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Abstract. The thermal and electrical resistivity of f-electron cubic intermetallic metals with well localized
and stable stable f-shells are calculated as functions of the temperature. The interaction of the conduction
electron with both acoustic and optical phonons as well as the exchange s–f interaction with the crystal
field presence are taken into account by applying the Matthiessen rule on the microscopic level and simple
well-founded models of the scattering with the same mathematical method within the Boltzmann equation
approach. Derived analytical formulas are successfully used to model existing measurements of temperature
dependence of electric and thermal conductivity for DyIn3 and TmIn3 in the paramagnetic phase. Attention
was drawn to the possible indeterminacy of some material constants in the absence of indications from
sources other than transport measurements, noticeable in our results for TmIn3.

1 Introduction

Though the physics of rare earth compounds is recently
focused on ones of unstable 4f-shells, however, certain
problems of the physics of the compounds of stable 4f-
shells have been left aside. Such a problem is the behavior
of the thermal conductivity or thermal resistivity of the
rare earth intermetallics of stable and localized 4f-shells,
which we shall call “normal”. The closely related topic
of their electrical resistivity has been worked out rather
thoroughly.

The exchange s-f interaction [1] and the crystal field
splitting (see, e.g. [2,3]) of the ground state f-electron mul-
tiplet plays an important role in the conduction electron
scattering responsible for the magnitude of the transport
coefficients in rare earth intermetallics at low and moder-
ate temperatures up to 100–200 K depending on the total
crystal field splitting. In order to compare the magnitude
of the theoretical values of these coefficients to experi-
mental data in a wider temperature range up to the room
temperature one has also to consider the scattering of the
conduction electrons by phonons and impurities.

In [4] on the basis of a crystal-field model adequate for
cubic compounds and the standard treating of the inter-
action of the conduction electrons with acoustic phonons
and with impurities the thermal resistivity and electrical
resistivity as functions of the temperature were calculated
and fitted to experimental data of DyIn3. Very approxi-
mate treatment of the scattering by optical phonons was
at issue of that study. In the present paper we calcu-
late functions describing contribution of the interaction
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of the conduction electrons with the optical phonons both
to the electrical and thermal conductivity in metals. The
formulas are developed on the same footing as the remain-
ing contributions considered earlier, derivation of which is
also sketched shortly for completeness. Similarly as in our
previous short paper [4] we restrict the considerations to
the electronic conduction while treating theoretically the
thermal and electrical resistivity. The dominating role of
the electron transport of heat over the phonon conductiv-
ity is clearly seen in recent ab initio approaches based on
density functional theory for a wide group of noble met-
als and intermetallic compounds, although not negligible
in all cases (see for instance [5] and references therein).
Comparison of the heat and electric transport in REIn3

indicates that the contribution of other than the electronic
carriers does not exceed a few percent [6].

There are very rare papers in which the scattering of
the conduction electrons by optical phonons in metals
has been taken into account to describe its influence to
the transport coefficients in metals. This influence is not
mentioned in the review articles such as [7]. It is rather
considered that optical phonons are important in the
transport in semiconductors (see, e.g. [8]). According our
knowledge there are only few papers in which the optical
phonon scattering contribution was taken into account to
the electrical resistivity of certain materials [9–11]. In the
first two papers the authors used the formula derived for
semiconductors [12] in the limiting case of the degenerate
electron gas.

Electrical and thermal currents in normal f-electron
metals can be considered to be carried by s-type elec-
trons. As concerns the scattering mechanisms in them
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there does not exist a single dominant one allowing to
neglect the others, as it is in the case of some “anomalous”
f-electron intermetallics in which the f-shell is “unstable”
thereby having f-electrons participating in the conduction
process. To take into account several scattering sources
in [4], we applied the Matthiessen rule on the microscopic
level and expressed the electrical and thermal resistivity as
linear combinations of dimensionless functions describing
the contributions of these sources. Thus, for both trans-
port coefficients we write down this combination in the
following way

ρ(T ) = ρimp + ρ(ac)

o F11(tD) + ρ(op)

o G11(tE) + ρ(sf)

o RJ(T ) ,

W (T ) = Wimp(T ) +
(
ρ(ac)

o /L̃oT
)
F22(tD)

+
(
ρ(op)

o /L̃oT
)
G22(tE) +

(
ρ(sf)

o /L̃oT
)
WJ(T ) , (1)

where the impurity scattering contribution ρimp to the
electrical resistivity and the impurity thermal resistiv-
ity are interrelated Wimp(T ) = ρimp(LoT )−1. Lo = (π2/3)·
(kB/e)

2 ≈ 2.4462 · 10−8ΩW/K2 is the free electron (Som-
merfeld) Lorenz number. In front of the functions of W (T )
describing other scattering sources there is the factor

(L̃oT )−1, where L̃o = (π2/3)Lo.
The magnitude of ρimp is considered as a phenomenolog-

ical constant. We do not consider the impurity scattering
in a microscopical way, e.g., such as in [13]. The func-
tions F11(tD),F22(tD) of the argument tD = T/TD with
the Debye temperature TD describe the scattering of the
conduction electrons by acoustic phonons. Similarly, the
functions G11(tE) and G22(tE) dependent on tE = T/TE

with the Einstein temperature TE express the scattering
by optical phonons. The spin dependent s-f scattering
is described by the functions RJ(T ),WJ(T ); the index
J being a parameter of these functions stands for the
magnitude of the total angular momentum J of 4f-shell.

In Section 2 we shortly describe the mathematical
method applied to deriving the functions of (1), then
in the introductory part of Section 3 we show how this
method is applied to the scattering of the conduction elec-
trons by phonons. The model assumptions and the basic
approximations which lead to the final form of the func-
tions F11(tD) and F22(tD), i.e.,in the case of the acoustic
phonons, are presented in Section 3.1. The same for the
case of the functions G11(tE) and G22(tE), i.e., the opti-
cal phonons, is described in Section 3.2. The derivations
of formulas for RJ(T ) and WJ(T ) are found in Section 4.
We restrict our considerations to paramagnetic phase and
only indicate how the magnetic order enters the final
expressions for RJ(T ) and WJ(T ) in ferromagnets. The
mentioned restriction in the case of REIn3 crystals still
means a wide temperature interval. The thermal con-
ductivity and electrical resistivity of REIn3 monocrystals
were experimentally examined in [6] up to about 300 K;
their transition temperatures (mainly to antiferromag-
netic phases) are rather low and do not exceed 20 K.
To avoid complications caused by effects of a magnetic
order on the crystal field we take into account the crys-
talline electric field only in the paramagnetic phase. The
asymptotic values of RJ(T ) and WJ(T ) of our model

RE-monocrystal are discussed in a separate section
(Sect. 5). For an illustration how our results agree with
experimental ones we show in Section 6 the fitting of
the total theoretical electrical and thermal resistivities to
the experimental data of DyIn3 and TmIn3 of the Néel
temperatures TN = 20 K and TN = 1.6 K , respectively,
according recent data (see [14] and references therein).

According to our knowledge the method in which the
s-f contributions to the electrical and thermal resistivity
is calculated on the same footing as in the present paper
and [4] has never be applied before. The s-f contribution to
the electrical resistivity has been calculated traditionally
by using the crystal-field level scheme and corresponding
wave functions known from inelastic neutron scattering
experiments data. The results have usually been compared
to the experimental s-f contribution found as the difference
between the measured total electrical resistivity of the
examined RE monocrystal and the phonon contribution
considered as the measured electrical resistivity of an iso-
morphous nonmagnetic compound (see, e.g. [15]). In the
case of REIn3 the phonon scattering resistivity standard is
the electrical resistivity of LaIn3 or LuIn3. As concerns the
thermal resistivity there are only a few papers [6,16,17] in
which the contribution “due to spin dependent scattering”
was extracted from the total thermal resistivity.

It is also worth paying reader’s attention that Sec-
tion 3.2 contains a reconsideration of the paper by
Howarth and Sondheimer [12] in which the simple Fröhlich
model [18] was applied to scattering of the conduction
electrons in polar semiconductors. The variational princi-
ple used in [12] to solve the Boltzmann equation is also
applied in our paper but in a simpler version, appropriate
to metals. Certain, less essential, formulas of this section,
of mathematical but not physical significance, are shifted
to Appendix B.

Appendix A contains a remark on the correction of the
formula describing the scattering by acoustic phonons in
[4]. In Appendix C one can find the expressions for the
material constants of (1) which follow from all our models
of the scattering.

2 The Ziman variational method of solving
the transport problem

The linear combinations of the functions in (1) are a
consequence of the fact that the transition probabilities
describing the corresponding scattering problems are con-
sidered in the first approximation to be additive. This
assumption is the Matthiessen rule for the electrical and
thermal conductivity on the microscopic level. It can be
justified by an appropriate perturbation technique [19].
The generalized Matthiessen rule was also used in an
already “classical” paper on the magnetic neutron scat-
tering [20] and in the monographs [21,22]. The additive
contribution of the scattering arising from the acous-
tic and optical phonons (1) is simply a consequence of
the fact that the electron–phonon interaction potential
corresponding to different phonon branches is additive.

Under the assumption of the generalized Matthiessen
rule one can consider separately each scattering
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problem relevant to finding a function in (1). Let
C(k,k′;T ) denotes the transition probability of a scatter-
ing with the transition of the conduction electron of the
wave vector k to the state of the vector k′. The matrix

Pij = 1
2

∫
dvkdv′k C(k,k′;T ) [χi(k)− χi(k′)]

× [χj(k)− χj(k′)] (2)

proposed by Ziman [23], who took advantage of the Kohler
variational formalism [24–26] of an approximate of the
Boltzmann equation, allows one to derive the relevant
function of (1). The integral is with respect to dvk =
dkxdkydkz. The functions χi(k) = (vk u)(ε − ζ)i−1 (i =
1, 2) are components of microscopic electric and thermal
currents in the direction (unit vector u ) of the exter-
nal electric field or the thermal gradient.1 The chemical
potential of the conduction electrons, ζ = ζ(T ), is counted
from the bottom of the conduction band. The transition
probability C(k,k′;T ) has the following structure

C(k,k′;T ) = (kBT )−1f0(ε)[1− f0(ε
′)]C(k,q) , (3)

where q = k′ − k and dvq = dqxdqydz, ε = ε(k), ε′ =
ε(k′), f0(ε)[1 − f0(ε

′)] and C(k,q). C(k,k’;T) has to be
calculated in the first Born approximation for an assumed
model described by the relevant scattering potential.

Being interested in metals we confine our considerations
to the degenerate electron gas. In this case the electri-
cal resistivity is expressed by P11 [23,28] and the thermal
resistivity by P22 [13,23] as it is presented in (1). In general
case the electrical and thermal conductivity are expressed
by all the components of the scattering matrix Pij being
functions of z = ζ/kBT and T explicitly and depending
as well on the macroscopic currents Ji(z), Ui(z) [23,28]).
In the “metallic limit”, z → ∞, the currents can be rep-
resented by in terms of the material constant U0 (see
Sect. C.2 in Appendix C) or J0 = eU0 and ζ ≈ εF, where
εF is the Fermi energy. The matrix elements Pij in this
approximation can be represented

Pij(T ) = lim
z→∞

Pij(z, T ) = P0(kBT )i+j−2Pij(T ) , (4)

where P0 is a material constant for the considered scat-
tering source and Pij(T ) is a dimensionless function. The
values of P0 for the considered scattering types are pre-
sented in Appendix C. The functions Pij(T ) are denoted
Fij(tD) and Gij(tE) for the scattering by acoustic and
optical phonons, respectively. In case of the s-f scattering
only diagonal components P11(T ) = RJ(T ) and P22(T ) =
WJ(T ) are essential for our considerations.

In order to derive Pij(z, T ) one has to represent the
integrands of (2) as functions of ε and to calculate the
integrals (2) with respect ε in the limits (0,∞) for suffi-
ciently large values ζ ≈ εF with respect the bottom of the

1 We define the trial functions here in a more general way than in
[27,28], namely χi(k) = (vk u)(ε− ζ)i−1 instead of (ku)(ε− ζ)i−1.
For ε(k) = (~2/2m)k2 this cause changes only in additional factors

in ρ
(ac)
o , ρ

(op)
o , ρ

(sf)
o of (1), but not in the final values of ρ(T ) and

W (T ), see Appendix B in [13].

conduction band. The basic contribution to these integrals
comes from the nearest vicinity of ζ. It is seen, e.g. from
the identity

(kBT )−1f0(ε)[1− f0(ε
′)] ≡

(
− ∂f0

∂ε

)
G(ε, ε′) , (5)

where

G(ε, ε′) =
1

1− f0(ε)[1− exp(ε− ε′)/kBT ]
, (6)

since −∂f0/∂ε ≈ δ(ε− ζ).
The above identity with further application of the

Sommerfeld expansion in the powers of (ε − ζ)n in the
intergrand of integrals with respect the electron energy up
to the lowest order terms (see, e.g. [23,29]) was applied by
us in [27]. A better approximation is usually applied when
the scattering of the conduction electrons by phonons is
considered. It was proposed by Wilson [26] and we used
it in [28] and shortly describe in the next section.

The formulas (1) follow from applying the generalized
Matthiessen rule to the scattering by the sources described
in Sections 3 and 4. The relevant components of the sums
(1) are derived from the general expressions for the trans-
port coefficients of the Ziman method [13,23,28] after
taking the limit of (4) and representing the currents Ji(z),
Ui(z) [13,28] as series in powers of z−1 and appropriate
abbreviation. In this way one obtains

ρ(T ) =
P0

e2U2
0 ε

3
F

P11(T )
1− P2

12/(P11P22)

1 +O(z−1)
≈ ρoP11(T ),

(7)
where O(z−n) means a quantity at most of the order z−n

and U2
0 is a constant simply expressed by the effective

electron mass and the Planck constant (see Appendix B
in [13]). In the final formula P2

12/P11P22 is neglected since
P2

12 � P11P22, as it will be seen from our final consider-
ations in Sections 3 and 4. The formula of (1) for the
thermal resistivity is a consequence of the considerations
of [13], where W was represented as

W (T ) =
P0

U2
0 ε

3
F

TP22(T )

(kBT )2
[
(π2/3)2 +O(z−2)

] ≈ ρo

T L̃o

P22(T ).

(8)
The validity of the (generalized) Matthiessen rule is of

principal importance to the validity of the above equa-
tions. The cases of the violation of the Matthiessen rule
are discussed in Section 5 of [13].

3 The scattering of conduction electrons
by phonons

It is known that the function C(k,q) in (3) can be
represented in the following way

C(k,q) = C0(ωq,q) [Nq δ(ε
′ − ε− ~ωq)

+(Nq + 1) δ(ε′ − ε+ ~ωq)]

≡ Ca(k,q) + Ce(k,q) , (9)
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when the conduction electrons are scattered by phonons
of the spectrum ωq. In [30] the Boltzmann equation and
the above expression were derived from basic principles of
the statistical mechanics. Besides the energy conservation
laws expressed by the arguments of the δ functions, the
phonon spectrum enters the distribution function Nq =
[exp(~ωq/kBT ) − 1]−1. The first component of C(k,q)
describes the process of the phonon absorption, the second
expresses its emission. The electron momentum conser-
vation law is q = k′ − k since we neglect the Umklapp
process in our further considerations.

The application of the formula (9) is usually limited
to the scattering by acoustic phonons. In [12], this form
of C(k,q) was also applied to study the influence of the
scattering of the conduction electrons by optical phonons
on the electrical resistivity in polar semiconductors.

In the present paper – by assuming the following phonon
spectra

~ωq =

{
~vsq of acoustic phonons, Section 3.1

~ω0 ≡ kBTE of optical phonons, Section 3.2 ,
(10)

with vs the sound velocity, q = |q| and TE is the
Einstein temperature – we apply the transition probabil-
ity (9) for studying the scattering the conduction electrons
by phonons.

Before calculating the integrals Pij , (2), it is convenient
to neglect in advance all the terms linear in k and k′ in
the integrands, which do not contribute to the integrals.
In this way one can consider as a starting formulas of
calculating the integrals P11, P12 = P21, P22 the following
integrals

P11 = 1
2

∫
dvkdvq C(k,k + q;T ) (qu)2 ,

P12 = 1
2

∫
dvkdvq C(k,q;T ) [(ε− ζ) + (ε′ − ε)](qu)2 ,

P22 = 1
2

∫
dvkdvq C(k,k + q;T )

{
(qu)2[(ε− ζ)2

+2(ε′ − ε)(ε− ζ) + (ε′ − ε)2] + (ε′ − ε)2(ku)2
}
.

(11)

After performing the above integrals with respect the
angles in the spherical coordinates (for instance in the
way described in [28]), we obtain

Pij = Po (1/kBT )

×
∫ ∞

0

dε

∫ b

a

dqf0(ε)[1− f0(ε+ ~ωq)]Nq V(a)
ij (ε, q)

+Po (1/kBT )

×
∫ ∞

0

dε

∫ d

c

dqf0(ε)[1− f0(ε− ~ωq)] (Nq + 1)V(e)
ij (ε, q)

≡ Po

(
P

(a)
ij + P

(e)
ij

)
, (12)

where Po is a material constant. The lower a, c and upper
b, d integral limits are respectively the minimal and maxi-
mal values of q = |q| allowable by the energy conservation
laws. They can depend in general on the conduction elec-

tron energy. The functions V(a)
ij , V(e)

ij in the integrands
are

V(a)
11 (ε, q) = V(e)

11 (ε, q) = ql+3 ,

V(a,e)
12 (ε, q) = [(ε− ζ) + η ~ωq] ql+3 ,

V(a,e)
22 (ε, q) =

[
(ε− ζ)2 + 2η ~ωq(ε− ζ) + (~ωq)2

]
ql+3

+(~ωq)2k2ql+1 , (13)

where the index (a) stands for the phonon absorption and
(e) for the emission and η = ±1. The double index (a, e)
means (a) if η = 1 and (e) if η = −1. The exponents l+ 1,
l+ 3 are different in the case of the scattering by acoustic
or by optical phonons. The magnitude of l simply follows
from the dependence C(k,q) on q which is presented in
the following subsections.

In order to calculate the integrals with respect to ε and
to simplify the integrals with respect to q, we introduce
the dimensionless variables y, p and the parameter z

y = (ε− ζ)/kBT , p = ~ωq/kBT , z = ζ/kBT (14)

enabling to express the identity [26] as

f0(ε)[1− f0(ε+ η~ωq)] ≡ 1

1− e−ηp
F(y, ηp), (15)

where η = ∓1 and

F(y, ηp) =
1

1 + e−y−ηp
− 1

1 + e−y
. (16)

The above representation allows one to find the limit (4)
without applying the Sommerfeld expansion unlike in the
case of the representation (5).

3.1 Acoustic phonons

In this subsection, we consider the scattering of the con-
duction electrons by the acoustic phonons. Thus, we
assume the function C(ωq,q), (9), as in [27,28] in the
simplest quasi-phenomenological approximation of the
deformation potential. Within this approximation only
the longitudinal phonon waves contribute to the scattering
(see, e.g., Eq. (3.3) in [27]). Since the crystal is treated as a
continuous medium, the transition probability is assigned
to the volume of the unit cell of the crystal. For C0(ωq,q)
we obtain

C0(ωq,q) =
Vc

4π2

E2
1q

2

Mωq

, (17)

where M is the mass of the unit cell of the volume
Vc = V/Nc, V and Nc is the volume of the crystal and
the number of the unit cells, respectively. E1 is a con-
stant of the dimension of the energy, the magnitude of
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which is a few eV. The factor 2/8π2 in the above expres-
sion comes from taking into account two electron bands of
opposite spins and considering integrals instead of sums in
the Boltzmann equation and consequently in (2). Similar
expression to C0(ωq,q) ∼ ε2Fq is obtained in case of wholly
microscopic approach to the electron–phonon interaction
(see e.g. [7]). Thus, the proper index l in (13) is l = 1.

The limits of integration with respect to q in (12) fol-
lowing from the energy conservation are: the lower ones
a = c = 0, whereas the upper limits c and d are the elec-
tron energy dependent since the largest allowable angle
between k′ and k is the electron energy dependent (see
Eq. (3.90) in [28]) or equation (12a-12b) in [12]. From
a physical point of view, such limits should be taken
into account when the Fermi sphere is included within
the boundaries of the Brillouin zone. However, since we
assume the free electron approximation, the value of
q = |k′ − k| is not limited by the Brillouin boundaries.
Thus, if the Fermi surface crosses these boundaries –
which the case occurs in metals – we have to introduce
physical constraints. The simplest is the assumption that
q ≤ 2qD, where qD is the radius of the Debye sphere i.e. the
sphere of the volume equal to that of the Brillouin zone.
We introduce such values of qD while considering opti-
cal phonons in the next subsection. For acoustic phonons
the standard procedure is introducing the magnitude of
qmax = 2qD as the cutoff value of the wave vector following
from the relation ~vsqmax = kBTD, where TD is the Debye
temperature.

On such physical assumptions one finds the metallic
limit (4) of the matrix elements Pij(z, T ) after taking
into account the the identity (15), changing the order
of the integration with respect q i ε in (12) and using,
e.g., the method of Appendix B in [28]) to finally find the
limit. The resulting matrix elements Pij(T ), (4), are lin-
ear combinations of the generalized (index n ≥ 5 ) of the
Bloch–Grüneisen functions

Jn(t) =

1/t∫
0

dp pn

(ep − 1)(1− e−p)
=

1

4

1/t∫
0

dp pn

sinh2(p/2)
(18)

of the order n = 5, 6, 7. The matrix elements P(a)
11 (T ) and

P(e)
11 (T ) corresponding to the two components of (12) in

the metallic limit depend on tD = T/TD and are

P(a)
11 (T ) = P(e)

11 (T ) = 1
2 t

5
D J5(tD)

P(a)
12 (T ) = 1

2 t
5
D J6(tD)

P(e)
12 (T ) = −P(a)

12 (T ) . (19)

The forms of the elements P(a)
22 (T ) and P(e)

22 (T ) are more
complicated, namely

P(η)
22 (T ) = 1

2 t
5
D

{
π2

3 J5(tD) + 1
3 J7(tD)

−η εs
2kBT

J6(tD) +
εFεs

(kBT )2
J5(tD)

}
, (20)

where η = 1 for (η) = (a) and η = −1 for (η) = (e). In
the last term in (20), which follows from the last one
in P22 w (11), there is the product of the Fermi energy
and εs = 2mv2

s . The energy εs/4 is the minimal electron
energy for the phonon emission in case of the free electron
gas scattered by acoustic phonons (see [31]), namely the
scattering with the emission is allowed when the electron
group velocity exceeds the speed of sound.

The formulas for the the full matrix elements are
obtained obviously after summing Pij(T ) = P(a)

ij (T ) +

P(e)
ij (T ). We represent them below in the form correspond-

ing to our starting ones (1). They read

Pij(T ) = Fij(tD) (21)

where

F11(tD) = t5D J5(tD) , F12(tD) = F21(tD) = 0 (22)

F22(tD) = t5D

{
π2

3 J5(tD) + 1
3 J7(tD) +

εFεs
(kBT )2

J5(tD)

}
.

(23)
In Section 6 we take advantage of the above functions for
an analysis of experimental data. The “model” magnitude

of ρ(ac)
o of (1), following from the value Po = P(ac)

o of (4),
is presented in Appendix C.

In our preliminary numerical analysis of DyIn3 in [4]

we used the function F22(tD) following from 2P(1)
22 (T ) of

(20), i.e., with the additional term −ηεs/(2kBT )J6(tD)
(see Appendix A for details). Since the energy εs is a few
K, this term occurred to be not essential in our numerical
analysis.

As concerns the electrical resistivity, the formula (22)
following from (1) is the standard which requires no fur-
ther comment. In the case of the thermal conductivity,
there are certain differences between the formula (1), (23)
and those obtained earlier by other authors for the same
model but by using various approximations. Of the earlier
results, one should first of all mention the Wilson formu-
las [26,32] obtained by solving the Boltzmann equation by
successive approximations. The temperature dependence
of the thermal conductivity following from the formula of
[32] was for the first time analyzed numerically by Makin-
son [33], who also took into account the scattering by
static impurities in his numerical analysis and graphical
representation of the results.

The formula for the thermal resistivity presented by
Wilson in Chapter 9 of his monograph [26] yields

F22(tD) = t5D

{
π2

3 J5(tD) +AJ7(tD) +B J5(tD)
}
, (24)

where A = −1 and B = (εF/2D) t−2
D with D =

(6π2)2/3~2/(4ma2) and a being the lattice constant.
Berman in Chapter 11 of [34] presents similar formula
which implies (24) with A = −1/6 and B = (kF/qD)2 t−2

D

and refers to an earlier paper by Wilson. The function (24)
is also presented in [17,29]. Pay attention that D in the
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above Wilson expression for F22(tD), (24) is an electron
energy corresponding to the magnitude of the electron
wave vector qD which is estimated in the next Subsec-
tion. A similar expression was also recently obtained in
[35] In this case the author obtained (24) with A = −1/6
and B = (εsεF/(kBT )2.

More sophisticated methods of the theoretical approach
based on the Boltzmann equation to finding the phonon
limited electrical and thermal conductivity of metals
were worked out in the period of the development of
numerical studies of the band structure of metals. These
methods, which take into account a real band struc-
ture and an experimental phonon spectrum, are obviously
purely numerical. The electron–phonon interaction is then
described in terms of transport coupling function [21]
which generalize the Eliashberg electron-phonon spec-
tral function [21] used in superconductivity theory. Two
methods are applied to find a numerical solution of the
Boltzmann equation. The first [21,36] is based on the
concept of an anisotropic relaxation time τ(k, T ) [37,38],
which in the limit to a first iteration of the integral equa-
tion for τ(k, T ) allow to get a simple closed expression
for the scattering times at any temperature from which
one can calculate the transport coefficients. The second
method [39,40] is based on the idea of representing the
Boltzmann equation as an algebraic equation and search-
ing for its solution by using successive approximation in
terms of functions built of basis functions consisting of
products of Fermi-surface harmonics and polynomials in
(ε− ζ)/kBT . Both methods lead to the results from which
in the first approximation one can apparently obtain for-
mulas expressed by the Bloch–Grüneisen functions [22].
Taking into account of a few scattering sources within
the purely numerical methods described above is hardly
possible.

As we mentioned in the Introduction, modern purely
numerical methods have recently been applied to describe
theoretically the thermal transport. In [5,41]), by apply-
ing the Boltzmann transport expressions for the thermal
transport coefficients with numerical methods DFT and
DFPT (see [5,41] and the the review [42] for references)
the authors showed how one can combine the old well
founded methods with the modern ones to depict graph-
ically both the phonon and electron contribution to the
thermal conductivity [5,41] by first–principles calcula-
tions. In [41] these methods were applied to NiAl and
Ni3Al and upgraded to certain noble and transition metals
[5].

3.2 Optical phonons

The intermetallic compounds REIn3, which we examine,
crystallize in the AuCu3 structure and have a basis of two
atoms per unit cell. Thus, a single band of optical modes of
the phonon spectrum can scatter valence electrons com-
ing from two ions, RE+3 and In+3 ions, of the lattice.
A precise determination of C0(ωq,q) of equation (3) for
the scattering by optical phonons is in general a more
difficult task than for acoustic ones since the problem of
the electron-phonon interaction is more complicated (see,
e.g. [43,44] and references therein). However, we apply

the simplest approximations in which the subtleties of the
scattering described in [43,44] will not be substantive. It
is enough to mention that two types of electron-phonon
interactions are known in the optical phonon case. The
first is caused by a relative displacement of the sublat-
tices and the resulting shift of the electron band edge.
The second is a consequence of the electrical polariza-
tion induced by the optical phonons (see. e.g, [45] and
references therein).

The first interaction apparently predominates in REIn3

and is the only one which we take into account while
considering these compounds. In order to describe the
scattering of the conduction electrons by non-polar optic
phonons it is formally sufficient to suppose that the
squared matrix element responsible for the scattering,
C0(ωq,q), is independent of q = k′ - k. Then, the counter-
part of (17) is obtained by replacing ωq by ω0 of (10) and
q = |k′ − k| by the magnitude of a primitive reciprocal
lattice vector Go [46]. In this way we obtain

C0(ωq,q) =
Vc

4π2

E2
1G

2
o

Mω0

, (25)

being the standard formula used in theory of electronic
transport in semiconductors [8]. It is well founded by the
deformation potential methods [45]; the product E1Go

is denoted as Do and called the deformation potential
constant. For our considerations the fact that C0 can
be assumed q-independent (l = 0 in (13)) is of basic
importance. The corresponding expression (17) applied
to metals in case of acoustic phonons leads to the well
founded temperature dependence for the electrical resis-
tivity. Therefore, we take for granted that a q-independent
magnitude of C0 such as (25) is a proper first approxima-
tion also for metals.

In compounds such as ReO3 and LaB6 the electrical
polarization effects are of basic importance and the polar
electron-phonon interaction is considered to prevail over
the non-polar one. This is because the configuration of
the maximum charge distribution in these compounds is
Re3+O−1 and La3+(B6)2−, respectively, and therefore the
ionic bonding occur. An experimental evidence for the
influence of the polar optical modes in these compounds
on the electrical resistivity was provided in [9–11]. A sim-
ple model of the scattering of the conduction electrons by
polar phonon modes was presented by Fröhlich [18] who
considered a crystal built of cells containing two ions of
opposite electric charges of the masses M+ and M− and
the mutual distance d. Then, only longitudinal phonon
waves contribute to the scattering probability (9) and the
function C0(ωq,q) is following

C0(ωq,q) ≡ e4

π2d3q2M ′ω0

, (26)

where−e denotes the electron charge and 1/M ′ = (1/M+)
+(1/M−). The exponent of q in (13) being l = −2 in this
case and will be essential for further considerations. From
a more general standpoint than the Fröhlich model [18]
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this power is a consequence of calculating the gradient of
the Fourier transform of the Coulomb potential in order
to find the Fourier components of the polarization vector
[29,47] and the same power results from applying of the
deformation potential approximation [45].

In both cases, (25) and (26), the limits of the inte-
grals in (13) which follow from the energy conservation
are following

a = α
[
ε1/2 − ε1/2+

]
, b = α

[
ε1/2 + ε

1/2
+

]
, (27)

c = α
[
ε1/2 − ε1/2−

]
, d = α

[
ε1/2 + ε

1/2
−
]
, (28)

where α = (2m/~)1/2, ε+ = ε + ~ω0 and ε− = ε − ~ω0.
These limits should be used in case of semiconductors, as
it was done in [12]. The assumption of the above upper
limits b, d in case of a metal would mean that a change of
the electron wave number is about 2kF for ε ≈ εF, whereas
in fact it is less than the size of the Brillouin zone being
smaller than 2kF. Therefore, while considering metals, we
take also into account the upper limit of the phonon
spectrum approximated by the magnitude of radius qD
of the Debye sphere. This is obviously the same assump-
tion as for acoustic phonons, however, in the present case
the magnitude of qD has to be estimated by means of
the (cubic) lattice constant for the considered crystal.
In this way, we obtain the following qD = (6π2)1/3/(γa)
with γ = 1 for the simple cubic lattice, γ = (0.5)1/3 for
bcc lattice, and γ = (0.25)1/3 for fcc. Thus, by using this
additional constraint for metals we assume that

a ≤ q ≤ 2 qD , c ≤ q ≤ 2 qD, (29)

respectively, in case of the absorption and the emission,
where a i c are given by equation (28) and it is not obvious
that a = c as in case of acoustic phonons. Thus, one cannot
change the order of the integration in (12) as it is while
considering acoustic phonons.

For convenience of the further considerations we intro-
duce the dimensionless constant

ξ =
~2

2m

(6π2)2/3

~ω0γ2a2
≈ 2.31554 · 102 eV

µγ2a2
A~ω0

=
2.68528 · 106 K

µγ2a2
ATE

,

(30)
where m = µmo with mo the mass of the free electron,
TE = ~ω0/kB is the Einstein temperature, and the lattice
constant a is represented by dimensionless quantity aA

(a = aA · 10−10 m), which in Angströms (Å) express its
magnitude. By using this parameter one can introduce
dimensionless functions Φa(w),Φe(w) and Ψa(w),Ψe(w)
of the argument w = ε/~ω0, which differ for (25) and (26)
and result from the integration of the right-hand side of
(12) with respect q. Then the matrix elements (11) can be

expressed in the following way

P11/Po = N ′o
∫ ∞

0

dεf0(ε)
[
1− f0(ε+)

]
Φa(w)

+N ′′o
∫ ∞
g

dε f0(ε)
[
1− f0(ε−)

]
Φe(w)

P12/Po = N ′o
∫ ∞

0

dεf0(ε)
[
1− f0(ε+)

]
u(a)

12 Φa(w)

+N ′′o
∫ ∞
g

dε f0(ε)
[
1− f0(ε−)

]
u(e)

12 Φe(w)

P22/Po

= N ′o
∫ ∞

0

dεf0(ε)
[
1− f0(ε+)

] [
u(a)

22 Φa(w) + (~ω0)
2Ψa(w)

]
+N ′′o

∫ ∞
g

dεf0(ε)
[
1− f0(ε−)

] [
u(e)

22 Φe(w) + (~ω0)
2Ψe(w)

]
,

(31)

where N ′o = No/kBT , N ′′o = (No + 1)/kBT , ε+ = ε+ ~ω0,

ε− = ε − ~ω0, g = ~ω0 and the functions u
(a)
ij , u

(e)
ij are

defined

u(a)
12 = (ε− ζ) + ~ω0 u(e)

12 = (ε− ζ)− ~ω0 ,

u(a)
22 = (ε− ζ)2 + 2~ω0(ε− ζ) + (~ω0)

2

u(e)
22 = (ε− ζ)2 − 2~ω0(ε− ζ) + (~ω0)

2 , (32)

with No = (exp(~ω0/kBT ) − 1)−1. Po is certain material
constant, the value of which is not essential for the present
considerations. Explicit form the functions Φa(w),Ψa(w)
and Φe(w),Ψe(w) will be presented in the following two
subsections.

In order to estimate numerically the contribution of
particular functions Φa(w),Φe(w) and Ψa(w),Ψe(w) to
the matrix elements Pij we employ the identity (5), (6)
and calculate the integrals of (31) in the lowest order
of the Sommerfeld expansion. Let the matrix elements

Pij approximated in this way are denoted P
(s)
ij with

Pij(T ) = P(s)
ij (T ) = G(s)

ij (tE) as the corresponding func-

tions of (1) and (4). The functions G(s)
ij (tE) expressed by

p ≡ ~ω0/kBT = TE/T = t−1
E and the parameter wF =

εF/~ω0 are

G(s)
11 (tE) =

1

sinh(p)
[Φa(wF) + Φe(wF)] , (33)

G(s)
12 (tE) =

1

sinh(p)

{
p
[
Φa(wF)− Φe(wF)

]
+
π2

3
p
[
Φ′a(wF) + Φ′e(wF)

]
−π

2

6

[
Φa(wF)− Φe(wF)

]
tanh (p/2)

}
(34)
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G(s)
22 (tE) =

π2

3

1

sinh(p)

{
Φa(wF) + Φe(wF)

+2
[
Φ′a(wF)− Φ′e(wF)

]
−p
[
Φa(wF) + Φe(wF)

]
tanh (p/2)

+
3

π2
p2

[
Φa(wF) + Φe(wF)

+
[
Ψa(wF) + Ψe(wF)

]]}
. (35)

The functions Φ′a(wF) are Φ′e(wF) in the above expres-
sions are the derivatives of Φa(w) and Φe(w) with respect

w at w = wF. The values of the material constant P(op)
0 ,

different for nonpolar and polar phonons are given in
Appendix C. The interval of wF in which equation (34)
have a physical sense depends on the values of TE, εF and
the effective electron mass. The lower values of εF are
limited by the validity of the approximation ζ(T ) ≈ εF
and the upper one by the number of the current carriers
which may occur in metal. If one assumes a free electrons
gas and TE ≈ 800 K, the magnitude of wF is only about
9 / wF / 40, what corresponds to the values of εF from the
approximate interval 0.6 eV / εF / 3 eV. The lower value
in the latter inequalities follows from the requirement for
the chemical potential ζ to be temperature independent
(and equal to εF). The upper value of these inequalities is a
consequence of the number of the conduction electrons in
the crystal under consideration. For quasi-free electrons
of the electron mass m = µmo (mo is the free electron

mass) we have εF = 0.364675·10−14µ−1n
2/3
e cm2 eV, which

in case ne =1022cm−3 and µ = 1 yields εF ≈ 1.7 eV.

3.2.1 Nonpolar optical phonons

In case of nonpolar optical phonons, i.e., under the
assumption (25), the functions Φi(w).Ψi(w) (i=a,e) are
following

Φi(w) = 1
4

[
ξ2 − φ4

i (w)
]
, Ψi(w) = 1

2 w
[
ξ − φ2

i (w)
]

(36)
where

φa(w) = (w + 1)1/2 − w1/2 =
1

(w + 1)1/2 + w1/2

φe(w) = w1/2 − (w − 1)1/2 =
1

w1/2 + (w − 1)1/2
, (37)

with the values limited to w > 1 for φe(w).
Consider first the approximation (33–35). The numer-

ical analysis of these formulas for (36) in the interval
9 < wF < 40 indicates that an essential contribution to the
functions (33–35) comes from Φi(w) ≈ ξ2/4, Ψi(w) ≈ wξ,
since the magnitude of the terms resulting from the func-
tions φa(w), φe(w) is several orders of the magnitude less.
By assuming now that Φi(wF) = ξ2/4, Ψi(wF) = wFξ and
introducing these values to (33–35) one can obtain sim-

ple formulas for the functions G(s)
11 (tE),G(s)

12 (tE),G(s)
22 (tE).

Notice that this assumption is equivalent to using the
limits (0, 2qD) of the integrals with respect q instead of
(a, 2qD) and (c, 2qD).

The assumption Φi(wF) = ξ2/4, Ψi(wF) = wFξ at the
level of the equations for (31) enables one to obtain
also simple formulas G11(tE),G12(tE),G22(tE) in a better
approximation than the mentioned above. In this approx-
imation the formulas for Gij(tE) are counterparts of the
Bloch–Grüneisen ones. As in the case of the acoustic
phonons they are obtained by using the Wilson method
[26] of integrating with respect the electron energy with
taking into account the identity (5), (6). Several formula
allowing to facilitate this calculation are presented in
Appendix B. By employing these formula we obtain for
the functions Pij(T ) = Gij(tE) of (1) and (4) the formulas

G11(tE) =
ξ2 p

2(ep − 1)(1− e−p)
=

ξ2 p

8 sinh2(p/2)
, (38)

G22(tE) =
p

(ep − 1)(1− e−p)

[
1
6ξ

2(π2 + p2) + ξwFp
2
]

= G11(tE)
[
π2

3 +
(

1
3 + 2

ξ wF

)
p2
]

(39)

and G12(tE) = 0. The expressions for values of the rele-

vant material constants ρ(op)
0 and P(op)

o can be found in
Appendix C.

3.2.2 Polar optical phonons

For polar optical phonons, it means under the assumption
(26), the functions Φi(w),Ψi(w) (i=a,e) are

Φi(w) = ξ − φ2
i (w) , (40)

Ψi(w) = 2w ln
[
ξ1/2φ−1

i

]
= w ln ξ + 2w lnφi(w) .

The numerical analysis of (33), (35) such as in the previ-
ous Subsection allows to assume approximately Φa(w) =
Φe(w) = ξ but the functions Ψa(w),Ψe(w) – unlike their
counterparts in the previous Subsection – have to be
taken into account without any approximation. By assum-
ing Φa(w) = Φe(w) = ξ in (33)–(35) one can represent
the matrix elements Pij(T ) of (4) by simple formulas
corresponding to the Sommerfeld approximation.

In much the same way as in the case of (38), (39),
one can obtain formulas corresponding to the Bloch–
Grüneisen functions of the scattering by acoustic phonons.
Appendix B facilitates to pass the calculations. The final
results for the matrix elements Pij(T ) = Gij(tE) are

G11(tE) =
2ξ p

(ep − 1)(1− e−p)
=

ξ p

2 sinh2(p/2)
,

G12(tE) = 0 (41)

G22(tE) =
2ξ p(π2 + p2)

3(ep − 1)(1− e−p)

+
2p3

(ep − 1)(1− e−p)
[wF ln ξ + Λ(wF, p)]

= G11(tE)
{
π2 + p2

[
wF ln ξ + Λ(wF, p)

]}
(42)
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where p = ~ω0/kBT = TE/T = t−1
E , and the function

Λ(wF, p) is defined

Λ(wF, p) =
1

p

∫ p

0

dy(2w − 1) ln[w1/2 + (w − 1)1/2]

≈ wF

{
lnw

1/2
F + (wF + 1)1/2]

+ ln[w
1/2
F + (wF − 1)1/2]

}
. (43)

The variables in the above formula are w = p−1(y + z) ≈
wF + y/p, z = ζ(T )/kBT ≈ εF/kBT . The relevant mate-
rial constants are denoted in the way as in the previous

Subsection, namely ρ(op)
0 and P(op)

o , and the appropriate
expressions can be found in Appendix C.

Much the same formula as our G11(tE), (41), was
obtained by Howarth and Sondheimer [12] as a limiting
case for the degenerate electron gas in their considerations
of the influence of the conduction electron scattering on
the electrical resistivity in polar semiconductors. The dif-
ference is in the factor ξ, being a consequence of the fact
that unlike those of [12] our integrals with respect q are
limited to the Debye sphere. The formula for the degener-
ate gas of [12] was applied in [9,10] to improve the fitting
of the experimental electrical resistivity data of ReO3 and
LaB6 to theoretical curves. In the present paper we extend
the consideration such as applied in [9,10] to the thermal
resistivity. According to our knowledge there is no such
extension neither in the case of scattering by polar nor
nonpolar phonons.

4 Scattering of conduction electrons
by localized magnetic moments

In order to find the form of C(k,q) of (3) in the case of
magnetic scattering we assume the conduction electron
spins to interact via the exchange interaction with the
spins of 4f ions being under influence of a crystal field
and a Heisenberg-like interaction between the ions. Let
the local interaction of a single conduction electron spin
s with the total spin S of the electronic shell of a RE ion
is jexs S, [1,48,49], where the exchange energy is of the
order of a few tenth of eV. For further convenience we shall
represent this interaction in terms of the total stable mag-
netic moment of the 4f-shell J, it means as jex(g − 1)s J,
where g is the Lande factor. Consider now the whole crys-
tal of the volume V with N4f RE ions. The total exchange
energy,Hs−f , of the interaction of the conduction electrons
with 4f ions (s-f interaction) is assumed to be sufficiently
small in comparison the sum of the crystal field one and
the Heisenberg-like one, H4f , so as it can be treated as a
perturbation. For the systemH4f +Hs−f one can find the
transition probability C(k,q) calculated in the first Born
approximation. As in the previous scattering systems of
the present paper this transition probability calculated
in this approximation can be considered to be sufficient
for examining the transport properties. It can be repre-
sented by a simple, compact form which was found in

[50] in which C(k,q) ≡ C(Ω,q) is explicitly dependent on
~Ω ≡ ε′ − ε = ε(k′)− ε(k) and q in the following way

C(Ω,q) =
V

N4f

j2
ex(g − 1)2

(2π)3~
C(sf)(Ω,q) ,

C(sf)(Ω,q) =
1

N4f

∑
n

e−iq(Rn−R0)

×
∫ ∞
−∞

dt eiΩt〈Jn(t)J0(0)〉4f , (44)

where q = k′ − k, Rn −R0 denotes the location of the
moment Jn in the lattice with respect to J0. The sum is
taken over all the lattice points (including n = 0) in the
volume V of the crystal. C(sf)(Ω,q) is obviously space–
time Fourier transform of the site-site correlation function
in which Jn(t) = exp(iH4ft/~)Jn(0) exp(−iH4ft/~) and
the mean value 〈· · · 〉4f is calculated with H4f . The above
transition probability resembles the expression for the
neutron cross-section scattering in magnetic materials
[20]. In both cases the scattering is described by similar
correlation function.

To perform calculations in which we find the scatter-
ing matrices Pij , (11), we make further assumption. We
restrict our considerations to RE ions periodically ordered
in the lattice. Moreover, for illustration, we assume the
Heisenberg-like interaction leading to ferromagnetic order-
ing between RE ions at sufficiently low temperatures.
In a further step we simplify this interaction by apply-
ing the molecular field approximation (MFA). Taking
antiferromagnetic interaction into account within this
approximation causes solely computational difficulties.
After applying the mentioned model and simplifications,

the Hamiltonian H4f =
∑
nH

(1)
n is a sum of the single-site

independent Hamiltonians H(1)
n which can be written

H(1)
n ≡ H = HCF − λσJz + 1

2λσ
2. (45)

The first term HCF denotes the crystal field Hamiltonian
(see Sect. 6). The coefficient λ in (45) stands for the
molecular field constant which can be expressed by an
appropriate sum of the two-ion coupling constants. With-
out loss of the generality we can assume that the reduced
spontaneous magnetization is 〈J〉 = (0, 0, σ). The magni-
tude of σ = σ(T ) has to be calculated in a self–consistent
way by solving the equation σ = Z−1TrJze−H/kBT , where
Z = Tre−H/kBT .

Notice that we neglect the splitting of the conduction
band under influence of the internal (molecular) magnetic
field, which is an essential assumption of early papers [48,
49]. As it is known now this splitting in the ordered phase
is only important in d-electron metals.

In order to calculate C(sf)(Ω,q) we take for granted that
the eigenvalues and eigenfunctions of the Hamiltonian

H(1)
n are known and denote them Eα, |Eα〉, respectively.
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In this way in MFA we obtain

C(sf)(Ω,q) ≈ C
(sf)
MFA(Ω, 0)

=
2π

Z

2J+1∑
α,β=1

e−Eα/kBTQαβ δ(~Ω− Eα + Eβ)

−2π〈J〉2δ(~Ω) , (46)

where the states are numbered from 1 to 2J+1 and Qαβ =
Qαβ are the elements of the matrix denoted QQQ which are

Qαβ = |〈Eα|Jz|Eβ〉|2

+ 1
2 |〈Eα|J

+|Eβ〉|2 + 1
2 |〈Eα|J

−|Eβ〉|2 , (47)

where the standard notation is used for the
components J+, J− and Jz of J0 ≡ J, Z =∑
α exp(−Eα/kBT ) is the partition function and 〈J〉 =

Z−1
∑
α exp(−Eα/kBT )〈Eα|J |Eα〉 . The summation in

(47) concerns the pairs αβ and βα when α 6= β. For the
degenerated states we assume α = β and then Ω = 0.

The independence C(sf)(Ω,q) of q permit us to calculate
easily the integrals (2) with respect the angles of the spher-
ical coordinates of the vectors k i k′. Therefore, the matrix
element Pij , equation (2), can be expressed in terms of the
products of Qα,β and and integrals with respect ε i ε′ in
the limits (0,∞) of functions of the structure

Kij =
(
− ∂f0

∂ε

)
G(ε, ε′)Uijδ(ε− ε′ −∆αβ) (48)

where ∆αβ = Eα −Eβ , Uij are simple polynomials of ε, ε′

and ε− ζ, ε′− ζ, and the function G(ε, ε′) is defined by (6).
The final expressions in the metallic limit are obtained
by applying the Sommerfeld expansion for the mentioned
integrals. The functions Pij(T ) of (4) in this case are

P11(T ) ≡ RJ(T ) = TrRRRQQQ− 〈J〉2

P12(T ) = 2
π2

3
(kBT )

kBT

εF
RJ(T )

P22(T ) ≡ WJ(T ) = TrWWWQQQ− (π2/3) 〈J〉2 , (49)

where RRR, WWW are symmetric matrices the elements

Rαβ =
2

ZE

1

e+Eα/kBT + e+Eβ/kBT
, (50)

Wαβ =
1

ZE

1

e+Eα/kBT + e+Eβ/kBT

×
[
2
π2

3
− π2

3

∆αβ

kBT
tanh

( ∆αβ

2kBT

)
+
(∆αβ

kBT

)2 ]
.(51)

The quantities Eα = Eα − E1, Eβ = Eβ − E1 denote the
excitations ∆αβ = Eα − Eβ = Eα − Eβ over the ground
state E1, ZE =

∑
α exp(−Eα/kBT ). The relevant mate-

rial constant Po of (4) denoted as P (sf)
o is the same as

its counterpart in [27] and is presented in Appendix C.
Similar formula for the magnetic part of the electrical

resistivity in the paramagnetic phase to that described
by (49) with the matrix elements (50) is often applied

as a test of the influence of crystal field splitting on the
temperature dependence of the electrical resistivity. The
formula was presented for the first time in [51] with its
derivation presented is [52]. In our notations, the matrix
elements of Rαβ of [51,52] are

Rαβ =

{
(pα∆αβ/kBT )

[
1− e−∆αβ/kBT

]−1

pαδαβ ,
(52)

where the upper case corresponds to ∆αβ 6= 0, the lower

one to ∆αβ = 0 and pα = e−Eα/kBT /
∑
α e−Eα/kBT is the

population of the α-th state. Discrepancies between the
results of (52) and (50) are only expected at an interme-
diate temperature region. At low temperatures and high
ones both the formulas yield values close to 0 and J(J+1),
respectively. Notice that our derivation is more general
since – as it follows from [52] – the formula (52) is obtained
from (44) by representing the correlation function by the
generalized susceptibility,and then by expanding the sus-
ceptibility in terms of the effective field strength with
rejecting higher order terms than linear ones.

There is a very limited amount of cubic intermetallic RE
compounds of ferromagnetic order. Therefore, the term
〈J〉2 in (49) is rather an illustration of the way in which
the magnetic ordering manifest itself in the expressions for
the electrical and thermal resistivity. Antiferromagnetic
ordering, characteristic of these compounds, require spe-
cial consideration. In our analysis of experimental results
we confine to considering (49) in paramagnetic phases it
means the cases when 〈J〉2 = 0 in (49).

An example of cubic intermetallic RE compounds of
ferromagnetic order is GdAl2. Since the orbital magnetic
moment of the Gd ions is equal to zero, the crystal field
does not influence the behavior of GdAl2 and we haveHCF

in (45). The Curie temperature, Tc, of this compound is
rather high (about 150 K), therefore the term 〈J〉2 con-
tribute to (49) in a considerable temperature region. The
formulas (49) are still valid in the case HCF = 0 and cor-
respond to those obtained in [27] and corrected in the
Appendix of [53].

To show this correspondence we consider first the para-
magnetic phase, T > Tc, of a crystal in which HCF = 0.
Then 〈J〉2 = σ2 = 0, Eα = Eβ = ∆αβ = 0 and therefore
we have an elastic electron scattering which implies tem-
perature independent values RJ(T ) = J(J + 1), WJ(T ) =
(π2/3)J(J + 1). The inelastic scattering below Tc is a con-
sequence of the excitations of the RE ions in the molecular
field ∆α,β = ±λσ contributing if α = β + 1 or α = β − 1
in the second and the third terms of (47). These terms are
completed with the “elastic” ones ∆α,β = 0 corresponding
to α = β of the first term in (47). This simple excitation
scheme allows to represent TrRRRQQQ and TrWWWQQQ in (49) in
terms of 〈J+J−〉 = 2σ/(ex − 1), 〈J−J+〈 = 2σ/(1− e−x)
and 〈(Jz)2〈 = J(J + 1) − σ cothx, where x = λσ/(kBT )
and the averages 〈 · · · 〈 are calculated with the appli-
cation of the molecular field Hamilton (45) with HCF =
0. The expressions for the counterparts of RJ(T ) and
WJ(T ) in [27] are also composed of these averages. The
final expressions for these functions following from (49)
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and the considerations of [27] are the same and with
the correction of WJ(T ) in the Appendix of [53] can be
represented as

RJ(T ) = J(J + 1)− σ2 − σ tanh (x/2) (53)

WJ(T ) =
π2

3
RJ(T )− π2

3

σx

2(coshx+ 1)
+

σx2

sinhx
. (54)

The second and third term in (54) come from the summa-
tion of the second and third term of (51), respectively. The
above functions depend, in fact, on the ratio T/Tc since
the Curie temperature Tc is proportional to the molecular
field strength constant λ and the magnitude of σ, being
the solution of the equation including the Brillouin func-
tion (see, e.g. [27]), is also a function of T/Tc with the
value σ = 0 for T ≥ Tc.

5 Lorenz number and the magnitude of the
s-f contribution to the electrical and thermal
resistivity at high temperatures

The temperature dependence of the Lorenz number
L(T ) = ρ(T )/TW (T ) helps in an analysis of experimental
data. Thus, consider also L for our model, it means the
ratio ρ(T ) and TW (T ) with (1) and the particular func-
tions given in Sections 3 and 4. If inelastic scattering is
not taken into account within the models of these sections,

we obtain F22(tD) = π2

3 F11(tD), G22(tE) = π2

3 G11(tE) and

WJ(T ) = π2

3 RJ(T ) what imply that L(T ) = Lo. It means
that the departure from the value of Lo in L(T ) is caused
by the inelastic scattering.

The influence of the inelastic scattering diminishes over
an increase of the temperature. In the limit T → ∞
the functions ρ and W (T ) are comprised of can be
represented at high temperatures by asymptotic expres-

sions: F11(tD) ≈ 1
4 tD, F22(tD) ≈ 1

4
π2

3 tD, G11(tE) ≈ gt−1
E ,

G22(tE) ≈ g π
2

3 t
−1
E with with g1 = ξ2/2 in case of non-

polar optical phonons and g = 2/ξ in case of polar
optical phonons. The asymptotic expressions for the func-
tions describing the s–f scattering in case T → ∞ are:

RJ(T ) ≈ J(J + 1) + r/(kBT ) and WJ(T ) ≈ π2

3 J(J +

1) + π2

3 r/(kBT ), where r is certain constant which value
is not essential. By applying the above asymptotic
expressions to that for L(T ) one can easily find that
limT→∞ L(T ) = Lo.

The asymptotic values of RJ(T ) and WJ(T ) at high
temperatures also allow to write down a simple formulas
for the “magnetic part” of the electrical resistivity called
“the spin-disorder resistivity” limT→∞ ρ(sf)

o RJ(T ) and its
counterpart of the thermal resistivity, being equal in our
notation to limT→∞(ρ(sf)

o /LoT )WJ(T ). The latter quan-
tity was used by the authors of [6,16] (see Eqs. (7) and
(8) in [6]) to examine the experimental data. By applying
the above asymptotic value and the explicit expression for

ρ(sf)
o (see Appendix C) one obtains

lim
T→∞

ρ(sf)
o

LoT
WJ(T ) ≡ ρ(sf)

o

LoT (g − 1)2
WJ(T )

≈ (g − 1)2J(J + 1)
C

T
, (55)

where the magnitude of C can be easily found from the
expression (C.8) of Appendix C. The slope of the spin
disorder thermal resistivity as a function of 1/T can be
found from experimental measurements (see Fig. 2 in [6]).

6 Phenomenological analysis of experimental
data

In order to demonstrate how the final formulas of the
described theoretical method correspond to the measured
electrical and thermal resistivity of real materials we apply
them to the data of two mono-crystal intermetallic com-
pounds, namely DyIn3 and TmIn3. The data for the
mentioned crystals come from the same source [6]; the
author of [6] measured both the thermal conductivity and
electrical resistivity by using the same sample. Of the
REIn3 series investigated in [6] we chose these two since
they seem to most resemble the so-called “normal met-
als” as to the Fermi surface and the localization of the
4f electrons. Some complications are caused by their anti-
ferromagnetic ordering at low temperatures. Fortunately,
their Néel temperatures are rather low as given in the
Introduction, especially for TmIn3. We confine our anal-
ysis to temperatures above these temperatures to avoid
a discussion of the magnetic fluctuations which are not
included in our theoretical considerations.

As it is seen from equations (49)–(51), the ground multi-
plet of the localized electron subsystem has a real impact
on the s-f scattering as well as its splitting and excited
eigenstates. The determination of the s-f contribution to
the considered coefficients requires the knowledge of the
eigenstates and eigenvalues |Eα〉, Eα, of this subsystem
(see Sect. 4).

The underlying eigenvalue problem is solved by simul-
taneous diagonalization of the internal Coulomb and
spin-orbit interactions with the crystalline field poten-
tial. The Slater integrals and the spin-orbit coupling
constants can be such as reported in [54] for the non-
metallic series REF3 Consequently, it is required and
most convenient to use the basic Wybourne parameter-
ization for the CF Hamiltonian [55]. It allows one not
to be limited to the Russell-Sanders coupling and, fur-
thermore, to control appropriate parameters in a series of
compounds such as REIn3 since their values should not
vary too much for subsequent compounds of the series.
More precisely, the absolute values are expected to mono-
tonically decrease with increasing atomic number of the
f-electron ion. For the needs of the present calculations
we assume linear dependence on the lattice constant of
the CF parameters B40 and B60 in the following crystal
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Table 1. Lattice constants and crystalline field parame-
ters used to determine the s-f contribution to the electrical
and thermal resistivity.

Latt. const. B40 B60

(Å) (K)

DyIn3 4.5806 299 263
TmIn3 4.5580 249 50

field Hamiltonian

HCF =
∑
i

{
B40

(
Ĉ

(4)
0 (ri/ri) +

(
5

14

)1/2

Ĉ
(4)
4 (ri/ri)

)

+ B60

(
Ĉ

(6)
0 (ri/ri)−

(
7

2

)1/2

Ĉ
(6)
4 (ri/ri)

)}
(56)

in which i runs over all unpaired electrons of the unfilled

shell of the metal ion, and Ĉ
(n)
m denote m compo-

nent of spherical tensor operator of rank n. When this
Hamiltonian is introduced into (45), it determines
together with the molecular field terms (if the system
in an ordered phase) the quantum states of the localized
electron subsystem involved in the considered scattering
process.

For metallic systems, the determination of the CF
parameters Bnm is usually encumbered with considerable
uncertainty. While looking through the values of the CF
parameters available for the whole REIn3 series from the
literature we found that in [56] the leading B40 parame-
ter for DyIn3 is about six times lower than that for the
remaining members of the series. Although we are not
sure if the available data for the whole series are definitely
reliable, we decided to assume interpolated values of B40

out of those represented as a function of the lattice con-
stant for the series REIn3. The magnitude of the second
parameter B60 for DyIn3 was obtained in such a way to
match the inelastic neutron scattering transition observed
at 16.7 K for this compound [56]. In the case of TmIn3

both the CF parameters were determined by the men-
tioned above interpolation since the available estimations
[57] are highly inconsistent with values obtained for other
compounds of the series even as to the sign. Therefore,
they were not taken into account by us. Obviously, the
interpolated values shown in Table 1, which are accepted
for the present modeling, require confirmation by further
specific material investigations.

Figure 1 shows the CF splittings of the ground J man-
ifolds, 6H15/2 and 3H6 which correspond to the 4f9 (Dy)

and 4f12 (Tm) configurations. The magnitude of the split-
ting was determined by using the values of the crystal field
parameters obtained in the above described way.

As one could expect, the splitting for DyIn3 is larger
than for TmIn3. This fact has consequences in qualita-
tively different influence of the s-f scattering. In particular
it translates into a greater temperature interval in which
the s-f scattering essentially influences the electrical and
thermal resistivities. Above this interval the s-f mecha-
nism produces a temperature independent component just

Fig. 1. CF energy levels obtained by simultaneous diagonal-
ization of intraatomic interactions and CF potential (56) using
the parameters from Table 1.

like the impurity contribution. At low temperatures it is
the ground CF level which determines the s-f contribution
[58,59]. For DyIn3 the ground state doublet Γ7 produces
a finite contribution at 0 K, while the singlet Γ1 ground
level of TmIn3 does not contribute below the temperature
at which the first excited CF level Γ4 becomes noticeably
populated. Thus, in the latter case the whole observed
residual resistivity have to originate from the impurity
scattering component in the frame of the present model.

In order to test the agreement between the experimental
values of the electrical and thermal resistivity and those
following from the theoretical formulas of the present
paper, we fit the theoretical values to the experimental
ones in the paramagnetic phase of the compounds up
to 300 K. We consider that there is a good agreement
between the experimental and theoretical curves both in
the case of ρ(T ) and W (T ) when one is able to fit both
curves with the same and reasonable values of the fit-
ting parameters such as ρimp, ρ(sf)

o , ρ(ac)
o and ρ(op)

o of the
formulas (1).

In fact, we apply as many as (unavoidable) eight param-
eters of the equations formed of (1) with (21)–(23), (38),
(39) and (49)–(51) to describe the curves ρ(T ) and TW (T )
to fit them to the experimental data for DyIn3 and
TmIn3. These are the coefficients ρimp, ρ(sf)

o , ρ(ac)
o and

ρ(op)
o in (1), the Debye and Einstein temperatures and the

energies εF, εs. The dimensionless parameter ξ has been
estimated from equation (30) assuming γ = (0.25)1/3,
µ = 1 and lattice constants from Table 1. The number of
these parameters seems rather large, however, the same
parameters have to be applied to the two equations, the
temperature interval is large and the various parameters
occur to be effective at various parts of this interval. Fur-
thermore, there are physical restrictions as to the values
of certain parameters. For instance, the magnitude of the
Debye temperature should be close to that following from
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other type of measurements or calculations, i.e. the possi-
bly lowest value in the rank of 150–300 K. There are also
restrictions on the value of εF which should be such in
order not to lead to too great number of the current car-
riers and not too small in order the requirements of the
approximation were fulfilled (see the argumentation above
Section 3.2.1). Finally, the values of the obtained fitting
parameters should be consistent with those obtained for
their counterparts of the REIn3 series.

While representing experimental data of [6] as ρ(T )
and TW (T ) our attention was focused on the difference
in curvature between ρ(T ) and TW (T ) manifesting for
both compounds within the whole temperature range. It
is worth to add here that by using (38) and (39) we are
able to fit more satisfactory than in [4] the curvature of
the theoretical TW (T ) curve to that of the experimental
one. It is due to the fact that in [4] the fitting of both ρ(T )
and TW (T ) was based on the same function behaving like
G11(tE) (see Fig. 2) and presented in [12] and [10]. Figure 2
shows that curvature of G22(tE) becomes more pronounced
for “more classical metals”, i.e. for higher values of εF and
the magnitude of the optical phonon energy TE is also
responsible for the effect.

The procedure of the fitting of equation (1) to exper-
imental data was performed in several cycles in order to
assure an expected accuracy and consistency. In each cycle
ρ(T ) was fitted first, then the obtained parameters were
used as initial ones to the fitting of TW (T ) with the
same constraints as applied to the electrical resistivity.
The results are presented in Figure 3 and Table 2 show the
relevant parameter sets derived for the measured ρ(T ) and
TW (T ). It is seen that the parameters are quite consis-
tent for DyIn3. It means that obtained values of the fitting
parameters are the same in case of ρ(T ) and TW (T ) and
they fall within the accepted limits. In case of TmIn3 we
were not able to assure similar agreement. The values of
TD and TE are visibly higher for TW (T ) than these fit-
ted to ρ(T ). In both cases they are higher than the values
obtained for DyIn3. Notice, however, that the values of
TD and TE, i.e., of the phonon energies are related to the
curvature of the experimental TW (T ) dependence in the
whole temperature range.

The material constants obtained from the fitting
for TmIn3 are shown in the penultimate column of
Table 2. Nearly all the parameters are of considerably
greater value. This suggests that the model approxima-
tions are too simple to describe well this compound and
the oversimplification mainly concerns the phonon sys-
tem. There is also a possibility that experimental data are
incorrect but we rather exclude it since the measurements
were made twice with two different apparatus.

In search of the material constants for TmIn3 being
of the nearly the same magnitude as those for DyIn3 we
scaled the experimental results TW (T ) for TmIn3 so as to
obtain at high temperatures the same magnitude of the
Lorenz number of the same value as that of DyIn3. In
this way we reduced for all the temperatures the values
of TW (T ) by the factor 0.338 and obtained the material
constants nearly the same as in case of DyIn3. In fact, we
expected similar values of the material constants in case
of both the compounds and the fact that this is obtained

Fig. 2. G11(tE) and G22(tE)], (38)–(39), as the function of T
for TE = 300 and 600 K and three different Fermi energies.
According to the expectation the temperature at which maxi-
mum of the curvature is observed relates to TE. Moreover it is
more pronounced for both higher TE and εF.

after reducing the values of TW (T ) for TmIn3 is at present
not fully understandable for us. Therefore, another fitting
strategies were probed. Satisfactory precision of the fitting
to the experimental TW (T ), just like that seen in Figure
3, was obtained by minimizing ρimp to get it as close the
value of this parameter derived from the electrical resistiv-
ity for this compound as possible. The results are shown
in the last column of Table 2.

As it is seen, ρimp and ρ(ac)
o in this set are quite close to

the values obtained from the fitting of the electrical resis-
tivity. The phonon energies TD and TE are also closer to

their counterparts. Unfortunately, ρ̃(op)
o = (8/ξ2)ρ(op)

o and
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Table 2. The parameters obtained by the fitting of equation (1) to the electrical and thermal resistivities for DyIn3

and TmIn3. Two different sets of parameters fitted to the measured TW (T ) are presented for TmIn3. Values given in
the parentheses were obtained for scaled experimental curve. For further explanation see the main text. To maintain

correspondence with the convention used previously after reference [9] we replace here ρ(op)
o with ρ̃(op)

o = (8/ξ2)ρ(op)
o

where ξ is given by equation (30) calculated for µ = 1.

DyIn3 TmIn3

Parameters derived from ρ(T ) TW (T ) ρ(T ) TW (T )

ρimp/Lo [m K2/W] 16 16 52 241 (81) 73
ρ(ac)
o /Lo 422 473 407 1284 (430) 669

ρ̃(op)
o /Lo 39 32 38 76 (27) 130
ρ(sf)
o /Lo 11 17 19 242 (83) 417
TD [K] 158 163 197 368 (362) 299
TE 390 474 400 665 (653) 563
εs [K] 1.2 5.0 (3.2) 3.5
εF [eV] 2.2 2.0 (2.6) 2.6

ρ(sf)
o is five and as much as twenty times larger than their

electrical resistivity counterparts. The result is related to
the considerable less magnitude of the Lorenz number seen
in Figure 3 of [6] for TmIn3. Thus, this scenario also
requires further theoretical and experimental investiga-
tions. First, inclusion of the excited electron configuration
fn ⇒ fn−1d, admission of some degree of delocalization
of the 4f electrons and reduction of the intra-atomic
Coulomb and spin-orbit coupling constants.

It is clear from the presented formulas for particular
components of the transport characteristics under con-
sideration that the adjustable parameters are not quite
independent. It concerns especially those describing the
two contributions of the scattering by phonons. Therefore,
the obtained values of the parameters should be handled
with caution as a reference to possible further estimations
of material constants. Apart from the Debye, Einstein and
Fermi energy, which are directly fitted to the experimental
data, the obtained magnitudes of other parameters shed
some light on the value of other pertinent quantities (see
also Appendix C). The constant C, equation (55), which
can be extracted directly form the experiment, allows to
determine the interaction s-f constant, jex, which should
not differ too much along the series. Unfortunately, the
value of C obtained here from the parameters listed in
Table 2, similarly as the one determined directly from
experiment, as seen from Figure 2 in reference [6], turns
out to be over ten times larger for TmIn3 than for DyIn3.
This leads to over three times larger values of jex. The
ratio of jex for TmIn3 and DyIn3 even increases to over
five if derived from TW (T ). We checked that this behav-
ior is not caused by omitting the non-spherical Coulomb
scattering [58,60–62] which leads to much the same tem-
perature dependence of the electrical resistivity as the
s-f one [58].

7 Final remarks

By using the models and the approximations, which
we presented in successive sections of this paper, we
obtained simple formulas for additive contributions to the
electrical and thermal resistivity. The method can be

applied to a description of the transport in certain f-
electron rare earth intermetallics or simpler metals if the
magnetic s-f contribution is neglected. The presented here
approach is a development, simplification and correction
of several earlier papers of one of the authors. The devel-
opment concerns taking into account the scattering of the
conduction electrons by optical phonons and while con-
sidering the s-f scattering also the crystal field. In [53] the
crystal field was considered within oversimplified two-level
model. In [4] the final formula for many-level system was
merely presented. In the present paper we derive it and by
adding the terms responsible for the scattering by optical
phonons to the result of [4] we manage to get a better
quantitative correspondence of the temperature depen-
dence of the thermal resistivity to the experimental results
for DyIn3. According our knowledge the influence of the
optical phonons on the transport in metals was restricted
up to now only to an analysis of temperature dependence
of the electrical resistivity of certain metals [9–11].

One can expect that the theory such as in the present
paper, it means based on the free electron approximation
and simple models, can be hardly applied to quantitative
analysis of experimental data of the transport coefficient
in metals. Nevertheless, we attempted this task in [4]
and in the present paper with quite satisfactory result
in the case of DyIn3 and less satisfactory concerning the
derived material constants for TmIn3. The reason is not
clear for us, since one rather expects that differences in
the value of the lattice constant and in the number of
the f-electrons between RE-ions of these two examined
compounds should not imply large changes in the prob-
abilities of the scattering. In fact, the changes concern
the heat carrier scattering rather than the electric charge
scattering since this is the thermal conductivity which
considerably vary between that of DyIn3 and TmIn3. Since
phonons as heat carriers in these metallic systems can be
excluded, we are inclined to consider that the reason of
the discrepancy in TmIn3 is related to a subtle role of
the conduction electrons in the scattering. Namely, if the
value of the Fermi energy counted from the bottom of
the conduction band is not sufficiently large, the upper
limit of the integrals of which the scattering matrices are
composed is not simply related to the Debye temperature.
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Fig. 3. Experimental (diamonds) versus theoretical (solid line) temperature dependency of the electrical and thermal resistivity
for DyIn3 and TmIn3. The influence of the scattering on acoustic phonons (ac), optical phonons (op) and due to the s-f interaction
(sf) are shown. The lattice imperfections lead to the temperature-independent contribution which is seen as the gap between
the model curve and the s-f one at the low temperatures in which the phonons are ineffective. Note different temperature ranges
of non-linearity of the particular scattering mechanisms seen for T ·W (T ).

Furthermore, the formulas (7) and (8) cease to be valid
and one has to apply their more general counterparts,
namely equations (7) and (9) of [13] (or see Sect. III of
[28]). It means that the electrical and thermal resistivi-
ties are dependent on all the components of the scattering
matrix Pij , microscopic electrical and thermal currents
and the temperature dependent chemical potential. The
formulas (1) are also no longer valid. Therefore, there is a
disagreement between the material parameters describing
the electrical and thermal resistivity following from (1)
when one fits the values of these transport coefficient to
experimental data.

Qualitative studies of the thermal conductivity of
REIn3 compounds were also presented a few years ago

in [63], where the author used the variation method with
the electrical resistivity expressed by P11 and the thermal
resistivity by P22. In this work the influence of the scat-
tering by phonons was restricted to acoustic phonons with
the application of the Wilson formula (24). The influence
of the s-f scattering was taken into account by using a
formula following from the consideration in [52], where –
instead of our expression of the transition probability (44)
by the correlation function – the authors used the general-
ized susceptibility. While using this approach, the author
of [63] obtained that P22 = (kT )2P11 (compare our formu-
las (49)–(51) what seems to be incorrect, probably because
of not taking into account all terms of the Sommer-
feld expansion (see (48)). Of the three REIn3 compounds
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analyzed in [63] only TmIn3 was considered by us in the
present paper. However, the different way in which the
crystal field eigen energies and eigen functions were intro-
duced into consideration in [63] and the application of the
formula P22 = (kT )2P11 cause that the qualitative analy-
sis in this paper for TmIn3 and our present results cannot
be compared.

The Wilson formula (24), which is mentioned above,
imply the necessity of taking into account U-processes (or
Umklapp scattering), which were neglected in its deriva-
tion. This is because the function can be decreasing in
some temperature interval. Terms added to this function
describing the U-processes improve the shortcoming of
the Wilson formula. According later investigations [7] the
electron–phonon scattering in alkali-like metals is dom-
inated by N–processes provided that the scattering on
dislocations enhancing the Umklapp processes can be
neglected. If we take the statement of [7] for granted, we
can consider that the formula (23) is correct and that
the U-processes have not to be taken in account. In any
case the function (23) is increasing for arbitrary values of
the material constants (see Fig. 3).

Rare earth materials can find applications in certain
electronic devices and knowledge of mutual influence of
their thermal and electrical resistivity at various tem-
peratures seems necessary. By examining monocrystalline
samples we are able to get information on their transport
properties which are free of the influence of the crystal
grain structure. The primary aim of our present considera-
tions was supplying a simple theoretical approach allowing
to express the electrical resistivity, thermal resistivity and
also Seebeck coefficient in terms of analytic functions
derived for all these coefficients in the same approximation
and capable of studying the influence of the material con-
stants on their temperature dependence. Such studies are
useful to understanding the transport properties of a series
of intermetallics such as REIn3 or REAl2 [64]. We man-
aged to present such formulas and furthermore showed
the way in which the crystal field influence on the tem-
perature dependence of these transport coefficients can be
examined.

Nowadays, ab initio methods based on a density-
functional theory (DFT) are used to understanding ther-
mal transport processes in certain materials or even to
modeling materials of future applications [65,66]. Since
no such method has been developed to study f-electron
materials and there is still an inaccuracy in DFT-based
force calculations up to now the method proposed in the
present paper and its improvements (e.g. for not a strongly
degenerate electron gas, Eqs. (3.4)–(3.6) of [28]) seems to
be useful tool in studying these materials.
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Appendix A: Remark on results of papers
[13,27,28]

In [4] we applied the final formulas for Pij(T ) which
were derived in [28] and applied in [13] to illustrate the
temperature dependence of the relevant transport coeffi-
cients. The mentioned final formulas followed from the
form of C(k,q) applied after [27] where other approx-
imation methods were applied than in [28] and results
not in the terms of the standard functions were obtained.
The results of [27,28] are a consequence of the erroneous
assumption that one can take into account in the calcu-
lations C(k,q) = 2Ca(k,q) instead of Ca(k,q) + Ce(k,q).
This assumption is valid in case of the electrical resis-
tivity, it means while calculating P11(T ). In [27] it was
generalized to the remaining matrix elements by falsely
applying the principle of the detailed balancing [29,46]
(see Eq. (3.4) in [27]).

Appendix B: The metallic limit of certain
pertinent integrals

The evaluation of the integrals with respect the electron
energy such as those in (31) consists in taking advantage of
the identity (15), (16), the integration by parts and finally
in finding the metallic limit z = ζ/kBT → ∞. Consider
the functions Φa(w), Φe(w)) (36), (40) not to depend on
w = ε/~ω0. It means that φa(w), φe(w) in (36) and (40)
are not neglected. The task is then reduced to considering
the following integrals

N ′o
∫ ∞

0

dεf0(ε)[1− f0(ε+)](ε− ζ)m

= F0

∫ ∞
−z

dy ymF(y, p)

N ′′o
∫ ∞

0

dεf0(ε)[1− f0(ε−)](ε− ζ)m

= −F0

∫ ∞
−z+p

dy ymF(y,−p) (B.1)
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where N ′o and N ′′o are the quantities defined below equa-
tion (31) and the functions in the right-hand side integrals
are defined in (15), (16) and ε+ = 1 + ~ω0, ε− = 1− ~ω0

and F0 = 1/[ep − 1)(1 − e−p)]. For m = 0, 1, 2 the limit
values of the integrals of the right-hand side of (B.1) are
(see, e.g. Appendix B of [28])∫ ∞

−∞
dy F(y, u) = u ,

∫ ∞
−∞

dy yF(y, u) = − 1
2u

2 ,∫ ∞
−∞

dy y2F(y, u) = 1
3u

3 + π2

3 u . (B.2)

The above approximation is sufficient to to calculate the
contribution of the functions Φa(w),Φe(w) to Pij(T ). The
matrix element which is essential for the magnitude of the
thermoelectric power is proportional to∫ ∞
−∞

d(y + p)F(y, u)−
∫ ∞
−∞

d(y − p)F(y, u) = 0 , (B.3)

and thus P12(T ) = 0.
The functions Ψa(w),Ψe(w) contribute to the equation

(31) without the factors (ε − ζ)2 and ε − ζ. It enables
simply and generally to calculate their final contribution
to the functions G22(tE) which is

G(Ψ)
22 (p) =

p2

(ep − 1)(1− e−p)

[
Ψ̃e(p)− Ψ̃a(−p)

]
(B.4)

where Ψ̃a(u) =
∫ u

0
dyΨa(y), Ψ̃e(u) =

∫ u
0

dyΨe(y).

Appendix C: Material constants ρ(ac)
o , ρ

(op)
o ρ(sf)

o

of equations (1)

In Section 6 we fit equation (1) to the experimental data
by using the coefficients of the dimensionless functions of
ρ(T ), W (T ) and certain parameters of these functions.
Therefore, in fact the knowledge of the explicit forms of
these coefficients such as follow from the presented the-
oretical considerations based on the Ziman variational
method is not needed. However, these forms show how
the values of the fitted coefficients are interrelated. These
interrelations cause that under the influence of a variation
in the magnitude of a single fitting parameter there can
occur a considerable change in the value of the remaining
ones. On the other hand, some the explicit form of these
coefficients indicates relations between the values of these
coefficients for different members of the REIn3 series.

The magnitude of the material constant in front
dimensionless linear combinations of the Bloch–Grüneisen
functions, Fij(tD) such as in (20) was derived in the
Appendix B of [13]. For completeness we also present here.
It reads

P(ac)
0 =

1

4π3

VcE
2
1

12Mvs

(
2m

~2

)2( ~
m

)2

q5
max , (C.1)

where ~vsqmax = kBTD and qmax = 2qD with the radius of
the Debye sphere qD. The expression for the value of the

electrical resistivity in (1) is obtained from the relation

ρ(ac)

0 =
P (ac)

o

e2U2
0 ε

3
F

, U2
0 =

(
1

6π2

)2(
2m

~2

)5( ~
m

)4

(C.2)
what yields

ρ0
(ac) =

3π

4
µ2
( mo

~2e2

) mo

M
VcE

2
1 ρ̃

(ac)
0 (C.3)

where mo denotes the mass of the free electron µ = m/mo,
mo/~2e2 ≈ 9.113· 103 eV−2 nm−3 and Vc stands for the
volume of the primitive cell. The latter factor in (C.3) is

ρ̃(ac)
0 =

(qmax

2kF

)6

(vsqmax)
−1 =

(qmax

2kF

)6

~(kBTD)−1 (C.4)

where 2kF is the caliper of the Fermi surface and qmax

the caliper of the Debye sphere. The factors (vsqD)−1 and
~(kBTD)−1 are of the dimensionality Ωcm. For TD = 200 K
the magnitude of ~(kBTD)−1 is about 3.347· 10−2Ωcm.

Similar material constants correspond to nonpolar opti-
cal phonons. Obviously, in this case one has to replace

P(ac)
0 with P(op)

0 and ρ̃
(ac)
0 with ρ̃

(op)
0 . In the formulas for

the latter quantities one should change q6
max for q4

maxG
2
0

and (kBTD)−1 for (kBTE)−1. It is worth reminding here
that the quantity 2qD = kBTD/(~vs) used in case of the
acoustic phonons should also be replaced with one follow-
ing from the magnitude of the lattice constant a of the
cubic lattices. In the case of the simple cubic lattice, we
have qD = (6π2)1/3/(γa) with γ = 1. For the the bcc lat-
tice, the value of γ is (0.5)1/3 and γ = (0.25)1/3 in case of
the fcc lattice.

In case of the scattering by polar optical phonons we
have

P(op)
o =

1

6

(
2m

~2

)3( ~
m

)2
e4~
d3M ′

, (C.5)

where M ′ is the mean harmonic mass 1/M ′ = 1/M+ +
1/M− of the masses M+ and M− of two vibrating ions
of the opposite sign which keep the distance d apart [18].
By using similar relations as (C.2) we obtain

ρ(op)

0 = 12π4

(
e2m2

o

~3

)(mo

M ′

)( µ3

d3k6
F

)
, (C.6)

where e2m2
o/~3 ≈ 14.69 Ωcm/nm3.

For the s-f interactions the magnitudes of the material
constants such as these above are

P (sf)

o =
4

3

j2
ex(g − 1)2V

~N4f

(m
~2

)2
(

~
m

)2

k4
F. (C.7)

ρ(sf)

0 = 6π4µ(g − 1)2
(j2

ex

εF

)
Vf

(mo

e2~

)
, (C.8)

where Vf = V/N4f is the volume per a rare earth ion and
mo/e

2~ ≈ 0.5399 Ωcm nm−3 eV−3.
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62. R. Troć, Z. Gajek, M. Pasturel, R. Wawryk, M. Samsel-

Czeka la, Intermetallics 107, 60 (2019)
63. A.E. Szukiel, arXiv:1505.01521v2 [cond-mat.str-el]

(2018)
64. E.E. Gratz, H. Nowotny, J. Magn. Magn. Mater. 70, 118

(1987)
65. T. Ma, P. Chakraborty, X. Guo, L. Cao, Y. Wang, Int. J.

Thermophys. 41, 9 (2020)
66. S. Li, Z. Tong, H. Baoa, J. Appl. Phys. 126, 025111

(2019)

https://epjb.epj.org/
http://arxiv.org/abs/1505.01521v2

	  [-29pt]Influence of electron{rotect --}phonon interaction and crystal fieldon thermal and electrical resistivity in rare earth intermetallics
	1 Introduction
	2 The Ziman variational method of solving the transport problem
	3 The scattering of conduction electronsby phonons
	3.1 Acoustic phonons
	3.2 Optical phonons
	3.2.1 Nonpolar optical phonons
	3.2.2 Polar optical phonons


	4 Scattering of conduction electronsby localized magnetic moments
	5 Lorenz number and the magnitude of the s-f contribution to the electrical and thermal resistivity at high temperatures
	6 Phenomenological analysis of experimental data
	7 Final remarks
	Appendix A Remark on results of papers dur85,dur96,aus01
	Appendix B The metallic limit of certain pertinent integrals
	Appendix C Material constants o(ac),o(op)o(sf) of equations (1)

	References

