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Abstract. The property of total momentum conservation is a key issue in determining the energy diffusion
behavior for 1d nonlinear lattices. The super-diffusion of energy has been found for 1d momentum con-
serving nonlinear lattices with the only exception of 1d coupled rotator model. However, for all the other
1d momentum non-conserving nonlinear lattices studied so far, the energy diffusion is normal. Here we
investigate the energy diffusion in a 1d nonlinear lattice model with inverse couplings. For the standard
definition of momentum, this 1d inverse coupling model does not preserve the total momentum while it
exhibits energy super-diffusion behavior. In particular, with a parity transformation, this 1d inverse cou-
pling model can be mapped into the well-known 1d FPU-β model although they have different phonon
dispersion relations. In contrary to the 1d FPU-β model where the long-wave length phonons are respon-
sible for the super-diffusion behavior, the short-wave length phonons contribute to the super-diffusion of
energy in the 1d inverse coupling model.

1 Introduction

Since the first ever discovery of anomalous heat con-
duction for 1d nonlinear Fermi-Pasta-Ulam β (FPU-β)
lattice [1], revealing the physical mechanism behind this
anomalous heat conduction behavior has attracted great
attention [2–5]. Among many properties of 1d FPU-β lat-
tice model, the conservation of total momentum has been
thought to be the key issue which eventually gives rise to
the anomalous heat conduction [6,7]. The numerical sim-
ulations confirm that the anomalous heat conduction can
be found for the 1d nonlinear lattice if the total momen-
tum is conserved [1,8], except for the special 1d coupled
rotator model [9,10]. On the other hand, the normal heat
conduction can be obtained for 1d nonlinear lattice with
on-site potential where the conservation of total momen-
tum is broken [11–13]. Recent numerical results seem
suggesting that asymmetry in momentum conserving lat-
tices can induce normal heat conduction [14–16], but later
works demonstrate that this might be a finite size effect
and anomalous heat conduction will be approached for
asymmetric momentum conserving lattices in the thermo-
dynamical limit [17,18]. Although momentum conserved
1d nonlinear lattice models can exhibit anomalous or
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normal heat conduction behavior if we take the 1d coupled
rotator lattice into consideration, the 1d nonlinear lattices
with broken momentum conservation all show normal heat
conduction behavior without any exception.

As the lattice system has no particle transport, heat
conduction can be directly related to energy diffusion.
It has been proved that the behavior of heat conduc-
tion has a one-to-one correspondence with the property
of energy diffusion in 1D symmetric nonlinear lattice sys-
tems [19,20]. The size-dependence of thermal conductivity
κ can be generally described as a power-law function of
system length L as κ ∝ Lα [2–5]. The exponent α = 0 rep-
resents the normal heat conduction and α = 1 describes
the ballistic heat conduction. For 0 < α < 1, the sys-
tem exhibits the anomalous heat conduction behavior. On
the other hand, the energy diffusion can be characterized
by the Mean Square Displacement (MSD)

〈
∆x2(t)

〉
E

of
energy fluctuation. The time-dependence of energy diffu-
sion

〈
∆x2(t)

〉
E

can be generally described as
〈
∆x2(t)

〉
E
∝

tβ [21]. The normal and ballistic energy diffusions corre-
spond to β = 1 and β = 2, respectively. For 1 < β < 2,
the system exhibits anomalous super-diffusion behavior.

The connection theory claims that α = β − 1 directly
relating heat conduction with energy diffusion [19].
According to the connection theory, normal (anoma-
lous) heat conduction corresponds to normal (anomalous)
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energy diffusion. This theoretical relation has been veri-
fied by numerical simulations in 1D symmetric nonlinear
lattices including the FPU-β lattice with anomalous heat
conduction [21], and the FK, φ4 and coupled rotator model
with normal heat conduction [21,22]. In particular, this
relation enables us to numerically study the heat con-
duction problem via the energy diffusion method, which
can be performed more efficiently and accurately by con-
sidering micro-canonical simulation without heat baths
included.

Recently, it has been found that a 1d chain model of
charged particle with magnetic field shows energy super-
diffusion behavior while the standard total momentum
is not conserved due to the broken time-reversal sym-
metry [23,24]. The conservation of standard momentum
is replaced by the new conservation of a pseudomomen-
tum induced by the magnetic field. However, the equation
of motions of the charged particles are composed of
the deterministic dynamics from the model Hamiltonian
and the artificially introduced conservative noises. The
obtained super-diffusive behavior is not the direct result
of the model Hamiltonian itself. Up to now, there is no 1D
Hamiltonian system with broken momentum conservation
where super-diffusion of energy can be obtained through
its own deterministic dynamics.

In this paper, we investigate the transport property of
the new proposed 1d inverse coupling model [25]. With the
standard definition of momentum, the total momentum is
broken for this 1d inverse coupling model. However, the
super-diffusion of energy will be obtained for this momen-
tum non-conserved 1d inverse coupling model. With a
canonical transformation, this 1d inverse coupling model
with broken momentum conservation can be mapped into
the well-known FPU-β model with momentum conser-
vation. Unlike the 1d FPU-β model where the long-
wave length phonons contribute for the super-diffusion of
energy, the phonon dispersion relation obtained for this 1d
inverse coupling model reveals that the short-wave length
phonons are responsible for the energy super-diffusion
behavior. The model and main results will be presented
and discussed in Section 2 and the summary will be
concluded in Section 3.

2 Model and numerical results

According to reference [25], the 1d inverse coupling lat-
tice toy model is proposed from a spring-disk chain model.
In Figure 1, the schematic picture of the 1d inverse cou-
pling model is plotted where each atom labeled “i” can
oscillate from its equilibrium position. It can be seen
that the increase of xi will tend to reduce the value of
xi−1 of its neighborhood. As a result, the dimensionless
Hamiltonian of the 1d nonlinear inverse coupling model
can be expressed as:

H =
∑
i

[
p2i
2

+
1

2
(xi + xi−1)2 +

1

4
(xi + xi−1)4

]
=
∑
i

Hi,

(1)

Fig. 1. The schematic picture of the proposed 1D inverse-
coupling model. xi is the displacement from its equilibrium
position for ith site. The increase of xi will tend to reduce the
value of xi−1 of its neighborhood acting as inverse coupling.

where pi is the momentum of the ith atom. For simplicity,
the periodic boundary condition x0 = xN is applied if
total N sites are considered.

In order to understand the property of the 1d nonlinear
inverse coupling model, we first analyze the linear inverse
coupling model with Hamiltonian:

H =
∑
i

[
p2i
2

+
1

2
(xi + xi−1)2

]
. (2)

It is straightforward to derive that the time derivative of
the total momentum

∑
i pi follows as

d
∑
i pi
dt

= −
∑
i

(xi−1 + 2xi + xi+1) 6= 0. (3)

With the standard definition of momentum, the total
momentum for the 1d inverse coupling model is not con-
served. This broken of total momentum is simply due to
the lack of translational symmetry.

To obtain the phonon dispersion relation, the equa-
tion of motion of the linear inverse coupling model can
be obtained as d2xi/dt

2 = −(xi−1 + 2xi + xi+1), which
can be solved by considering the travelling wave solution
as xi(t) ∝ e−j(ωt−ki) with j the imaginary unit, k the
wave vector and ω the frequency. The phonon dispersion
relation can be derived as

ωk = 2 cos
k

2
, −π < k ≤ π. (4)

As a result, the 1d linear inverse coupling model has the
phonon modes with the cosine dependence of wave vector
k. This is totally different with the conventional phonon
dispersion relation ωk = 2 sin (k/2),−π < k ≤ π in lin-
ear Harmonic lattice where the phonon modes have the
sinusoidal dependence.

The new dispersion relation for 1d linear inverse cou-
pling model is plotted as a dashed line in Figure 2. It
can be seen that ωk=0 = 2 at long-wave length limit is
not a zero frequency phonon mode. However, the linear
inverse coupling model does have zero frequency phonon
mode with ωk=π = 0, which is shifted to the Brillouin
zone boundary. This π shift can be understood as the
phase factor ejπ = −1 contributed by the inverse cou-
plings. Therefore, the breaking of translational symmetry
makes the momentum not conserved any more, while the
zero frequency phonon mode is maintained as a result of
lacking on-site potential.

It is known that for 1d Harmonic lattice, the long-
wave length phonons with k → 0 have the fastest phonon
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Fig. 2. The phonon dispersion relation for inverse-coupling
model. The dashed line is the analytic result for linear inverse-
coupling model as ωk = 2 cos (k/2). The red (LH) and blue
(UH) solid lines are the renormalized phonon predictions for
lower limit of equation (7) and upper limit of equation (8),
respectively. The circles are the numerical results of ωR

k from
Molecular Dynamics (MD) simulations with parameter of
energy density e = 1 corresponding to a temperature T ≈ 1.16.
The numerical ωR

k lies between the predictions of lower limit
and upper limit and close to lower limit prediction with this
energy density.

transport speed or sound velocity as cs = dωk/dk =
cos (k/2) = 1 in the limit of k = 0. While for the 1d linear
inverse coupling model:

cs =

∣∣∣∣dωkdk |k→π
∣∣∣∣ =

∣∣∣∣∣d(2 cos k2 )

dk |k→π

∣∣∣∣∣ =

∣∣∣∣− sin
k

2 |k→π

∣∣∣∣ = 1,

(5)
the short-wave length phonons with k → π have the
fastest phonon transport speed.

For the 1d nonlinear inverse coupling model described
by equation (1), a renormalized phonon dispersion relation
ωRk can be derived with the renormalization phonon the-
ory as that done for FPU-β model [26–34]. The resulted
dispersion relation ωRk for 1d nonlinear inverse coupling
model is still cosine dependent and can be expressed as:

ωRk =
√
αωk = 2

√
α cos

k

2
, (6)

where the renormalization coefficient α is mode-
independent function of the temperature T due to the
nonlinear interaction. According to the variational renor-
malization phonon theory [33], the coefficient α has a
lower and upper limit expressions as αL and αU respec-
tively. In particular, the coefficient α can be obtained as
[26–34]:

αL = 1 +

∫∞
0
x4e−(x

2/2+x4/4)/T∫∞
0
x2e−(x2/2+x4/4)/T

, (7)

αU =
1

2

(
1 +
√

1 + 12T
)
. (8)

The coefficient α is only temperature dependent or equiva-
lently nonlinearity dependent. The difference between two

predictions of lower limit αL and upper limit αU is very
small. As a result, the sound velocity cs for 1d nonlinear
inverse coupling model is also temperature dependent as
cs =

√
α. But here, the phonons with the sound velocity

are the short-wave length phonons with k → π.
In order to verify the dispersion relation of equation (6)

in the 1d nonlinear inverse coupling model, we apply the
resonance phonon approach method to numerically cal-
culate the renormalized phonons ωRk [35,36]. In Figure 2,
the numerical results of renormalized phonon frequencies
ωRk are plotted for the inverse coupling model. The micro-
scopic numerical simulations are performed with energy
density e = 1 corresponding to temperature T = 1.16.
The theoretical lower limit αL and upper limit αU are
also plotted as red and blue lines respectively for com-
parisons. It can be seen that the numerical results at this
temperature are between the two predictions of αL and
αU and close to the lower limit αL. Therefore, the dis-
persion relations in linear and nonlinear inverse coupling
models share the same property that the long-wave length
limit phonon mode at k = 0 does not have zero frequency.
This is the result of the breaking of translational sym-
metry and momentum conservation. On the other hand,
the zero frequency phonon mode still exists at the Bril-
louin zone boundary at k = ±π since there is no on-site
potential to lift the zero frequency mode.

Before we study the energy diffusion for the 1d inverse
coupling model without momentum conservation, we com-
pare it with the well known 1d FPU-β model with momen-
tum conservation. The FPU-β model has the following
dimensionless Hamiltonian as

H =
∑
i

[
p2i
2

+
1

2
(xi − xi−1)2 +

1

4
(xi − xi−1)4

]
. (9)

In contrary to the inverse coupling model, here the
increase of the displacement qi tends to increase the value
qi−1 of its neighborhood. Although the 1d inverse coupling
model and the 1d FPU-β model have different physical
properties such as the conservation of total momentum
and the phonon dispersion relation, they can be connected
by a parity transformation as:

xi → (−1)ixi. (10)

As a result, the 1d inverse coupling model has no trans-
lational symmetry as the Lagrangian of inverse coupling
model is not invariant under the transformation xi →
xi + s with s some constant. However, the Lagrangian
for 1d inverse coupling model is invariant under this
transformation

hs : xi → xi + (−1)is. (11)

According to Noether’s theorem, one can define the
following parity-momentum quantity Ip:

Ip =
∑
i=1

∂L

∂ẋi

dhs

ds
=
∑
i=1

(−1)ipi (12)
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Fig. 3. Distribution functions CE(i, t) and CIp(i, t) for energy
and new conserved quantity Ip which is momentum-like at
three different correlation times t = 400, 800 and 1200 for
the inverse-coupling model. Lattice length is N = 4001. The
energy density e = 〈Hi〉 = 1 and corresponding temperature is
T = 〈p2i 〉 ≈ 1.16.

which is a conserved quantity. The L =
∑N
i=1(ẋ2i /2 −

V (xi + xi−1)) with V (x) = x2/2 + x4/4 is the Lagrangian
of the inverse coupling model and pi = ẋi.

Therefore, although the 1d inverse coupling model does
not conserve the total momentum

∑
i pi with the standard

definition, it does conserve the new introduced parity-
momentum Ip =

∑
i(−1)ipi. We should expect that the

1d inverse coupling model without momentum conserva-
tion has the same energy diffusion behavior with the 1d
FPU-β model with momentum conservation.

We then numerically study the energy diffusion behav-
ior for the 1d inverse coupling model. The numerical
energy diffusion method in equilibrium is proposed to
calculate the spatio-temporal distribution of the energy
fluctuation correlation function CE(i, t) which is defined
as [21]:

CE(i, t) =
〈∆Hi(t)∆H0(0)〉
〈∆H0(0)∆H0(0)〉

+
1

N − 1
, (13)

where ∆Hi(t) = Hi(t) − 〈Hi(t)〉 is the real-time energy
density fluctuation at site i and 〈·〉 means ensemble aver-
age or time average in equivalence. Here the site index i
is chosen from i = −(N − 1)/2 to (N − 1)/2 for simplic-
ity. The extra term of constant 1/(N − 1) is a result of
energy conservation in the microscopic simulations. From
definition, the initial distribution is a Kronecker δ func-
tion as CE(i, t = 0) = δi,0 in the thermodynamical limit
N → ∞. The distribution CE(i, t) describes the spatio-
temporal energy spreading from the center site i = 0 and
initial correlation time t = 0.

In Figure 3a, the distribution functions CE(i, t) has
been plotted for an inverse-coupling model with length
N = 4001 at three different correlation times t = 400, 800
and 1200. The energy density e is set as e = 1 which
corresponds to a temperature T = 1.16. The energy distri-
butions CE(i, t) exhibit Levy walk distribution with two
side peaks indicates anomalous diffusion, rather than nor-
mal diffusion with the Gaussian normal distribution. It is
clear that these distributions are almost the same as that

Fig. 4. The MSD
〈
∆x2(t)

〉
E

of energy diffusion for
the inverse-coupling model. The same parameters are used
as in Figure 3. The energy diffusion is super-diffusion as〈
∆x2(t)

〉
E
∝ t1.4. The curve ∼ t is shown for comparison.

of FPU-β lattice [21,37]. However, it should be empha-
sized that the side peaks obtained for 1d inverse coupling
model represent the energy carried by the short-wave
length phonons with k → π, which is different from the
side peaks of 1d FPU-β model where energy are carried by
the long-wave length phonons with k → 0. Since the non-
vanishing side peaks are responsible for the anomalous
super-diffusion of energy, the underlying physical mech-
anism behind the same energy super-diffusion behavior
for 1d inverse coupling model and 1d FPU-β model is
different.

To identify the exact diffusion behavior, the MSD〈
∆x2(t)

〉
E

=
∑
i i

2CE(i, t) has been plotted in Figure 4.

The fitted time behavior of
〈
∆x2(t)

〉
E
∝ tβ=1.40 indicates

that the energy diffusion in the 1d inverse coupling model
is super-diffusion where the exponent β = 1.40 is also
same as that of 1d FPU-β model [21,38]. Although the
translational symmetry and momentum conservation are
broken in the 1d inverse coupling model, its energy dif-
fusion does exhibit an anomalous energy super-diffusion
behavior.

With this new parity-momentum conserved quantity Ip,
we can also calculate the distribution correlation function
CIp(i, t) =

〈
(−1)ipi(t)p0(0)

〉
/T as we did the momentum

distribution for 1d FPU-β lattice [21,37]. The spatio-
temporal spreading of the Ip is plotted in Figure 3b
which is also the same as that for FPU-β lattice. The
new conserved quantity Ip might be the reason for energy
super-diffusion behavior. It suggests that when discussing
the conserved quantities in 1D nonlinear lattices, the con-
sideration of total momentum with standard definition
is incomplete. The total momentum and this new total
parity-momentum Ip together constitute one complete
conserved quantity.

3 Summary

In conclusion, we have studied the phonon transport prop-
erties for a 1d inverse coupling model. With the standard
definition of momentum, this 1d inverse coupling model
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does not conserve the total momentum. We also derived
the renormalized phonon dispersion relation for this 1d
inverse coupling model and verified it with numerical sim-
ulations. Although the 1d inverse coupling model has
different physical properties from the 1d FPU-β model,
they can be connected by a parity transformation. As a
result, the 1d inverse coupling model without momen-
tum conservation has the same energy super-diffusion
behavior as that of 1d FPU-β model with momentum
conservation. In contrary to the 1d FPU-β model where
long-wave length phonons with k → 0 are responsible
for the super-diffusion of energy, the short-wave length
phonons with k → π contribute to the super-diffusion of
energy in 1d inverse coupling model. Our results also indi-
cate that total momentum with the standard definition is
an incomplete concept when dealing with conserved quan-
tities in 1D nonlinear lattices. Total momentum

∑
i pi and

the parity-momentum Ip =
∑
i(−1)ipi together constitute

one complete conserved quantity.
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