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Abstract. We studied numerically the distribution of the entanglement Hamiltonian eigenvalues in two one-
dimensional free fermion models and the typical three-dimensional Anderson model. We showed numerically
that this distribution depends on the phase of the system: in the delocalized phase it is centered around very
small values and in the localized phase, picks of the distribution goes to larger values. We therefore, based
on the distribution of entanglement Hamiltonian eigenvalues, explain the behavior of the entanglement
entropy in different phases. In addition we propose the smallest magnitude entanglement Hamiltonian
eigenvalue as a characterization of phase and phase transition point (although it does not locate the phase
transition point very sharply), and we verify it in the mentioned models.

1 Introduction

Concept of Entanglement was firstly employed in the field
of quantum information science [1–6] as a resource of infor-
mation, now it is used in the condensed matter physics
[7–9]. Since it measures indirectly the correlation among
the system, people use it as a non-local phase characteriza-
tion. In particular, this concept is useful in the Anderson
phase transition between delocalized and localized phases
[10]. In the localized phase, where state of the system
is localized, we expect lower correlation compare to the
delocalized phase with extended states. In the same man-
ner, we expect lower entanglement in the localized phase
compare to the delocalized phase [11,12].

There are several measures of entanglement to quan-
tify it [7,13], among which the entanglement entropy (EE)
attracted more attention. It has been used vastly before,
specially when the system is in a pure ground state where
EE is a reliable quantity to measure entanglement (there
are other useful measures for a mixed highly excited state
[14,15]). EE is the von Neumann entropy of the reduced
density matrix for a chosen subsystem in a bipartite sys-
tem. This partitioning can also be made in the momentum
space [16] rather than in real space, or it can be even
a random partition [17]. There are several examples of
using EE for detecting phase transition point, we men-
tion some of them below. In reference [18], connection
between quantum information and a quantum critical
point is explained and entanglement is used as a scal-
ing quantity near phase transition point. Entanglement
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properties of an interaction spin-1/2 model is studied in
reference [19] which shows a diverging behavior at the
critical point. Relation between discontinuity of Hamilto-
nian energy and entanglement is studied in reference [20].
Beside the ground state application of the EE, we can also
mention works that utilized the entanglement notion for a
highly excited state [14,21–24] and also out of equilibrium
states [25,26], although there are many other applications
[9,27,28].

Beside the EE, people also use the entanglement spec-
trum, which is spectrum of reduced density matrix, to
distinguish different phases. Li and Haldane used the low
lying entanglement spectrum to identify the topological
order [29]. Also degeneracy of the entanglement spectrum
was shown to be the property of the Haldane phase of
S = 1 [30]. Moreover, distribution of the reduced den-
sity spectrum is obtained in the scaling regime of critical
point which depends only on the central charge [31]. There
are also other applications [32–40]. Furthermore, some
attempts were made to use eigenstate of the entanglement
Hamiltonian as a quantity that carries useful physical
information [12,41,42].

In this report, we focus on the entanglement Hamilto-
nian; we show that entanglement Hamiltonian spectrum
(EHS), i.e. the eigenvalues of the entanglement Hamil-
tonian, have useful physics information regarding the
delocalized-localized phase transition for a free fermion
model in the ground-state. First, the probability distri-
bution of the EHS is noticeably different in delocalized
and localized phases. In localized phase, distribution is
narrowed around large eigenvalues, and as we go toward
delocalized phase, it becomes narrowed around smaller
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eigenvalues. Second, we derive a phase characterization
from distribution of EHS: the smallest magnitude eigen-
value has distinct behavior in delocalized and localized
phases. To verify our ideas, we use one-dimensional free
fermion models and also the typical three-dimensional
Anderson model, both have delocalized-localized phase
transition as we change the disorder strength in the
system.

Structure of the paper is as follows: in Section 2 we
briefly explain the models we use in this paper, and
also methods of calculating the entanglement Hamilto-
nian eigenvalues. Distribution of the EHS is studied in
Section 3 for delocalized and localized phases, to show
their distinguishable behavior. In Section 4 we introduce
a new characterization for the delocalized-localized phase
transition. A summary is given in Section 5.

2 Models and method

We start by introducing the main concepts regarding
the entanglement. We consider a system with a pure
many-body eigenstate |Ψ〉 at zero temperature. Then,
density matrix will be ρ = |Ψ〉〈Ψ|. We the bipartite sys-
tem into two subsystems A and B. For each subsystem
the reduced density matrix is obtained by tracing over
degrees of freedom of the other subsystem: ρA = trB(ρ).
Block von Neumann entanglement entropy between the
two subsystems is EE = −tr(ρA ln ρA) = −tr(ρB ln ρB).
For a single Slater-determinant ground state, the reduced
density matrix of each subsystem can be written as:

ρA =
1

Z
e−H

A

, (1)

where HA is the free-fermion entanglement Hamiltonian
(Z is determined by tr ρA = 1):

HA =
∑
ij

hAijc
†
i cj , (2)

where c†i (ci) is the creation (annihilation) operator for the
site i in the second quantization representation.

To calculate entanglement energies ε’s, i.e. the eigen-
values of the hA matrix we use correlation function [43].
We diagonalize the correlation matrix of a subsystem,
say A

Ci,j =
〈
c†i cj

〉
, (3)

(where i and j go from 1 to NA) and find its eigen-values
{ζ}. Eigen-values of the correlation matrix and those of
the entanglement Hamiltonian are related as:

ζi =
1

1 + eεi
, (4)

Fig. 1. Probability distribution of the entanglement Hamil-
tonian spectrum for PRBM model in localized (upper panel)
and delocalized (lower panel) phase. Distribution is plotted
for different system sizes N = 1000, 2000, 3000, 4000, 5000 from
bottom to top. Number of samples ranges between 20 000 for
small system sizes and 1000 for large system sizes.

and EE will be given as:

EE = −
NA∑
i=1

[ζi ln (ζi) + (1− ζi) ln (1− ζi)]. (5)

We use three models to study our criteria of Anderson
phase transition. First model we use, is power-law random
banded matrix model (PRBM) [44] which is a 1d long
range hopping model with the following Hamiltonian:

H =
N∑

i,j=1

hijc
†
i cj , (6)

(where N is the system size) matrix elements hij are
independent random numbers, distributed by a Gaus-
sian distribution function that has with zero mean and
the following variance (when we use periodic boundary
condition):

〈
|hij |2

〉
=

[
1 +

(
sinπ(i− j)/N

bπ/N

)2a
]−1

, (7)
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Fig. 2. Probability distribution of the entanglement Hamil-
tonian spectrum for PRBA model in localized (upper panel)
and delocalized (lower panel) phase. Distribution is plotted
for different system sizes N = 1000, 2000, 3000, 4000, 5000 from
bottom to top. Number of samples ranges between 20 000 for
small system sizes and 1000 for large system sizes.

To calculate the entanglement properties, we divide the 1d
system into two equal subsystems. Subsystem A is from
site 1 to site N/2, and the rest is the subsystem B. The
system is delocalized for a < 1; at the phase transition
point a = 1, it undergoes Anderson localization transition
to localized states for a > 1. This phase transition happens
regardless of b, and in our calculation we set b = 1.

Another model is power-law random bond Anderson
model (PRBA) [45] which is a 1d model with the following
Hamiltonian:

H =
N∑

i,j=1

hijc
†
i cj , (8)

where on-site energies hii are zero, and the hopping
amplitudes are:

hij = wij/|i− j|a (9)

where w’s are independent uniformly random numbers
distributed between −1 and 1. To calculate the entangle-
ment properties, we divide the 1d system into two equal

Fig. 3. Probability distribution of the entanglement Hamil-
tonian spectrum for Anderson 3d model in localized (upper
panel) and delocalized (lower panel) phase. Distribution is
plotted for different linear system sizes N = 12, 14, 16, 18 from
bottom to top, where system size is N × N × N . Number of
samples ranges between 2000 for small system sizes and 200
for large system sizes.

subsystems. Subsystem A is from site 1 to site N/2, and
the rest is the subsystem B. There is a phase transition
at a = 1 between delocalized state (a < 1) and localized
state (a > 1).

Another model we use is the Anderson model in three-
dimensional 3d space, with the following Hamiltonian:

H = t
∑
<i,j>

(c†i cj + c†jci) +
∑
i

εic
†
i ci, (10)

where <> indicates nearest neighbor hopping only. Hop-
ping amplitudes are constant t = −1, and on-site energy
εi are independent random numbers distributed with
Gaussian distribution with mean zero and variance w.
Anderson phase transition happens at wc, below which
state are delocalized and above which states are localizes.
wc ≈ 6 [46]. To calculate the entanglement properties, we
divide the 3d system into two equal subsystems. The entire
system has N ×N ×N sites. Subsystem A is from site 1
to site N ×N ×N/2, and the rest is the subsystem B. We
use open boundary condition.
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Fig. 4. Behavior of the smallest magnitude entanglement Hamiltonian eigenvalue with largest probability εPmax for delocalized
and localized phases in PRBM (left panel), PRBA (middle panel), and Anderson 3d models (right panel).

Fig. 5. Spectrum of entanglement Hamiltonian for PRBM (left panel), PRBA (middle panel), and Anderson 3d (right panel)
models in delocalized (red) and delocalized (blue) phase. For PRBM, and PRBA system size N = 100 and for Anderson
N = 6 × 6 × 6. One sample is considered for each disorder strength without taking disorder average.

3 Distribution of entanglement Hamiltonian
spectrum

We already know the behavior of the EE in a free fermion
model with delocalized-localized phase transition [12]. In
delocalized phase, eigenstate of the system is extended
and we expect larger EE compare to the localized phase.
Thus, by looking at the behavior of the EE as we change
the disorder in the system, we can distinguish different
phases. On the other hand, we can look at the behavior of
the EE as we increase system size, N with a fixed value
of disorder. In delocalized phase EE increases with system
size and violate the area law [47–49], while it saturates to
a fixed value in localized phase. In addition, we can look
at EE from EHS point of view. Equation (5) tells us that
among all eigenvalues of correlation function {ζ}, those
ζ’s close to 1/2 have bigger share in the EE; or in terms
of EHS (see Eq. (4)), those ε’s close to zero are the most
effective spectrum in the EE, and as we move away from
zero, ε’s become less effective. So the distribution of EHS
is informative.

In Figures 1–3 we plot distribution of the EHS for
PRBM, PRBA, and Anderson 3d models in delocalized
and localized phases. We see that for each system size
N in the localized phase, probability distribution of ε’s,
Pε, at small magnitude ε’s is negligible and the big share
comes from larger magnitude ε’s, which according to
equation (5) yields to low EE. In addition, as we increase
system size, that ε corresponds to maximum probability,
εPmax

, shifts to larger magnitude (yielding to smaller EE),
and the corresponding probability increases (yielding ro

larger EE); i.e. two opposite factors causes EE to satu-
rate. The behavior of the ε with highest probability εPmax

in delocalized and localized phases as we increase system
size N is plotted in Figure 4 for three mentioned models.

On the other hand, distribution of EHS for delocalized
phase is noticeably different. Small values of ε’s have big
shares of probability compare to large ε’s; which yields
to a large EE. In addition, as we increase the system size,
εPmax

stays fixed (see Fig. 4), but its probability increases.
Thus, EE becomes larger as we increase system size.

4 Smallest magnitude entanglement
Hamiltonian eigenvalue

According to Figures 1–3, smallest magnitude ε has distin-
guishable features in delocalized and localized phases. To
see it clearly, we plot the spectrum of EHS for one sample
without taking disorder average in Figure 5 for PRBM,
PRBA, and Anderson 3d model (since Hamiltonian of the
system has randomness, we do not have particle-hole sym-
metry for eigenvalues of entanglement Hamiltonian [50],
so we do not expect a symmetric distribution of the EHS).
In delocalized phase, we have a (close to) zero spectrum,
while the smallest magnitude spectrum is a finite value in
the localized phase.

Accordingly, we propose smallest magnitude ε to be a
characterization of the delocalized-localized phase tran-
sition. We plot disorder averaged smallest magnitude ε
as we increase disorder strength in Figure 6 for PRBM
and PRBA models. In delocalized phase the smallest
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Fig. 6. Disorder averaged of smallest magnitude ε correspond-
ing to non-zero probability distribution as we change disorder
strength a in PRBM model (upper panel), and PRBA model
(lower model). In delocalized phase it is zero, and it moves
toward larger values in localized phase. Vertical bar at each
point shows the corresponding standard deviation.

magnitude ε is zero, while it goes to larger ε’s. We also
note that standard deviation of disorder averaged smallest
ε is considerably larger in the localized phase.

5 Conclusion

Entanglement in quantum system has been used vastly
before for characterizing phases and phase transitions
in condensed matter physics. EE diverges in delocalized
phases and it saturates in localized phase, thus behav-
ior of the EE as we change the disorder strength locates
the phase transition point. In this report, by employing
free fermion models we explained that eigenvalues of the
entanglement Hamiltonian are also informative to charac-
terize phases and the phase transition point. In addition,
we explained the behavior of EE according to the dis-
tribution of the entanglement Hamiltonian eigenvalues
based on which we propose a characterization for the
delocalized-localized phase transition, namely the small-
est magnitude entanglement Hamiltonian eigenvalue. We

applied this characterization to our one dimensional mod-
els and found that its behavior is different in delocalized
and localized phases, although the phase transition point
is not sharply located by this characterization.
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