exogenous parameters
describing the overall exchange aversion of the agents and
capacity of the entities that compose the economy to save
a fraction of the production.

The constraints over consumption are introduced using
the inequalities shown below, which establish that the
agents’ consumption, added to their remaining wealth
after trading (left-hand side of the inequality) cannot
exceed their total wealth before trading. This last is
defined as the individual capital wi and wj at t, added to
the value of their total production pxX and pzZ (right-
hand side of the inequality), where px and pz are the
selling prices of the goods.

Apxxi +Apzzi + w∗i ≤ wi + pxX, (3)

Apxxj +Apzzj + w∗j ≤ wj + pzZ. (4)

At every time, the agents pursuit to maximize their util-
ity subjected to constraints (3) and (4). Thus, there are
defined the Lagrangian functions:

Li(xi, zi, w
∗
i , µi) = [Axi]

θ[Azi]
φ[w∗i ]λ

−µi [Apxxi +Apzzi + w∗i − wi − pxX],

(5)

Lj(xj , zj , w
∗
j , µj) = [Axj ]

θ[Azj ]
φ[w∗j ]λ

−µj
[
Apxxj +Apzzj + w∗j − wj−pzZ

]
,

(6)

where µi and µj are Lagrange multipliers.
This maximization problem is solved using the

Lagrange multipliers method as in the “Microeconomic
foundation of the kinetic exchange models” introduced by
Chakraborti et al. [29]. Hence, taking the derivatives equal

to zero:
∂Li,j

∂xi,j
=

∂Li,j

∂zi,j
=

∂Li,j

∂w∗
i,j

=
∂Li,j

∂µi,j
= 0, and solv-

ing the equation system, there are obtained the demand
functions:

xi =
θ

λApx
w∗i , zi =

φ

λApz
w∗i , w∗i = λ[wi + pxX], (7)

xj =
θ

λApx
w∗j , zj =

φ

λApz
w∗j , w∗j = λ[wj + pzZ]. (8)

It is clear from equations (7) and (8) that the demand
for goods decreases as their prices increase. Additionally,
the individual wealth at t+ 1 is proportional to the total
production of each agent. Using the market conditions
xi + xj = X and zi + zj = Z, we obtain the following
expressions for the clearing prices of goods:

px =
ε(1− λ)[wi + wj ]

X[λ− s]
, (9)

pz =
(1− ε)(1− λ)[wi + wj ]

Z[λ− s]
, (10)

where the variable ε = θ
θ+φ was introduced as a random

factor, uniformly distributed over the domain [0, 1].
Note that the evolution of the individual wealth can be

directly computed now by replacing the clearing prices in
the expressions for w∗i and w∗j . However, it is useful to
express it in the fashion w∗i = wi + ∆wi, w

∗
j = wj + ∆wj .

Adding and subtracting wi and wj in the correspond-
ing expression, then the interaction rules are now known
because we obtain:

∆wi =
1− λ
λ− s

λ [ε(wi + wj)− wi] +
1− λ
λ− s

swi, (11)

∆wj =
1− λ
λ− s

λ [−ε(wi + wj) + wi] +
1− λ
λ− s

swj . (12)

For the case s = 0, it is easy to check that ∆w = ∆wi =
−∆wj , which implies that the evolution of individual
wealth reduces to mere monetary exchange, in accordance
with the CC model [7]. In this case, the expressions for
∆wi and ∆wj allow to the same interaction rules of the
CC model given by w∗i = wi + ∆w and w∗j = wj − ∆w,
where ∆w = (1 − λ) [ε(wi + wj)− wi] [7], being w now
only related to money because of the lack of production
saving. On the other hand, if s 6= 0, then ∆wi 6= ∆wj and
total wealth W (t) is not conserved in time, in contrast,
W (t) grows as:

W (t+ 1) = W (t) + ∆wi + ∆wj

= W (t) +
1− λ
λ− s

s(wi + wj). (13)

In order to guarantee the convergence of the model
and avoid the presence of debt, the exchange aversion
λ is set as an upper limit for s. Thus, we restrict the
analysis to the cases that satisfy λ > s. Note that the
expressions for ∆wi and ∆wj contain exchange terms

similar to the CC model 1−λ
λ−sλ [ε(wi + wj)− wi], and non-

conservative terms 1−λ
λ−sswi,j , analogous to the models of

references [10–12]. However, the wealth growth induced
by this last term is completely determined by exogenous
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parameters, in contrast to what happens in the models of
wealth exchange with stochastic growth as the proposed
in references [10–12].

3 Analytical approach to the moments
of the distribution

An important fact of the extension introduced in the pre-
vious section is the possibility of connecting some the
methods developed in the context of non-conservative
models in references [10,12,25] with the CC model. In this
order of ideas, we present in this section an analytical
study of the moments of the distribution using a mean
field approximation to the pairwise dynamics between
agents, and the Boltzmann-type approach of references
[25,26]. In particular, we calculate explicitly the expres-
sion for the first and second moments, which are used,
together with a numerical analysis in the next section, for
computing the parameters of the emergent distributions.

All the results presented are tested using numerical sim-
ulations. With this in mind, we define a set of agents
N = 1000 with one unit of initial individual wealth, such
that the total wealth of the system starts atW (t0) = 1000.
The economic system evolves according to the dynamics
described above. Thus, at every time-step, two economic
agents are randomly selected, using a generator of random
uniform numbers, to interact according to equations (11)
and (12). In addition, we compute the state variables of
the system: total wealth W (t) and total production Y (t),
at every time-step. The first one is obtained by summing
over the wealth of every economic agent, and the second is
obtained computing and summing equations (9) and (10),
which represent the production of each couple of agents
involved in a transaction at any time-step. For all the cases
studied, we take an average over 105 ensembles.

3.1 Mean field approximation to formation of wealth

According to the dynamics of the model, the individual
wealth of an agent k at any time t + 1 has a probability
1/N of increasing their initial value wk due to the interac-
tion rule defined by equation (11) and a probability 1/N of
increasing due to the interaction rule (12). Hence, assum-
ing that any agent k feels an average influence from their
environment, given by the average wealth over all agents

〈w〉 = 1
N

∑N
i=1 wi, we redefine both equations as follows:

∆w′k =
1− λ
λ− s

λ [ε(wk + 〈w〉)− wk] +
1− λ
λ− s

swk, (14)

∆w′′k =
1− λ
λ− s

λ [−ε(〈w〉+ wk) + 〈w〉] +
1− λ
λ− s

swk. (15)

Note that equations (14) and (15) constitute an approx-
imate form of equations (11) and (12) where we assumed
that the interaction with the other agent can be reduced
to an average over all the economic agents. Hence, the

behavior in time of the individual wealth is given by:

w∗k = wk +
1

N
{∆w′k + ∆w′′k}

= wk +
2

N

(1− λ)

(λ− s)
swk +

1

N

(1− λ)

(λ− s)
λ [〈w〉 − wk] .

(16)

Using the fact that w∗k − wk = wk(t+1)−wk(t)
t+1−t , we get

the following continuous form of equation (16), under the
limit ∆t→ 0:

dwk
dτ

= gwk + J [〈w〉 − wk] , (17)

where g = (1−λ)
(λ−s)s is the rate of growth of the average

wealth, J = (1−λ)
(λ−s)

λ
2 is the rate of exchange and τ = 2t

N is

the normalized time, which obeys the fact that at every
time-step, only one couple, from the set of N

2 , trades in
the market.

Equation (17) is analogous to the process of evo-
lution of the individual wealth in the Bouchaud and
Mézard model [10]. Nevertheless, the factor g which gives
account of the growth of wealth does not have a stochas-
tic behavior related with a stochastic process, inducing
wealth condensation. Taking and average over k and inte-
grating equation (17), we find that the average wealth
evolves in time as 〈w〉 = 〈w0〉 exp (gτ), where the con-
stant 〈w0〉 is the average wealth per agent at t = 0
that depends on the initial conditions of the system. In
Figure 1a, we show the behavior of the average wealth
simulated for different cases of λ and s and fitted using
the previous result.

3.2 The Boltzmann equation approach

In general, the dynamics of the kinetic exchange models
of markets can be studied as a one-dimensional collision
between Maxwell molecules [25]. When a trading occurs
in the market, the individual wealth of a pair of economic
agents is transformed as [w, v] → [w∗, v∗], in analogy to
the change of the velocities due to a binary collision. This
process is described in terms of the following equations:

w∗ = p1w + q1v, (18)

v∗ = p2w + q2v. (19)

Note that the variables w ≡ wi, v ≡ wj have been intro-
duced replacing the index notation, with the purpose of
simplifying the equations along this section, and p1,2, q1,2

give the detail of the transaction. In particular, for the
model considered in this paper, relations (11) and (12)
lead to:

p1 =
λ

λ− s
[λ+ ε(1− λ)− s], (20)

q1 =
λ

λ− s
[ε(1− λ)], (21)
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Fig. 1. Evolution in time of the first and second moments of the distribution of wealth. The moments computed using simulated
data follow the analytical expressions obtained through the mean field approximation and the Boltzmann kinetic equation. In

particular, for the second moment, the coefficient multiplying the exponential function reads as m2 = λ2(λ+2−3s)

3(λ−s)(λ+s−λs)−2λ2(1−λ) .

p2 =
λ

λ− s
[(1− ε)(1− λ)], (22)

q2 =
λ

λ− s
[λ+ (1− ε)(1− λ)− s]. (23)

In the kinetic theory of gases, the probabilistic
description of such transformation is made through the
Boltzmann kinetic equation:

∂f

∂t
= Q(f, f), (24)

where the term Q(f, f) is known as the collision oper-
ator, which determines the evolution of the distribution
function due to the collision process. In general, the
mathematical definition of Q(f, f) obeys the physical
characteristics of the collision, which are related with a
cross section, however, in the case of an economic transac-
tion, its formulation is simpler. A useful approach to this
binary dynamics shown in references [25,26] is achieved
through the following weak formulation of the Boltzmann
kinetic equation:

d

dτ

∫
f(w, τ)Φ(w)dw =

1

2

〈∫
f(w)f(v) [Φ(w∗) + Φ(v∗)

−Φ(w)− Φ(v)] dwdv dw∗dv∗
〉
.

(25)

This equation studies the effect of the collision operator
in smooth test functions Φ(w). Thus, assuming Φ(w) = wr

we can compute the evolution in time of the rth moment
as:

d

dτ

∫
f(w, τ)wrdw =

1

2

〈∫
f(w)f(v) [(w∗)r + (v∗)r

−wr − vr] dwdv dw∗dv∗
〉
. (26)

Using the binomial expansion, the last expression leads
to the following recursive relation:

d

dτ
Mr(τ) = 〈pri + qri − 1〉+Mr(τ)

+
n−1∑
k=1

(
r

k

)
〈pki qr−ki 〉+Mk(τ)Mr−k(τ), (27)

where the notation 〈ψ(pi, qi)〉+ := 1
2 〈ψ(p1, q1) +ψ(p2, q2)〉

has been introduced, as in reference [26], in order to abbre-
viate the expected values with respect to variables defining
the factors p1,2, q1,2.

By standard methods of ordinary differential equa-
tions, we find through recursive integration the following
solutions of equation (27) for r = 1, 2:

M1(τ) = M1(0) exp[〈pi + qi − 1〉+τ ], (28)

M2(τ) =
2〈piqi〉+ exp[2〈pi + qi − 1〉+τ ]

〈1− p2
i − q2

i 〉+ + 2〈pi + qi − 1〉+
+

c

exp[〈1− p2
i − q2

i 〉+τ ]
, (29)

where c is a constant of integration that can be neglected
in the limit τ →∞ only if 〈1− p2

i − q2
i 〉+ > 0. In particu-

lar, for the factors (20), (22), (21) and (23), this condition
is satisfied at every time, due to the fact that the order of
magnitude of the exogenous parameters is λ, s ∼ O

(
10−1

)
and λ > s. Therefore, (29) reduces to:

M2(τ) =
2〈piqi〉+ exp[2〈pi + qi − 1〉+τ ]

〈1− p2
i − q2

i 〉+ + 2〈pi + qi − 1〉+
, (30)
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and the moments computed explicitly in terms of p1,2 and
q1,2 read as:

M1(τ) = exp

(
(1− λ)

(λ− s)
sτ

)
, (31)

M2(τ) = m2 exp

(
2

(1− λ)

(λ− s)
sτ

)
, (32)

where

m2 =
λ2(λ+ 2− 3s)

3(λ− s)(λ+ s− λs)− 2λ2(1− λ)
. (33)

Note that the result obtained for the first moment is
exactly the same achieved by means of the mean field
approximation. In Figure 1, we show the results for the
first and second moment computed using simulated data
for different values of λ and s. In both cases the theoreti-
cal relations reproduce accurately the behavior in time of
data, however for the second moment, the level of accu-
racy increases as t becomes higher, as consequence of the
approximation made to neglect the integration constant.

4 Emergent wealth distributions

In the context of the CC model, it is generally acknowl-
edged that the best fitting of simulated data is achieved by
means of the gamma probability density function (PDF):

f(w) =
1

aΓ(b)

(w
a

)b−1

exp
(
−w
a

)
dw, (34)

where a is the scale parameter and b the shape.
According to Patriarca et al. [23], the gamma distri-

bution pattern constitutes the analytical emergent dis-
tribution of the CC model, such that b = 1 + 3λ

1−λ and

a = 1/b. However, it has been shown in later studies, by
direct comparison of the moments of the distribution com-
puted using both a fixed-point distribution approach and
the Boltzmann kinetic equation, that this conjecture is not
right [30,31]. In spite of this conclusion, it is clear that this
pattern reproduces correctly the main macroscopic prop-
erties of the model, including the behavior of the wealth
inequality captured by the Gini index [24]. In this order of
ideas, we study in this section the validity of the gamma
pattern for fitting the emergent distributions of the non-
conservative extension proposed in previous sections.

An underlying property of the gamma PDF is that the
rth moment of the distribution can be computed using

the scale and shape parameters as Mr = aΓ(r+b)
Γ(b) [32]. In

particular, for the first and second moments, the previ-
ous expression reads as M1 = ab and M2 = a2b(b + 1).
Therefore, using the results (31) and (32), a and b can be
computed as:

a =
M1(τ)

b
= (m2 − 1) exp (gτ)

=
(1− λ)(λ2 + 3s)

3(λ− s)(λ+ s− λs)− 2λ2(1− λ)
exp (gτ) , (35)

b =
1

m2 − 1
=

3(λ− s)(λ+ s− λs)− 2λ2(1− λ)

(1− λ)(λ2 + 3s)
. (36)

In the case s = 0, the rate of growth is g = 0, which
implies that the exponential growth disappears and the
parameters a and b match the expression predicted by
Patriarca et al. [23]. On the other hand, for s 6= 0, the scale
of the distribution grows exponentially in time, while the
shape remains constant. In Figures 2a–2d, we present the
numerical analysis of the emergent distributions obtained
at different time-steps for different values of λ and s; all
the cases are fitted using Maximum Likelihood Estimation
(MLE). On the whole, the gamma distribution is accepted
for every case by the Kolmogorov–Smirnov test, with a
level of significance α = 0.5. In addition, the theoretical
relations (35) and (36) match, with a high level of accu-
racy, the value of the parameters estimated using MLE.
The comparison between both results is shown in subplots
(e and f).

4.1 Quasi-steady state and wealth inequality

In general, we do not expect to reach a steady state
for the emergent distributions, as consequence of the
non-conservative dynamics of the model, inducing the
exponential increasing of the moments. This behavior is
well captured by the scale parameter a of the gamma pat-
tern as it is shown in equation (35). However, one can
study the emergence of a quasi-steady state by defining
the normalized wealth w̃ = w

〈w〉 . Under this condition, the

PDF (34) reads as:

f(w̃) =
1

ãΓ(b)

(
w̃

ã

)b−1

exp

(
− w̃
ã

)
dw̃, (37)

where the scale parameter becomes the time constant vari-
able: ã = a0 = a

〈w〉 , due to the fact that a(t) = a0 exp (gτ);

while the shape parameter is not altered by the effect of
the normalization.

The results obtained for λ = 0.8 and s =
{0, 0.1, 0.2, 0.3} are shown in Figure 3. On the whole, the
distribution tends to decrease its peakedness for higher
values of s, which implies that it becomes less egalitarian
as s increases. This effect is reflected by the Gini index,
which increases proportionally to s. The computed values
of this metric for fixed l = {0.2, 0.5, 0.8} are shown in
Figure 4 and fitted using the theoretical expression for
the Gini index of the gamma PDF [33]:

G =
1√
π

Γ(b+ 1
2 )

Γ(b+ 1)
, (38)

where b is given by equation (36).
The emergent distributions are successfully character-

ized by means of the gamma PDF, however, in the limit
s → λ the goodness of fit is lost for the majority of the
cases. Thus, the accuracy of the prediction made using
the theoretical relation (38) decreases in that limit. It
is important to remark that the Gini index of the dis-
tribution only depends on the shape parameter and is

https://epjb.epj.org/
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Fig. 2. Evolution in time of the emergent wealth distributions. (a–d) Simulated data is well fitted by the gamma PDF. The
parameters were computed, in all the cases, using MLE. (e and f) The exponential behavior of the first moments is captured by
the scale parameter a, which follows the function a = (m2 − 1) exp(g 2t

N
), while the shape parameter remains constant in time.

In all the cases studied, their values are well fitted by the theoretical functions obtained using the Boltzmann equation.

https://epjb.epj.org/
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Fig. 3. Simulated data is well fitted using the gamma distribu-
tion at quasi-steady state of normalized wealth distributions.
In this case, the parameters are time independent and can be
directly computed as a = m2 − 1, b = 1

a
= 1

m2−1
.

Fig. 4. The spectrum of values of the Gini index is wider
than in the CC model. Simulated data shows that G > 0.5
as s → λ. However, in that case the predictive power of the
gamma distribution decreases.

independent of the time. Additionally, the spectrum of val-
ues for the Gini index is greater than 0.5, which removes
the restriction of the CC model imposed by the case λ = 0.

The effect of dividing by 〈w〉 induces a quasi-stationary
state, in which the entropy reaches a maximum, as
we show in Figure 5. This state variable is computed
from simulated data using the Shannon’s entropy def-
inition H =

∑m
l=1 pl log pl, [34] defining a fixed wide

d = max[wk(t)]−min[wk(t)]
m , where k = 1, 2, 3, . . . , N and the

terms max/min[wk(t)] are, respectively, the money of the
richest and the poorest agent during all the time interval
studied. Note that the m levels of money used for every λ
and s must be the same at every time, thus, the maximum
and minimum of wk represent an absolute value, which is
defined over the whole time interval considered. In general,
we found that for higher values of λ, the relaxation process

takes more time. Conversely, the system reaches faster the
quasi-stationary state as s increases.

5 Evolution of income

Until know, we have focused on the behavior of wealth.
However, the non-conservative dynamics of the model
were introduced as a direct consequence of production of
goods, which has important effects on the income and the
long-term behavior of the model, as we discuss below.

According to the kinetic-like dynamics defined in
Section 2, at every time-step, the total production can
be computed as Y (t) = pxX + pzZ. Using equations (9)
and (10), the previous expression becomes:

Y (t) =
1− λ
λ− s

[wi + wj ]. (39)

5.1 Labor income

Note that the dynamics described so far assume that all
the agents are producers, which implies that the only
source of income is the return from individual wealth by
means of total production, that is, the share of capital
income is α = 100%. However, according to empirical data
from modern economies, this value constitutes only 30% of
total income [27,35]. Therefore, a more realistic approach
must take into account the income due to labor.

In order to introduce the effect of income salary into
the model, we suppose a two-class structure where total
population is composed of workers and producers. The
total amount of workers is set to be Nl = 0.9N , while
producers are Np = 0.1N . For simplicity, we suppose that
every producer has associated Nl/Np workers, that is, the
size of firms is homogeneous, and all the employees receive
the same average salary. In this frame, the wealth of two
producers i and j, that are randomly selected to trade in
the market, changes as:

w∗i = wi + α∆wi, (40)

w∗j = wj + α∆wj , (41)

where ∆wi and ∆wj are defined by (11) and (12). On the
other hand, the average salary of an agent l from the set
of 2Nl

Np
workers associated to both producers is defined as:

〈Yl〉 =
Np
2Nl

(1− α)(∆wi + ∆wj), (42)

and their wealth at t increases as w∗l = wl + 〈Yl〉.
Recalling the mean field approximation introduced in

Section 3, it is clear that under this new dynamics, the
average wealth of producers increases as:

w∗k = wk +
α

Np
{∆w′k + ∆w′′k}

= wk +
2α

Np

(1− λ)

(λ− s)
swk +

α

Np

(1− λ)

(λ− s)
λ [〈w〉 − wk] .

(43)

https://epjb.epj.org/
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Fig. 5. The quasi-stationary state of self-similar distributions for w̃ = w
〈w〉 is studied using the Shannon entropy. (a) The

relaxation process is faster for higher values of s. (b) Conversely, it is slower for higher λ. All the curves were normalized to one
dividing by their maximum value of entropy, in order to make easier the comparison between curves.

Fig. 6. (a) Simulated data of production, for different cases of s and λ, is well fitted by the exponential function Y (t) =

2 (1−λ)
(λ−s) exp(ge

2t
Np

). (b) The asymptotic behavior of the wealth/income ratio can be predicted by means of theoretical value s/g̃e,

where g̃e is the rate of growth divided by the rate of interaction between producers
Np

2
.

The solution of this equation, in the limit ∆t → ∞, is
analogous to the one obtained in previous sections: 〈wp〉 =

〈w0〉 exp
(
ge

2t
Np

)
, however, in this case the rate of growth

is ge = (1−λ)
(λ−s)αs.

Note that the size of population remains constant in
time, as well as the number of workers associated to
each producer. Therefore, the production only increases
as consequence of wealth hold by producers. In this
line, equation (39) can be approached analytically as:

Y (t) = 2 (1−λ)
(λ−s) exp(ge

2t
Np

). In Figure 6a, we present the

evolution of the total income computed using simulated
data and fitted to this exponential function, setting
α = 0.3.

5.2 Wealth/income ratio

Despite the modification in the population structure, the
total wealth of the system still increases according to equa-
tion (13), due to the fact that the proportion α goes to
producers and (1− α) goes to workers, but on the whole
both fractions sum 1. Thus, comparing (13) and (39) we
can rewrite the evolution of the total wealth in time as:

W (t+ 1) = W (t) + sY. (44)

In a continuum time horizon, the previous equation
reads as dW

dt = sY . This result constitutes one of the
main macroeconomic hypothesis about the capitaliza-
tion in neoclassical economics [36]. Replacing Y (t) =

https://epjb.epj.org/
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Y0 exp
(
ge

2t
Np

)
, where Y0 = 2 (1−λ)

(λ−s) , and integrating both

sides of equation we obtain:

W (t) =
s

g̃e
Y (t) +

[
W0 −

s

g̃e
Y0

]
, (45)

where g̃e = 2ge
N is the rate of economic growth normal-

ized by the rate of trading between producers defined in
the kinetic-like process. Now, dividing by Y (t), the last
expression becomes:

β(t) =
s

g̃e
+

[
W0 −

s

g̃e
Y0

]
1

Y (t)
. (46)

In the limit t → ∞, the factor 1
Y (t) vanishes the sec-

ond term in the right-hand side of the equation, thus we
obtain:

lim
t→∞

β(t) =
s

g̃e
. (47)

The concept of infinity in the previous result describes
a very large, but reasonable, period of time in which the
economy reaches a steady state. This result is coherent
with the prediction made by Solow [20], which establishes
that in the long-term, the wealth/income ratio tends to
the ratio between savings and the rate of economic growth.
However, we obtained it as an emergent property of the
microscopic dynamics of the model, in contrast with the
macroeconomic analysis made by Solow, where the micro
and the macroeconomics are connected by means of the
aggregation property of the production function [37]. In
Figure 6b, we present the behavior of the wealth/income
ratio computed using simulated data and predicted by the
relation (47).

The behavior of wealth/income ratio β(t) is a well-
known fact in the context of macroeconomics since the
middle XXth century. Its implications in the analysis of
economic inequality has been revisited in recent years
by Thomas Piketty, who explored the influence of the
inherited wealth in the divergence of wealth distributions,
using the asymptotic behavior of β(t) for approaching the
empirical data of the 10 richest economies in the world
[38]. In that context, limit (47) is known as the second
fundamental law of capitalism.

5.3 Wealth distributions for workers and producers

In the context of two-structure population, we observe the
emergence of two different distributions of wealth. The
first one given by the salaries paid to workers at every
time-step, and the second one analogous to the distribu-
tions discussed in previous sections, related to producers.
In general, both distributions are well fitted using the
gamma PDF, however, their parameters are different in
both cases. In all the cases studied, the emergent distri-
bution for workers is more egalitarian than distributions
for producers. In Figure 7, we present the results of simula-
tions for λ = 0.5 and s = 0.1, using the normalized wealth

Fig. 7. Distributions of wealth for workers and producers set-
ting λ = 0.5, s = 0.1 and α = 0.3. The distribution obtained
for workers is generated by salaries paid at every time-step.
On the other hand, the process leading to distributions for
producers is given by the kinetic-like interactions described in
previous sections, multiplied by the share of capital income
α = 0.3. In general, the value of the Gini index (G) is higher
in the distributions for producers.

w
〈w〉 defined in the previous section. The level of inequal-

ity is measured, as in the previous results, using the Gini
index, which is higher for the distribution of wealth related
to producers.

It is important to remark that the origin of the
wealth distributions for workers are the salaries paid at
every time-step. Therefore, this distribution is actually an
income distribution, due to the fact that workers do not
receive any kind of rent. In general, the income distribu-
tions obtained from the model are more egalitarian than
the wealth distributions for producers, this fact satisfies
empirical observations made in the context of economics
[35,39].

The assumption of a two-class structure constitutes a
strong simplification of the society structure in modern
economies, that we made in order to propose an approach
to heterogeneous economies with a microeconomic per-
spective. However, a more realistic approach to modern
industrialized economies should take into account the fact
that population on the top decile of capital income are
also on the top decile of labor income. As a matter of
fact, empirical evidence for countries as Sweden and Nor-
way shows that the share of wage on total income for the
top decile of the population constitutes approximately the
25% of income since the late XXth century [40,41].

6 Discussion and conclusions

The kinetic wealth-exchange model introduced in this
paper extends the CC model, by imposing the saving of
production in the formalism of the utility function. The
maximization of the utility leads to a generalized dynamic,
depending on two exogenous parameters: the saving of
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production s and the original parameter of the CC model
λ, which is redefined in this context as the exchange aver-
sion of the agents, due to the fact that it represents the
utility of protecting wealth from risky tradings [22].

In the limit case s = 0, the dynamics and results are
the same of the CC model, where the agents interact by
means of money transactions. On the other hand, in the
non-conservative regime s 6= 0, the model is extended to
wealth exchange, and the economic agents are able to cap-
italize, by saving a fraction of the production. Despite
the differences between the nature of both interactions,
the results of the non-conservative model hold the gamma
distribution pattern for s sufficiently far from λ. In addi-
tion, considering higher values of s allows to reproduce
economic scenarios characterized by a tougher level of
inequality, such that the Gini index is greater than 0.5.
However, the accuracy of the predictions made by the
gamma pattern is reduced in these cases, due to the
divergence in the interaction rules induced as s→ λ.

As a first approach to the non-conservative dynamics,
we considered in this paper a constant rate of saving
of production. According to analysis made by Piketty,
this reduction can be assumed as a value representing
the average rate of saving in a society [27]. However, a
more accurate approach can be achieved considering a
distribution pattern for s. We expect this modification
eventually leads to the emergence of power laws, as in ref-
erences [10,25], due to the stochastic multiplicative term
that appears for the evolution of wealth.

An important fact of introducing saving of production
is the possibility of modeling two-class economies. In this
line, we extend the kinetic formalism to a model where
population is divided into workers and producers. Thus,
the income is separated into capital income and labor
income, where the last is paid to a fixed number of agents
associated to each producer, every time that they are
involved in a transaction. In this context, we obtain that
the emergent distributions can be separated into distribu-
tions of wealth, related to producers, and distributions of
wealth related to income paid to workers. And moreover,
the long-term behavior of the wealth/income ratio can
be predicted as the ratio between savings and economic
growth.

In line with the previous argument, the non-
conservative extension allows to tie important problems in
the context of modern economics and agent-based mod-
eling, with the microeconomic formalism proposed in the
CC model. First, the exponential dynamics of the average
wealth are obtained with a clear microeconomic perspec-
tive, leading to the emergence of well-known distribution
patterns and macroscopic properties. And second, the
explicit emergence of the economic growth, governing the
exponential increasing of income in time, leads to the sec-
ond fundamental law of capitalism, proposed by Piketty as
one of the key factors governing economic inequality [27].
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