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c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature,

2020

Abstract. We review the theoretical description of the random field Ising and O(N) models obtained
from the functional renormalization group, either in its nonperturbative implementation or, in some lim-
its, in perturbative implementations. The approach solves questions concerning the critical behavior of
random-field systems that have stayed pending for many years: What is the mechanism for the break-
down of dimensional reduction and the breaking of the underlying supersymmetry below d = 6? Can one
provide a theoretical computation of the critical exponents, including the exponent ψ characterizing the
activated dynamic scaling? Is it possible to theoretically describe collective phenomena such as avalanches
and droplets? Is the critical scaling described by 2 or 3 independent exponents? What is the phase behav-
ior of the random-field O(N) model in the whole (N , d) plane and what is the lower critical dimension of
quasi-long range order for N = 2? Are the equilibrium and out-of-equilibrium critical points of the RFIM
in the same universality class?

1 Introduction

The random-field Ising and O(N) models are archetypal
systems for describing the competition between an order-
ing tendency generated by interactions and a disordering
one associated with the presence of a quenched disorder
that directly couples to the local order parameter. These
models provide a playground to investigate the conse-
quences of such a competition on the collective behavior
at large scale. In the simplest formulation, the models are
described by a Hamiltonian

H = −1
2

∑
i,j

Jij Si·Sj −
∑
i

hi·Si (1)

where Si is an N -component (classical) spin on the ver-
tex i of a d-dimensional Euclidean lattice, Jij > 0 is a
short-ranged ferromagnetic interaction, e.g., with i and j
nearest-neighbor sites on the lattice, and hi is a random
field which is usually chosen for simplicity independently
on each lattice site and is sampled from a given probability
distribution with zero mean, hµi = 0, and finite variance,
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hµi h
ν
j = δijδµν∆B with µ, ν = 1, . . . , N . The most com-

mon cases correspond N = 1 (Ising), N = 2 (XY ), and
N = 3 (Heisenberg).

Although the random-field O(N) models [RFO(N)M]
are commonly formulated in the language of ferromagnetic
systems (as above), it turns out that generating magnetic
fields that are random on short length scales is far from
straightforward in actual materials. It is only recently that
this has been achieved in anisotropic dipolar magnetic
insulators, which represent a realization of the random-
field Ising model (RFIM) [1–3]. Otherwise, random-field
models emerge as the effective theory for a host of sys-
tems in the presence of quenched disorder. In physics,
the experimentally most studied systems, which have been
argued to be in the universality class of the RFIM [4,5],
are diluted antiferromagnets in a uniform external field
[6]. Other examples include critical fluids in disordered
porous media such as silica gels [7–11] for the N = 1
version, vortex phases in type-II superconductors (elas-
tic glass model) for the N = 2 version [12–15], impurities
in an incommensurate charge density wave in a tetragonal
crystal, which describes vestigial nematicity in the pseudo-
gap phase of the cuprates (N = 2 and N = 1) [16–18], or
the Mott metal-insulator transition in vanadium dioxide
[19]. In addition, the RFIM has recently appeared as an
effective description in the context of the glass transition
of liquids [20–24].

The RFIM is also one of the simplest statistical-
mechanical models that captures the anomalous
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irreversible collective response seen in a wide range
of physical, biological, or socio-economic situations in
the presence of attractive interactions and intrinsic
heterogeneity or disorder [25]. When slowly driven at zero
temperature, it displays as a function of disorder strength
an out-of-equilibrium phase transition characterized
by critical scaling and scale-free avalanches (“crackling
noise”) [26–31]. This description applies, for instance,
to the Barkhausen noise observed in magnetic materials
[32,33] and in martensites [34], to the hysteresis behavior
found in the fluid adsorption in a disordered porous
solid [35–37], the functioning of isometrically activated
muscles [38], the yielding transition of quasi-statically
sheared amorphous solids [39], or to agent-based models
in socio-economic context [40].

The purpose of this article is to provide a short review
of the theoretical description of random-field systems that
has been obtained through the use of the functional renor-
malization group (FRG), whether in its nonperturbative
or its perturbative implementations.

The paper is organized as follows. In Section 2 we
present the models describing random-field systems with
Ising and O(N) symmetries as well as the physical situ-
ations to be described. The next section is devoted to a
brief recap of the results prior to 2004 (which is when our
first results using the FRG appeared [41]) and concludes
with a (nonexhaustive) list of then-pending questions.
In Section 4 we discuss the collective events, known as
avalanches and droplets, that are present in random-field
systems and their consequences on correlation functions
and on cumulants of the renormalized disorder. We stress
the need for a multi-copy or multi-replica formalism in
which the replicas have the same disorder but are cou-
pled to distinct, independent, sources. In the subsequent
section we summarize the main results obtained by means
of the FRG, with a focus on the long-distance equilibrium
properties. The framework of the FRG for the random-
field Ising and O(N) models is described in Section 6.
We sequentially sketch the exact FRG approach and the
derivation of exact functional flow equations for the cumu-
lants of the renormalized disorder (Sects. 6.1 and 6.2),
the nonperturbative approximation scheme (Sect. 6.3),
the resulting (functional) fixed-point equations and their
solution (Sect. 6.4). This is then followed in Section 7 by a
discussion of the robustness of the nonperturbative FRG
results and a presentation of perturbative but functional
RG approaches in two limiting cases: near the lower crit-
ical dimension of long-range ferromagnetism, d = 4, for
the RFO(N > 1)M and near the upper critical dimen-
sion, d = 6, for the RFIM. Section 8 is a short account
of additional results obtained through the FRG, and we
conclude in Section 9.

2 Models

Since we are interested in the long-distance and long-time
physics of random-field systems, it is convenient to start
with the field-theoretical version of equation (1). We then
consider the following “bare action” for an N -component

scalar field ϕ in d-dimensional space,

S[ϕ;h] = SB [ϕ]−
∫
x

hx·ϕx ,

SB [ϕ] =
∫
x

{
1
2
|∂xϕx|2 +

r

2
|ϕx|2 +

u

4!
|ϕx|4

}
, (2)

where
∫
x
≡
∫
ddx and h is a random “source” (a random

magnetic field); this quenched random field h is sam-
pled from a distribution characterized by a zero mean
and a variance hµxhνy = ∆Bδµνδ

(d)(x− y). This model cor-
responds to systems with short-ranged interactions and
short-ranged correlations of the random field. Extension
to long-ranged interactions and/or disorder correlations
will be discussed in Section 8. An ultraviolet (UV) cut-
off Λ on the momenta, associated with the inverse of a
microscopic length scale such as a lattice spacing, is also
implicitly taken into account.

Models with quenched random fields can be, and have
been, studied in different physical situations. First, they
have been considered in thermodynamic equilibrium. The
relevant quantity is then the sample-dependent partition
function

Z[J ;h] =
∫
Dϕ exp

[
− S[ϕ;h] +

∫
x

J(x)·ϕ(x)
]

(3)

where J is an N -component external source (magnetic
field). The thermodynamics of the system is described
by the average over quenched disorder of the free-energy
functional, i.e., of the logarithm of the partition function,
W[J ;h] = lnZ[J ;h]. There is, however, more to the prob-
lem than this average free energy, and we will discuss
in more detail below the difficulties associated with the
fact that properties in a disordered system are a priori
sample dependent. Note that when studying the equilib-
rium critical point that takes place when J = 0 because
of the statistical Z2 or O(N) symmetry of the theory
(for symmetric distributions of the random field), J(x)
is just a standard tool to generate correlations functions
by functional differentiation [42].

The models can also be investigated in equilibrium but
directly at zero temperature, where one then focuses on
the properties of the ground state. The latter is solution
of the following stochastic field equation,

δSB [ϕ]
δϕµx

− hµ(x)− Jµx = 0 , (4)

which is obtained by minimizing the action in equa-
tion (3). The ground-state configuration ϕGS(x) corre-
sponds to the solution with lowest energy (or action). It is
in this context of the equilibrium properties at zero tem-
perature that Parisi and Sourlas [43] have developed their
supersymmetric construction, on which we will comment
more below.

Finally, one may consider the dynamics of random-field
systems, either near to equilibrium or far from it. At a
coarse-grained level, this can be described by a Langevin
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equation,

∂tϕ
µ
xt = −δSB [ϕ]

δϕµxt
+ hµ(x) + Jµxt + ηµxt, (5)

where ∂t ≡ ∂/∂t and ηxt is a Gaussian random ther-
mal noise with zero mean and variance 〈ηµxtηνx′t′〉 =
2Tδµνδ(d)(x− x′)δ(t− t′). The dynamics of relaxation to
equilibrium corresponds to taking T > 0 and J indepen-
dent of time. On the other hand, the situation in which
the system is quasi-statically driven by a slowly varying
applied source corresponds to T = 0 and Jxt = J + Ωt,
with |Ω| → 0; the limit is taken differently when the source
is increased or decreased1. This out-of-equilibrium ather-
mal dynamics leads to hysteresis and has been extensively
studied in the case of the RFIM [26–28,30,31]. For the
O(N ≥ 2) model a different drive has also been consid-
ered in which the driving force is not an applied conjugate
source Jt but is equal to v∂xϕxt where v is a finite driving
velocity [46,47].

3 Brief recap of results prior to 2004

In this section we briefly summarize the equilibrium prop-
erties of the RFIM and its O(N) extension that were
established by 2004 (which is the publication year of
our first nonperturbative FRG paper [41]). Before 2004,
there had also been an extensive body of work on the
behavior of the RFIM when quasi-statically driven at
zero temperature, which was introduced by Sethna and
coworkers [26–28,30,31]. The physics then involves hys-
teresis, avalanches, and out-of-equilibrium criticality, and
its study sheds some interesting light on the equilibrium
behavior itself. However, we will not dwell on it here.

In the RFO(N)M in equilibrium, there is a transition
between a paramagnetic phase (at high temperature and
large disorder strength) and a ferromagnetic phase (at low
temperature and small disorder strength) via a critical
point for all dimensions d above some lower critical dimen-
sion dlc. For the short-ranged models dlc = 4 for N > 1
and dlc = 2 for N = 1. Both values of dlc have been sub-
ject to contention for some time. In the case of the RFIM
(N = 1) a heuristic argument put forward by Imry and
Ma [48] suggested that an infinitesimal amount of disor-
der destabilizes the ferromagnetic phase for dimensions
smaller than two, pointing to dlc = 2. In contrast, pertur-
bation theory [49–51] at all orders as well as an argument
invoking an underlying supersymmetry of the model at
zero temperature [43] predicted that a property of dimen-
sional reduction, namely that the critical behavior of the
RFIM in dimension d is the same as that of the pure Ising
model in dimension d − 2, which implies a lower critical
dimension of 3. Rigorous results have definitely settled the
issue in favor of the Imry-Ma prediction with no transition
in d ≤ 2 [52,53] and the presence of a transition in d = 3

1 For N = 1 this corresponds to a dynamics of the RFIM in which
all spins are allowed to flip provided they become unstable. This
is different from the one used by Robbins and coworkers [44,45],
where only spins close to a pre-existing interface are allowed to flip
if unstable, which leads to a depinning transition.

[54,55]. A review on the theory of the RFIM before 1997
can be found in reference [56].

For models with a continuous O(N) symmetry both
the Imry-Ma argument and the dimensional-reduction one
predicts that dlc = 4 for the paramagnetic to ferromag-
netic. This is supported by a rigorous analysis [52,53],
but there remains the possibility of having a transition
to a phase with quasi-long-range order (QLRO) instead
of the conventional long-ranged order [12,14,15]. Rigorous
results showed that this cannot take place for N ≥ 3 [57].
However, the issue of the lower critical dimension of QLRO
for 1 < N < 3, which includes the physical value of N = 2
for which it had been argued that a “Bragg glass” phase
with QLRO is present in d = 3 [12,58], was still pending.

Above the lower critical dimension, there is strong
evidence that the equilibrium critical behavior of the
RFO(N)M is controlled by a zero-temperature fixed point
[59–62]. This is an unusual type of fixed point, at which
the renormalized temperature is irrelevant, albeit “dan-
gerously” so, and is characterized by a new exponent
θ > 0. This exponent θ is equal to 2 in the mean-field
limit. Below the upper critical dimension, which is found
equal to duc = 6 for the RFO(N)M by considering pertur-
bation theory and the Ginzburg criterion, the exponent θ,
just like the other critical exponents, may take nontriv-
ial values depending on the dimension d. The fact that
the critical behavior is controlled by a fixed point at zero
(renormalized) temperature and the core of the above
mentioned Imry-Ma argument that involves a competi-
tion of interactions with no consideration of entropy are
signatures that the long-distance behavior of random-field
models is dominated by the fluctuations induced by the
quenched disorder rather than by thermal fluctuations. As
a result, the critical behavior can be directly investigated
at zero temperature through the study of the ground state
properties, with the disorder strength as the main control
parameter.

As a consequence of the “dangerous irrelevance” of
temperature, the scaling behavior at criticality is char-
acterized by a modified hyperscaling relation, 2 − α =
(d− θ)ν, where, as usual, α is the specific-heat exponent
and ν the correlation-length exponent. There are also two
distinct pair correlation functions and two “anomalous
dimensions” of the field at criticality, with

Gconn(x− y) = 〈ϕ(x)ϕ(y)〉 − 〈ϕ(x)〉〈ϕ(y)〉

∼ T

|x− y|d−2+η
(6)

the so-called “connected” pair correlation function and

Gdisc(x− y) = 〈ϕ(x)〉〈ϕ(y)〉 − 〈ϕ(x)〉 〈ϕ(y)〉

∼ 1
|x− y|d−4+η̄

(7)

the so-called “disconnected” correlation function, where
we have considered the case N = 1 for simplicity. In the
above equations, 〈·〉 denotes the thermal average and an
overline the average over the random field. The connected
correlation function measures the influence of thermal
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fluctuations (and vanishes at zero temperature) whereas
the disconnected one is sensitive to the fluctuations of
the quenched disorder, i.e., the sample-to-sample fluctua-
tions, and diverges more strongly at the critical point. The
two anomalous dimensions are related by an expression
involving the temperature exponent as

η̄ − η = 2− θ . (8)

At the upper critical dimension (duc = 6), η̄ = η = 0
and θ = 2, whereas at the lower critical dimension of the
RFIM, dlc = 2, one expects that η̄ = 2η = 2 and θ = 1
[62]. [In the RFO(N > 1)M at the lower critical dimen-
sion for long-range ferromagnetism, dlc = 4, one finds
η̄ = η = 0 and θ = 2.]

The dangerous irrelevance of the temperature shows up
in the slowing down of dynamics when approaching the
critical point. In the case of the RFIM, the latter takes
an activated dynamical scaling form in which it is the
logarithm of the relaxation time τ that grows as a power
law of the correlation length ξ,

log τ ∼ ξψ (9)

with ψ some a priori unknown exponent [59,61], instead
of the form τ ∼ ξz found in conventional critical slowing
down (formally, z =∞ in the RFIM).

Ever since the introduction of the model, the equilib-
rium behavior of the RFIM on Euclidean lattices has been
extensively studied by computer simulation, mostly in
d = 3. Large-scale computer simulations can be performed
at T = 0 where combinatorial algorithms allow one to find
the (almost surely) unique ground state of a finite sample
in polynomial time [63]. By using system sizes up to 2563

spins and a careful finite-size scaling analysis, Middleton
and Fisher then unambiguously showed that the transi-
tion in d = 3 is a critical, second-order one for a Gaussian
distribution of the random fields [64].

Prior to 2004, there had been attempts to explain the
breaking of dimensional reduction and of the underly-
ing supersymmetry of the zero-temperature construction
below the upper critical dimension, mostly within the
replica formalism. Instantons in replica space [65], bound
states between replicas associated with the putative diver-
gence of some Bethe-Salpeter kernel [66–68], some replica
symmetry breaking mechanism [69], etc., were invoked
based on partial, usually perturbative, calculations but
the outcome stayed rather inconclusive.

Note also that since the late 80’s much progress had
been achieved in the theoretical description of an elas-
tic interface, or more generally manifold, in a disordered
environment through the development of a perturbative
FRG treatment near the upper critical dimension duc = 4
[70–76]. Such random-manifold models can be considered
both in equilibrium, when the system is pinned by disor-
der, and out of equilibrium, at the depinning transition.
They share with random-field models the property that
their large-scale and long-time behavior is controlled by
zero-temperature fixed points.

To conclude this section one can list a number of unre-
solved questions concerning random-field systems at the

time: What is the mechanism for the breakdown of dimen-
sional reduction and the breaking of the underlying SUSY
below d = 6? Can one provide a theoretical computation
of the critical exponents, in particular of the exponent ψ
characterizing the activated dynamic scaling? Is it possi-
ble to theoretically describe collective phenomena such as
avalanches and droplets? Is the critical scaling described
by 2 or 3 independent exponents? What is the phase
behavior of the RFO(N)M in the whole (N , d) plane
and what is the lower critical dimension of QLRO for
N = 2? Are the equilibrium and out-of-equilibrium crit-
ical points of the RFIM in the same universality class?
These are questions that have now been answered by the
FRG approach.

4 Zero-temperature fixed points, avalanches
and droplets: the need for a functional RG

4.1 Metastable states, avalanches and droplets
in the RFIM

The presence of quenched disorder generically leads at
zero temperature to a multiplicity of metastable states,
i.e., minima of the bare action that satisfy the stochas-
tic field equation in equation (4) or, equivalently, minima
of the lattice Hamiltonian in equation (1). This multi-
plicity is for instance known to invalidate the straight-
forward implementation of the supersymmetric formalism
that assumes a unique solution of the stochastic field
equation [77]. In the case of the RFIM, metastable
states are generically found in a whole region of the
the magnetization/applied-field diagram(to use again the
language of magnetic systems) [78,79].

Associated with the presence of metastable states is
another important phenomenon. In any finite sample of,
say, a RFIM, the ground state is almost certainly unique
when the distribution of the random field is continuous.
However, when considering the evolution of the ground
state under a change of the applied source, one observes
abrupt switches at a set of discrete, sample-dependent,
values of the source. (Exactly at these specific values
there is a coexistence between two ground states, but
for infinitesimal changes in one direction or another one
state becomes of lower energy and the other one is then
“metastable”.) These events have been observed in com-
puter simulation at zero temperature [80–84] and are
called “static” avalanches by analogy with the “dynamic”
avalanches that take place out of equilibrium, between two
metastable states of the system, when the RFIM is quasi-
statically driven by an external source [25–28,30,31]. The
same phenomenon of avalanches is also seen in the behav-
ior of an elastic manifold in a random environment, both
in equilibrium when the system is in the pinned phase
[85] (static avalanches, also referred to as shocks [86])
and at the nonequilibrium depinning transition (dynamic
avalanches) [87].

The fact that abrupt changes corresponding to discon-
tinuous variations of the magnetization are found at zero
temperature should come as no surprise. In disordered
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Fig. 1. Illustration of avalanches and of their consequence
on the functional dependence of a disorder-averaged corre-
lation function in the toy model of the d = 0 RFIM stud-
ied in equilibrium at T = 0 (see main text). (a) Potential
U(ϕ) − (J + h)ϕ versus ϕ for different values of J + h, with
U(φ) = −(|r|/2)ϕ2 + (u/4!)ϕ4; (b) Ground state configura-
tion ϕGS(J + h) associated with (a). (c) Two-point correla-

tion function G̃(0;−δJ, δJ)) = φGS(−δJ + h)φGS(δJ + h) −
φGS(−δJ + h) φGS(δJ + h), where the average is over a
Gaussian distributed random field h. Notice the linear cusp
around δJ = 0.

systems, this can take place even in noninteracting zero-
dimensional models. Consider for instance a d = 0 (single
point) ϕ4 theory with parameters such that the potential
has two minima and the field ϕ is coupled to a random
source h, which is Gaussian distributed with variance ∆B ,
and to a controllable source J , i.e.,

S(ϕ;h+ J) = −|r|
2
ϕ2 +

u

4!
ϕ4 − (h+ J)ϕ . (10)

Then, according to the value of h+ J , the ground state of
the system will switch from the vicinity of one minimum
to that of the other one with a jump when h + J = 0.
This jump, whose location is sample (h) dependent, cor-
responds to an avalanche, albeit a zero-dimensional one.
This is sketched in Figures 1a and 1b.

Droplets on the other hand are rare low-energy exci-
tations having an energy difference with the ground
state that can be as small as wanted. In particular, this
difference can be smaller than the temperature, what-
ever the nonzero value of the latter. The existence of
such droplets has been postulated in phenomenological
approaches [61,88–90] and has found support in simula-
tions of the RFIM [91]. Although rather trivial, the d = 0

RFIM introduced above illustrates what a “droplet” rep-
resents: When the two minima of the action are almost
degenerate, their contribution to the partition function
even at a very low (but nonzero) temperature becomes
comparable, since the Boltzmann weight of the ground
state no longer dominates that of the “metastable” state
when the difference in energy is of the order or less
than the temperature T . In finite, nonzero dimension d
such a situation rarely occurs for states that differ on
large length scales, but it has been conjectured that ther-
mally active (i.e., quasi-degenerate with the ground state)
droplets exist on a large size L with a power-law decay-
ing probability ∝ TL−θ, with θ the temperature exponent
[61,88].

As will be illustrated in more detail below, these
avalanches and droplets generate singular functional
dependences in the disorder-averaged correlation func-
tions and disorder cumulants. Of course, for avalanches
and droplets to possibly affect the long-distance physics
of a d-dimensional disordered model with d > 0, they must
be of collective origin and occur on all scales, unlike in the
0-dimensional toy model discussed above.

Note finally that avalanches (and droplets) are in gen-
eral harder to characterize in the case of a continuous
O(N) symmetry because of the many directions in which
they can extend, but they are nonetheless present.

4.2 The need for multiple copies

Whether one studies random-field systems in or out of
equilibrium, the central quantities are generating func-
tionals, as, e.g., the equilibrium free-energy functional
W[J ;h] previously introduced (Sect. 2). In the presence
of quenched disorder, such functionals are random, i.e.,
sample dependent. Therefore, they are fully characterized
by their (functional) probability distribution or, alterna-
tively, by the infinite set of their cumulants (if, of course,
the cumulants exist). Dealing with cumulants has the
advantage of involving an average over the bare disorder.
As a result, one recovers the translational and rotational
invariances in Euclidean space which are otherwise broken
by the space-dependent random field. We will thus con-
sider a formalism based on cumulants. However, a crucial
point when working with such disorder-averaged quanti-
ties is that one does not want to lose track of the rare or
singular collective phenomena (avalanches and droplets)
taking place in the system’s samples and discussed just
above.

To illustrate the effect of avalanches and droplets on
disorder-averaged quantities, we consider again the case of
the d = 0 RFIM in equation (10). Let study first the case
of zero temperature, T = 0. Consider two copies of the sys-
tem with the same disorder h but submitted to different
sources J1 = J + δJ and J2 = J − δJ and compute the
correlation function G̃(J1, J2) = ϕGS(J1;h)ϕGS(J2;h) −
ϕGS(J1;h) ϕGS(J2;h). This is an extension to general
sources J1 6= J2 of the 2-point “disconnected” correla-
tion function [see, e.g., Eq. (7)]. A simple calculation
shows that when δJ → 0 this correlation function, which
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is symmetric under the inversion δJ → −δJ , behaves as

G̃(J + δJ, J − δJ) = G̃(J, J)− 24|r| e−
J2

2∆B

u
√

2π∆B

|δJ |+ O(δJ2),

(11)
i.e., displays a linear cusp in δJ = (J1 − J2)/2: see
Figure 1c. This nonanalytic dependence on the replica
sources is a direct consequence of the avalanches in the
ground state. Through a Legendre transform it translates
into a cusp in the dependence on the average replica fields
of the associated 1-particle irreducible (1PI) correlation
function, which in this case is the second cumulant of the
renormalized random field.

If temperature is nonzero, T > 0, but small, the equi-
librium properties now essentially involve a Boltzmann
average over the two minima, which form a two-level
system. The nonanalyticity is then rounded,

G̃(J+δJ, J−δJ)−G̃(J, J) = Tf

(
J,
δJ2

T 2

)
+O(T 2, δJ2) ,

(12)
where f(J, y) = f2(J)y + O(y2) when y → 0 and
f(J, y) ∼ f∞(J)

√
y when y → ∞. As f∞(J) =

24|r| e−J
2/(2∆B)/(u

√
2π∆B), one recovers equation (11)

when T → 0. For T > 0 the cusp is rounded in a region
where |δJ | . T , which shrinks as T → 0. The limit
T → 0 is therefore nonuniform in δJ and involves a
“thermal boundary layer” (see Refs. [92–95] for the same
phenomenon in the case of an interface in a disordered
environment).

Generically, in any dimension, avalanches at zero tem-
perature generate cusps in the functional dependence on
the field arguments of the cumulants of the renormal-
ized random source and droplets at low but nonzero
temperature generate a thermal rounding of these cusps
in a boundary layer. Describing such features there-
fore requires the functional dependence of the cumulants
for generic arguments. For instance, a complete char-
acterization of the random functional W[J ;h] implies
the knowledge of all its cumulants, W1[J1], W2[J1,J2],
W3[J1,J2,J3], . . ., which are defined as

W1[J1] =W[J1;h] (13)

W2[J1,J2] = W[J1;h]W[J2;h]

−W[J1;h] W[J2;h], (14)

etc.
Generic, i.e., independently tunable, arguments require

the introduction of copies or replicas of the original sys-
tem, each with the same bare disorder (random field)
but coupled to distinct and independent external sources
J1, J2, etc. It is worth stressing that this is not what
is done in the common use of the replica trick [96] nor
in the Parisi-Sourlas supersymmetric approach [43]. In
the simple implementation of the former, the sources
acting on the replicas are all taken equal and in the
latter a single copy of the system is considered. As a
result, in both cases, one only has access to cumulants

in which all the arguments are equal. Quite differently in
the present formalism, we consider multiple copies or repli-
cas and sources that explicitly break the (permutational)
symmetry among these replicas.

4.3 Multi-copy formalism

The cumulants of the random free-energy functional
W[J ;h] can be generated from an average involving copies
(or replicas) of the original disordered system, as follows:

exp
(∑

a

W[Ja;h]
)

= exp (W [{Ja}]))

= exp
(∑

a

W1[Ja] +
1
2

∑
a,b

W2[Ja,Jb]

+
1
3!

∑
a,b,c

W3[Ja,Jb,Jc] + · · ·
)
, (15)

where, as stressed above, the copies have the same dis-
order but are coupled to distinct external sources. A
convenient trick to extract the cumulants with their full
functional dependence is to let the number of replicas be
arbitrary and to then view the expansion of the func-
tional W [{Ja}] in the right-hand side of equation (15)
as an expansion in increasing number of unconstrained,
or “free”, sums over replicas. The term of order p in the
expansion is a sum over p replica indices of a functional
depending on exactly p replica sources, this functional
being precisely equal here to the pth cumulant ofW[J ;h].
This procedure, in which the permutational symmetry
between replicas is explicitly broken, leads to well-defined
algebraic manipulations [41,97–101].

The central object of our FRG approach is not the
free-energy functional W [{Ja}] but rather its Legendre
transform, the effective action Γ[{φa}], defined by

Γ[{φa}] = −W [{Ja}] +
∑
a

∫
x

Ja(x) · φa(x), (16)

where

φµa(x) =
δW [{Je}]
δJµa (x)

(17)

is the classical or average field, with φa(x) = 〈ϕa(x)〉.
Γ[{φa}] is the generating functional of the 1PI correlation
functions and in the language of magnetic systems it rep-
resents a Gibbs free-energy functional while the φa(x)’s
are the local magnetizations.

The effective action Γ[{φa}] can also be expanded in
increasing number of free replica sums,

Γ[{φa}] =
∑
a

Γ1[φa]− 1
2

∑
a,b

Γ2[φa,φb]

+
1
3!

∑
a,b,c

Γ3[φa,φb,φc]− · · · , (18)
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where we have purposedly introduced a minus sign for
all even terms of the expansion. The Γp’s and the
Wp’s are related through the Legendre transform and
a term-by-term identification of the expansions in free
replica sums. Γp=1 is the disorder-averaged effective
action and, with a grain of salt [98,99], the Γp’s for
p ≥ 2 can be considered as “cumulants of the renormal-
ized or effective disorder”. Their functional derivative
Γ(11···1)
p;x1µ1,x2µ2··· ,xpµp [φ1,φ2, · · · ,φp] can then be viewed as

“cumulants of the renormalized or effective random field”.
(Here and below, superscripts with parentheses denote
the order of the functional derivatives with respect to
the appropriate arguments.) The knowledge of the com-
plete set of these cumulants, with generic arguments, fully
characterizes the theory.

5 Summary of FRG results

5.1 Equilibrium criticality: the way out of dimensional
reduction and the spontaneous breaking of SUSY

The main outcome of our FRG investigations concern-
ing the equilibrium critical behavior of the RFO(N)M
is the existence of a critical line dDR(N) separating in
the (d,N) plane a domain above the line in which the
main scaling behavior at the critical point is given by
the d→ d− 2 dimensional-reduction property and below
which this dimensional reduction breaks down [41,99,102–
104]. The critical line, which is plotted in Figure 2, starts
near dDR(N = 1) ≈ 5.1 for the Ising version and reaches
dDR = 4 for N ≈ 18. This result explains how one goes
from the upper critical dimension duc = 6 in the vicinity
of which dimensional reduction is valid to low dimensions
such as d = 3 where, in accord with rigorous results, it
is broken. It is obtained via a nonperturbative imple-
mentation of the FRG that allows us to compute the
nontrivial critical dimension dDR(N) as well as critical
exponents and fixed-point functions. It is furthermore
supported by perturbative FRG approaches (i) for the
O(N > 1) version in d = 4 + ε at one- and two-loop levels
[41,102,103,105,106] and (ii) for the RFIM in d = 6 − ε
at two loops when considering nonanalytic functional
“cuspy” perturbations around the cuspless Gaussian fixed
point on top of the usual irrelevant directions [107].

In the FRG context the breakdown of dimensional
reduction is associated with the appearance of a strong
nonanalytic dependence (a cusp) on the arguments2 of
the cumulants of the renormalized random field at the
zero-temperature fixed point, similarly to what previously
found in the perturbative FRG of an elastic manifold in a
random environment [70–74,108]. The critical dimension
dDR(N) corresponds to the point where the “cuspless”
fixed point gives way to the “cuspy” fixed point. Actu-
ally, this occurs through different mechanisms for large
and for small N [109]. For the RFIM the cuspless fixed
point associated with dimensional reduction disappears
at dDR ≈ 5.1 and the cuspy fixed point emerges contin-
uously below dDR through a boundary-layer mechanism

2 Arguments here refer to replica fields, not to spatial coordinates
or momenta, as discussed in Section 4.

Fig. 2. Nonperturbative FRG prediction of the equilibrium
phase behavior of the d-dimensional RFO(N)M. In region
III, there are no phase transitions and the system is always
disordered (paramagnetic). In regions I and IV , there is
a second-order paramagnetic-to-ferromagnetic transition and
in region II, a second-order transition between paramagnetic
and QLRO phases. In region IV the nonanalyticity of the
dimensionless effective action at the zero-temperature fixed
point is weak enough that the critical exponents take their
dimensional-reduction value and SUSY is valid, whereas a com-
plete breakdown of dimensional reduction and a concomitant
breaking of SUSY take place in regions I and II. Regions I and
IV are separated by a nontrivial critical line dDR(N). Above
d = 6, the critical behavior is described by classical (mean-
field) exponents. Note that the baseline corresponds to N = 1,
i.e., to the RFIM.

[109]. This explains the unusual properties of the correc-
tions to scaling in the RFIM below dDR [110]. (Note also
that this theoretical explanation of dimension-reduction
breakdown is fully compatible with the rigorous proof that
no bona fide spin-glass phase [111,112] nor spontaneous
replica-symmetry breaking [113] can exist in the RFIM.)3

Within the framework of a superfield and superspace
formulation, the nonperturbative FRG also provides an
explanation for the breaking of the underlying SUSY
[99,104,114]. Above dDR(N) SUSY, which is a rotation
invariance in superspace, is valid at the fixed point and,
even if one starts with a non-SUSY initial condition, it
is restored at large distance along the FRG flow.2 On
the other hand, SUSY is broken at the fixed point below
dDR(N). If one initiates the FRG flow with a SUSY con-
dition, one finds a spontaneous SUSY breaking at a finite
scale along the flow. This SUSY breaking is associated
with the appearance of cusps in the functional field depen-
dence of the renormalized cumulants, cusps that lead
to a breakdown of the SUSY Ward identities [99,104].
The scenario of a restoration of SUSY and dimensional
reduction above some dimension close to 5 for the RFIM
is supported by recent large-scale computer simulations
[115,116].

3 For N large enough (N & 14) the cuspless fixed point becomes
unstable to the cuspy fixed point for a dimension larger than
dDR(N), at which it disappears [109].
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5.2 Physical interpretation: avalanches at zero
temperature and droplets at low temperature

As stressed in Section 4, the nonanalytic field dependences
of the cumulants of the renormalized random field are gen-
erated by the presence of abrupt collective phenomena,
described as avalanches (or shocks), in the evolution of the
ground state as a function of the applied source. At zero
temperature, avalanches on all scales are always present.
This is seen for instance in the mean-field limit where the
avalanche properties can be exactly computed. (For sim-
plicity we focus on the case of the RFIM.) However, when
avalanches and the resulting cusps are subdominant in an
RG sense near the zero-temperature fixed point, dimen-
sional reduction and SUSY are still satisfied at this fixed
point. The fractal dimension df of the largest typical crit-
ical avalanches is then smaller than the fractal dimension
of the total order parameter, (d+ 4− η̄)/2, and there is a
diverging number of such avalanches at criticality, which
is characterized by the exponent [117]

λ =
d+ 4− η̄

2
− df > 0 , for d ≥ dDR . (19)

These exponents, λ and df , can be computed through
the nonperturbative FRG [109,117] and the perturba-
tive FRG in ε = 6 − d [107]. On the other hand below
dDR, avalanches and cusps dominate the fixed point and
the whole critical scaling, so that df = (d + 4 − η̄)/2
and λ = 0. The fractal dimension of the largest typical
avalanches at criticality is plotted as a function of dimen-
sion in Figure 3. Note that the same criterion concerning
the fractal dimension of the avalanches can be used to
rationalize [117] why dimensional reduction is always bro-
ken for elastic manifolds in a random environment below
their upper critical dimension duc = 4 [70–74,108] and
why it is always valid for the statistics of dilute branched
polymers below the upper critical dimension duc = 8
[118–120].

Criticality at a small but nonzero temperature involves
the physics of power-law rare excitations known as
droplets [61]. Within the nonperturbative FRG this is
captured through the thermal rounding of the cusps
that are present in the renormalized cumulants at the
zero-temperature fixed point (whether subdominant or
dominant). The renormalized temperature flows to zero
but the limit is highly nonuniform in the field-dependent
cumulants and proceeds via a “thermal boundary layer”,
as first found in the case of the random elastic mani-
fold model [92,93,95]. This manifestation of the dangerous
irrelevance of the temperature leads to anomalous thermal
fluctuations and activated dynamic scaling in the RFIM
that can both be described by the nonperturbative FRG
[102,103,121].

5.3 Unified description of ferromagnetism,
quasi-long-range order (QLRO) and criticality
in the whole (N , d) plane

The nonperturbative FRG approach of the RFO(N)M
provides a unified picture of ferromagnetism, QLRO and

Fig. 3. Nonperturbative FRG prediction of the fractal dimen-
sion df of the largest typical critical avalanches versus d for
the RFIM at the equilibrium critical point. The filled circles
indicate the known values at dlc = 2 and duc = 4. The dotted
(green) line is the upper bound d ≥ df . Below dDR ≈ 5.1, df

is equal to (d + 4 − η̄)/2 . The red dashed curve corresponds
to the two-loop perturbative FRG calculation calculation in
ε = 6 − d, df = 4 + (7/54)ε2 + O(ε3) [107]. The symbol is an
estimate obtained from a computer-simulation study of the 3-d
RFIM in equilibrium [122,123]. (Note that the numerical res-
olution of the FRG flow equations becomes extremely difficult
for the RFIM in low dimension, typically for d . 2.9, so that
we have no results there.)

criticality in the whole (N , d) plane. This stems from its
property that the resulting flow equations can be solved
for any value of the number of components N and the
dimension d [41,102,103]. We have found that below a
critical value Nc = 2.8347 . . . and for d < 4 the model
has a transition to a QLRO phase. Both this phase and
the transition to it (from the paramagnetic phase) are
governed by zero-temperature nonanalytic (cuspy) fixed
points. The transition disappears below a lower critical
dimension dQLRO

lc which we find around 3.9 for N = 2: see
Figure 4. Therefore, contrary to previous claims [12,58],
no QLRO and no topologically ordered Bragg glass phase
exist in the 3-d RFXYM. (One should however be cau-
tious about concluding from this that no Bragg glass phase
can be found in 3-dimensional physical systems because
the description through the simple RFXYM may be insuf-
ficient.) The predictions from the nonperturbative FRG
concerning the scenario of dimensional-reduction break-
down/restoration as well as the disappearance of QLRO
due to collapse with another zero-temperature fixed point
are supported by the analysis through a perturbative FRG
to two loops in d = 4± ε [105,106].

As seen from Figure 2, the topology of the (N , d) dia-
gram describing the phase behavior of the RFO(N)M
is similar to that of the pure O(N) model in 2 dimen-
sions less, even though the dimensional-reduction property
breaks down below the critical line dDR(N) [102,103,109].
However, through the two-loop perturbative FRG near
d = 4 one finds that the special point (Nc = 2.8347 · · · ,
d = 4), which is the analog of the point (N = 2, d = 2)
for the pure O(N) model, does not correspond to a
Berezinskii-Kosterlitz-Thouless transition but rather to a
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Fig. 4. QLRO lower critical dimension for the equilibrium
RFO(N)M from the nonperturbative FRG: The anomalous
dimension η associated with the zero-temperature “cuspy”
fixed points is plotted versus d for values of N ranging from 1.4
(leftmost curve) to 4 (rightmost lower curve) by steps of 0.2.
For N > Nc = 2.8347 · · · , only one fixed point emerges from
the point at (η = 0, d = 4); but for N < Nc, one finds two
values of η for each dimension, the upper one being associated
with the critical fixed point and the lower one with the QLRO
fixed point. The two branches of fixed points coalesce for a
value dQLRO

lc (N) shown by (blue) filled circles and the dashed
line. This value is found around 3.9 for N = 2 (red curve).

conventional second-order transition (the beta function
which vanishes at one loop is indeed not identically zero
at two loops) [105].

5.4 3 independent exponents describe the critical
scaling

Whereas phenomenological theories take the temperature
exponent θ as an independent input [59,61], which implies
that equilibrium scaling behavior is described by three
independent exponents in place of the usual two-exponent
scaling for finite-temperature fixed points, Schwartz and
coworkers [124–126] have claimed that θ = 2−η, or equiv-
alently η̄ = 2η, so that scaling is described by only two
independent exponents. The derivation leading to this
conclusion is supposed to hold for the Ising as well as
the continuous version with O(N) symmetry, and for all
dimensions d. Note that the property η̄ = 2η is indeed
nontrivially verified for the RFIM near the lower critical
dimension at first order in ε = d− 2 [62].

Through the nonperturbative FRG and the perturba-
tive FRG near d = 4 for the RFO(N > 1)M [41,99,102,
103,127], we have unambiguously shown that the two-
exponent scenario cannot be right in general. Indeed, there
is a whole region of the (d,N) plane where dimensional
reduction is restored with η̄ = η 6= 0, which invalids the
claim that η̄ = 2η, and a whole region were dimensional
reduction is broken with η < η̄ < 2η, as can be seen from
the results in Figure 5 obtained by the nonperturbative
FRG of the equilibrium RFIM. The description of the two
regions clearly requires 3 independent exponents. Since
our work, large-scale computer simulations have confirmed
the 3-exponent scenario with η̄ < 2η [128,129].

Fig. 5. Nonperturbative FRG prediction for the dependence
on the spatial dimension d of the anomalous dimensions η
(lower, full red curve) and η̄ (upper, dashed blue curve) for
the equilibrium RFIM at criticality. The full straight lines are
lower bounds for the anomalous dimensions [(4−d)/2 for η and
4− d for η̄] and the dotted curve is the prediction η̄ = 2η [124].
The symbols represent the results of large-scale ground-state
computations in d = 3 [64,128,130], d = 4 [129,131,132] and
d = 5 [115]. The critical dimension above which dimensional
reduction is obeyed (with η = η̄) is dDR ≈ 5.1.

6 Exact FRG and approximations

In this section we describe the functional RG for random-
field models both at an exact level and in an approximate
but nonperturbative implementation.

6.1 Three possible formalisms for averaging
over disorder

There are several routes to carry out the average over the
quenched disorder and derive functional RG flow equa-
tions for the cumulants of the renormalized disorder,
which one can denote as: “Boltzmann-Gibbs”, “super-
field”, and “dynamical”. The first two specifically apply
to the equilibrium behavior, the Boltzmann-Gibbs for-
malism being based on equilibrium partition function(al)s
as in equations (3) and (15), the superfield one start-
ing from the stochastic field equation in equation (4)
and building a generating functional through the intro-
duction of one additional auxiliary bosonic field and two
auxiliary fermionic (Grassmannian) fields as put forward
in reference [43]. The third one can be used in equilib-
rium as well as in nonequilibrium situations and follows
the Martin-Siggia-Rose-Janssen-De Dominicis [133–135]
construction of the generating functional based on the
Langevin equation [Eq. (5)] in the Ito representation.

We stress again that in all of the three formalisms one
must introduce replicas or copies of the system, all with
the same quenched disorder but coupled to independent
distinct sources, which means that replica symmetry is
explicitly broken. This is an unusual procedure in the cases
of the superfield and the dynamical formalisms which
are commonly considered as alternatives to the replica
trick. The multi-replica procedure is necessary to provide
a description of the cumulants with generic field argu-
ments and therefore be able to account for the influence
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of avalanches and droplets on the long-distance behavior
(see above).

The three formalisms have benefits and drawbacks. The
Boltzmann-Gibbs one is simpler but restricted to equilib-
rium and blind to the breaking or not of the underlying
SUSY. The superfield construction is much more involved:
In addition to dealing with superfields and superspace one
needs to introduce an additional weighting of the solutions
of equation (4) that generalizes the original Parisi-Sourlas
construction [43] and allows one to recover ground-state
dominance of the generating functionals at large scale;
this is at the cost of dealing with a curved superspace.
The upside is that the underlying supersymmetries of the
theory can be explicitly incorporated and studied, with
the derivation of associated Ward identities, and that the
spontaneous breaking of SUSY, the rotation invariance
in flat superspace, can be investigated. Finally, the main
advantage of the dynamical formalism is that, especially
in the case of the RFIM, the out-of-equilibrium behavior
of the system when quasi-statically driven at zero tem-
perature can be studied on an equal footing with the
equilibrium behavior. The respective critical fixed points
can then be directly compared. Furthermore, one can also
describe the critical slowing down of the RFIM.

A crucial point is that the exact FRG equations derived
within the different formalisms of course coincide when
applied to the same situation [99,102,103,121,136]. In the
following presentation we will focus on the equilibrium
behavior of in the presence of a random field and present
the FRG in the context of the Boltzmann-Gibbs formal-
ism which is conceptually simpler and requires lighter
notations.

6.2 Exact FRG equations for the cumulants

The nonperturbative FRG is a version of Wilson’s contin-
uous RG [137–139] in which one progressively incorporates
fluctuations of the local order parameter fields over larger
length scales or shorter momenta. This can be done by
introducing an “infrared (IR) regulator” that suppresses
the integration over the modes with momentum |q| less
than some cutoff k in the (functional) partition function.
This IR regulator takes the form of a generalized “mass”
(quadratic) term added to the bare action [140]. Here and
in most of what follows we present the formalism for the
case of the RFIM (N = 1) in equilibrium, which signifi-
cantly alleviates the notations. The IR regulator added to
the multi-copy action then reads in Fourier (momentum)
space

∆Sk[{ϕa}] =
1
2

∑
a,b

∫
q

ϕa(q)Rk,ab(q2)ϕb(−q) , (20)

where
∫
q
≡
∫
ddq/(2π)d and Rk,ab(q2) = δabR̂k(q2) +

R̃k(q2). The functions R̂k(q2) and R̃k(q2) are chosen to
provide an IR cutoff on all the fluctuations, which enforces
a decoupling of the low- and high-momentum modes at
the scale k. The function R̂k(q2) adds a mass ∼k2−η

to modes with q2 < k2 and decays rapidly to zero for

q2 > k2, whereas the function R̃k(q2) (which must be
chosen proportional to −∂q2R̂k(q2) to avoid an explicit
SUSY breaking [99,104]) reduces the fluctuations of the
bare random field.

Through this procedure, one defines the multi-copy gen-
erating functional of the correlation functions at scale k,

Wk[{Ja}] =

ln
∫ ∏

a

Dϕa exp
(
−
∑
a

SB [ϕa] +
∑
a

∫
x

Ja(x)ϕa(x)

+
1
2

∑
a,b

∆B

∫
x

ϕa(x)ϕb(x)−∆Sk[{ϕa}]
)
.

(21)
In the FRG approach, the central quantity is the “effec-

tive average action” Γk, the generating functional of the
1PI correlation functions at the scale k. It is obtained from
Wk[{Ja}] through a Legendre transform with

Γk[{φa}] + ∆Sk[{φa}] = −Wk[{Ja}] +
∑
a

∫
x

Ja(x)φa(x),

(22)
where the field φa = δWk/δJa(x) is the average of the
physical field ϕa in copy a.

The evolution of the effective average action under the
change of the IR cutoff k is governed by an exact RG
equation [139],

∂kΓk [{φa}] =
1
2

∑
a,b

∫
q

∂kRk,ab(q2)
([

Γ(2)
k +Rk

]−1)ab
q,−q,

(23)
where Γ(2)

k is the matrix formed by the second functional
derivatives of Γk with respect to the replica fields and the
operator Pk[{φa}] ≡ [Γ(2)

k +Rk]−1 is the exact propagator
at the scale k. In physical terms, Γk [{φa}] is the (multi-
replica) Gibbs free-energy functional of the local order
parameter fields obtained after a coarse-graining down
to the momentum scale k. At the UV (or microscopic)
scale k = Λ, Γk essentially reduces to the bare replicated
action, ΓΛ ≈

∑
a SB [φa] − (1/2)

∑
a,b ∆B

∫
x
φa(x)φb(x)

(for a Gaussian distributed bare random field),whereas at
the end of the flow, when k → 0, Γk becomes equal to the
full effective action (Gibbs free energy), Γ0 = Γ[{φa}].

Similarly to the full effective action Γ[{φa}] in equa-
tion (18), Γk[{φa}] can be expanded in an increasing
number of free replica sums,

Γk[{φa}] =
∑
a

Γk1[φa]− 1
2

∑
a,b

Γk2[φa, φb] + · · · , (24)

where Γk,p=1 is the disorder-averaged Gibbs free energy
at scale k and for p ≥ 2 the Γkp’s are essentially the
cumulants of the renormalized disorder at the scale k
[41,99].

After expanding both sides of equation (23) in an
increasing number of free replica sums and using system-
atic algebraic manipulations, one obtains a hierarchy of
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exact RG flow equations for the cumulants of the renor-
malized disorder, ∂kΓk1[φa] = · · · , ∂kΓk2[φa, φb] = · · · ,
etc., where the right-hand side of the flow equation for
the pth cumulant retains the one-loop structure of equa-
tion (6) and involves up to the (p+ 1)th cumulant, so that
all equations are coupled. The expressions also involve
the exact “connected” and “disconnected” propagators,
P̂k and P̃k, which are defined as

P̂k;x1x2 [φa] =
(
Γ(2)
k1 [φa] + R̂k

)−1∣∣
x1x2

(25)

P̃k;x1x2 [φa, φb] = −
∫
x3x4

P̂k;x1x3 [φa])P̂k;x4x2 [φb]

×
(
Γ(11)
k2;x3x4

[φa, φb]− R̃k(|x3 − x4|
)
, (26)

and which in the limit k → 0 and for zero fields reduce
to the physical connected and disconnected pair corre-
lation functions of equations (6) and (7). [Recall that
superscripts with parentheses denote the order of the func-
tional derivatives with respect to the appropriate argu-
ments: e.g., Γ(2)

k1,x1x2
[φa] ≡ δ2Γk1[φa]/δφa(x1)δφa(x2),

Γ(11)
k2;x1x2

[φa, φb] ≡ δ2Γk2[φa, φb]/δφa(x1)δφb(x2), etc.]

6.3 Nonperturbative approximation scheme

The hierarchy of exact FRG equations derived above can-
not be solved exactly in general and we have proposed
a systematic nonperturbative approximation scheme [41,
99,102–104]. It consists in formulating an ansatz for the
effective average action that relies on a joint truncation
of (i) the derivative expansion, i.e., an expansion in the
number of spatial derivatives for approximating the long-
distance behavior of the 1PI correlation functions, and (ii)
the expansion in cumulants of the renormalized disorder.
(In the superfield/superspace formalism there is an addi-
tional truncation in increasing “nonlocality in Grassmann
space” [99] whereas in the dynamical formalism one also
has to truncate the expansions in time derivatives and in
powers of the response field [121,136].)

The choice of a minimal nonperturbative truncation
is guided by a combination of factors: experience gained
from studies on other models, constraints associated with
the symmetries and supersymmetries of the theory, intu-
ition or previous knowledge concerning the physics of the
problem at hand, requirement of being able to recover as
much as possible exact and perturbative results in the
appropriate limits, and, of course, a practical limitation
coming with the numerical ability to actually solve the set
of FRG flow equations. For instance, it has been shown
for many statistical mechanical models in the absence of
quenched disorder, such as the O(N) model, that a trun-
cation of the derivative expansion at the second order
gives a very good description of the asymptotic long-
distance behavior [140]. Furthermore, the convergence of
the expansion has been found to be very rapid as one
increases the order of the truncation [141]. Concerning
the truncation of the cumulant expansion, SUSY when it
is present entails relations between the cumulant at order

p+ 1 and the cumulant at order p, for any p ≥ 1. The sim-
plest nontrivial such relation (or Ward identity) implies
for a uniform field that

Γ(11)
k2 (q2;φ, φ) ∝ −∂q2Γ(2)

k1 (q2;φ) . (27)

When SUSY is spontaneously broken, these Ward identi-
ties cease of course to be satisfied. However, to avoid an
explicit breaking of SUSY one must connect the order of
the truncation of the derivative expansion to that of the
cumulant expansion.

An efficient ansatz that can capture the long-distance
physics including the influence of avalanches and droplets
is then

Γk1[φ] =
∫
x

[
Uk(φ(x)) +

1
2
Zk(φ)(∂xφ(x))2

]
, (28)

Γk2[φ1, φ2] =
∫
x

Vk(φ1(x), φ2(x)) , (29)

and

Γkp≥3 = 0 , (30)

where the effective average potential Uk(φ) describes
the thermodynamics of the system, Zk(φ) is a func-
tion accounting for the renormalization of the field,
and Vk(φ1, φ2) is the 2-replica effective average poten-
tial whose second derivative, V (11)

k (φ1, φ2) = ∆k(φ1, φ2),
is the second cumulant of the renormalized random field
at zero momentum; ∆k(φ1, φ2) is the key quantity that
tracks avalanches and droplets through its functional
dependence (see above). Inserting the above ansatz into
the exact FRG equations for the cumulants leads to a set
of coupled flow equations for the functions Uk(φ), Zk(φ),
and Vk(φ1, φ2) [or, alternatively, the first derivative U ′k(φ),
Zk(φ), and ∆k(φ1, φ2)]. The RG is “functional” as its cen-
tral objects are functions instead of coupling constants
and it is “nonperturbative” as the approximation scheme
does not rely on an expansion in some small coupling
constant or function.

Note that lower orders of the approximation scheme
amount to taking Zk as a independent of the field
φ. According to equation (27) this implies to consider
∆k(φ, φ) also as a constant ∆k. The simplest implemen-
tation consists in assuming that ∆k(φ1, φ2) = ∆k for all
arguments, which, as we have argued in Section 4, pre-
vents one from capturing the effect of avalanches and/or
droplets.4 As a result, such an approximation only pre-
dicts that the critical behavior is given by dimensional
reduction [142]. On the other hand, the next higher order
of the scheme consists in retaining terms up to O(∂4

x)
for the first cumulant, up to O(∂2

x) for the second cumu-
lant, and a nonzero but purely local third cumulant. This

4 An improved approximation starts by rewriting ∆k(φ1, φ2) ≡
∆k(φ, δφ) with φ = (φ1 + φ2)/2 and δφ = (φ2 − φ1)/2. One then
neglects the dependence on the variable φ by fixing it at a chosen
value while retaining the full dependence in δφ. This allows one to
detect the appearance of a cusp (I. Balog, unpublished 2019).
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amounts to solving coupled partial differential equations
for 5 functions of 1 field, 3 functions of 2 fields, and 1 func-
tion of 3 fields, a quite formidable numerical task which
we have not yet achieved.

In the case of the O(N) version of the random-field
model, the analog of the truncation in equations (28)–
(30) requires two field renormalization functions that
depend on the variable ρ = (1/2)|φ|2 and the 2-replica
potential is now a function of 3 fields, ρ1, ρ2, and
z12 = φ1·φ2/

√
2ρ1ρ2. As a consequence of this increased

numerical difficulty, we have also used some additional
approximation in which we expand the dependence of
the functions on ρ1 and ρ2 around a nontrivial value of
the field that minimizes the 1-replica effective average
potential (while keeping the full dependence in the other
variable z12) [102,103].

6.4 Dimensionless form of the nonperturbative FRG
equations and fixed points

One more step is needed to cast the nonperturbative FRG
flow equations in a form that is suitable for searching for
the anticipated zero-temperature fixed points describing
the critical behavior of the RFIM. One has to introduce
appropriate scaling dimensions. This requires defining a
renormalized temperature Tk which should flow to zero as
k → 0,

Tk ∼ kθ, with θ > 0. (31)

This is the precise meaning of a “zero-temperature” fixed
point. Near such a fixed point, one has the following
scaling dimensions:

Zk ∼ k−η, φa ∼ k
1
2 (d−4+η̄), (32)

with η̄ and θ related through θ = 2 + η − η̄, and

Uk ∼ kd−θ, Vk ∼ kd−2θ, (33)

so that the second cumulant of the renormalized random
field ∆k scales as k−(2η−η̄).

Letting the dimensionless counterparts of Uk, Vk,∆k, φ
be denoted by lower-case letters, uk, vk, δk, ϕ, and express-
ing the results in terms of the dimensionless fields ϕ =
ϕ1+ϕ2

2 and δϕ = ϕ2−ϕ1
2 , the resulting FRG flow equations

can be symbolically written as

∂tu
′
k(ϕ) = βu′0(ϕ) + Tkβu′1(ϕ) ,

∂tzk(ϕ) = βz0(ϕ) + Tkβz1(ϕ) ,
∂tδk(ϕ, δϕ) = βδ0(ϕ, δϕ) + Tkβδ1(ϕ, δϕ) ,

(34)

where t = log(k/Λ) is the dimensionless RG “time”
and a prime denotes a derivative for a function of a
single argument. The “beta functions”, βu′0, · · · , βδ1,
themselves depend on u′k, zk, δk, their derivatives,
and on the (dimensionless) cutoff functions defined
from R̂k(q2) = k2Zk r̂(y = q2/k2), R̃k(q2) = ∆k r̃(y =
q2/k2) = −∆k r̂

′(y). In addition, the running anomalous
dimensions ηk and η̄k are fixed by the conditions zk(0) =

Fig. 6. Dimensionless second cumulant of the renormalized
random field δ∗(ϕ = 0, δϕ) at the equilibrium critical fixed
point of the RFIM in d = 3. One clearly sees the cusp in |δϕ|
near the origin, i.e., when the replica fields become equal.

δk(0, 0) = 1 and reach fixed-point values when k → 0 (or
t→ −∞). The expressions of the beta functions are given
in references [99,102,103,121].

When the bare temperature is zero, T = 0, the terms
proportional to Tk can be dropped in equation (34), and it
is found that the fixed-point solution, which solves equa-
tion (34) with the left-hand side equal to zero (so that the
renormalized theory displays scale invariance), displays
two regimes:

– for d < dDR ≈ 5.1, a “cusp” in |δϕ| is present in the
fixed-point function δ∗ when δϕ→ 0:

δ∗(ϕ, δϕ) = δ∗(ϕ, 0)− δ∗,a(ϕ)|δϕ|+ 1
2
δ∗,2(ϕ)δϕ2

+O(|δϕ|3). (35)

This cusp, which is associated with the presence of
avalanches on all scales at the critical point [117], is
responsible for the breakdown of dimensional reduc-
tion and SUSY [41,99,102–104]. It is illustrated in
Figure 6 for the equilibrium RFIM in d = 3. Note
that this function (as the other fixed-point func-
tions) is accessible by computer simulations through
finite-size studies.

– For d > dDR, the fixed-point function δ∗ is “cusp-
less”, which ensures that the dimensional-reduction
property of the critical exponents, with, e.g., η̄(d) =
η(d) = ηIsing,d−2 and θ = 2, is valid and that SUSY
is obeyed at the fixed point.5 It is important to stress
that avalanches are still present on all scales but only
lead to a subdominant cusp: δk(ϕ, δϕ) = δk(ϕ, 0) −
δk,a(ϕ)|δϕ|+O(δϕ2) where δk,a(ϕ) ∼ kλ when k →
0 [117], with λ > 0 characterizing the (diverging)
number of spanning avalanches at criticality [27,117].

5 SUSY is obeyed at the fixed point when all replica fields are
equal. Singularities (that are weaker than cusps) are still present in
the fixed-point renormalized theory but in the sector where replica
fields are distinct, and they do not feed back into the sector of equal
replica fields.
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The passage from one regime to the other is very
unusual as the cuspy fixed point emerges from the col-
lapse of two cuspless fixed point in d = dDR through a
mechanism of boundary layer [109] (not to be confused
with the “thermal boundary layer” discussed just below).

When T > 0, the cusp present in δk(ϕ, δϕ) at T = 0 is
rounded due to temperature and δk develops a thermal
boundary layer,

δk(ϕ, δϕ) = δk(ϕ, 0) + Tkbk

(
ϕ, x =

δϕ2

T 2
k

)
+O(T 2

k , δϕ
2)

(36)
when Tk, δϕ→ 0. One easily derives that the solution has
the explicit form

bk(ϕ, x) =
a2∗(ϕ)
a1∗(ϕ)

(
1−

√
1 + x

a1∗(ϕ)2δk,a(ϕ)2

a2∗(ϕ)2

)
, (37)

where x ≥ 0, and the ap∗’s are (nonzero) fixed-point
functions; δk,a(ϕ) behaves differently when k → 0 for
d < dDR and d > dDR (see above). Note that the bound-
ary layer is the manifestation of a nonuniform convergence
to zero temperature, i.e., to Tk = 0, but the same zero-
temperature fixed point is nonetheless reached whether
one first takes T = 0 or considers T > 0. The key roles of
the cusps in the functional dependence of the cumulants
and of their rounding at finite temperature in a thermal
boundary layer are found in the simpler case of an elas-
tic manifold pinned in a random environment. There, the
long-distance physics is accessible though a functional but
perturbative RG in d = 4 − ε, which allows for detailed
analyses [70–74,92,93,95,108] and provides some guidance
for the more involved case of random-field models.

All of the above results can be generalized to the
RFO(N)M, which in particular leads to the determina-
tion of the critical line dDR(N) and to the study of QLRO
and its nontrivial lower critical dimension dQLRO

lc for d ≤ 4
[102,103]: see also Section 5.

7 Robustness of the nonperturbative results
and comparison with perturbative analyses

7.1 Why should one trust the outcome of the
nonperturbative FRG?

The above FRG approach is nonperturbative but approx-
imate, which raises the question of the robustness of its
outcome.

We list below a number of arguments, not ranked by
order of importance, which strengthen confidence in the
results:

– The nonperturbative FRG gives a consistent and
unified description of the equilibrium behavior of
random-field systems in the whole (N ,d) diagram.
The scenario of a critical line dDR(N) separating a
region where dimensional reduction and SUSY are
obeyed at the fixed point and a region where they
are violated is in agreement with exact results, recent

large-scale computer simulations, and perturbative
FRG analyses in d = 4 + ε for the RFO(N > 1)M
and in d = 6− ε at the two-loop level for the RFIM,
as is discussed in more detail below. In the case of
the RFIM the scenario is also supported by a recent
loop expansion around the Bethe solution [143].

– The predicted critical exponents are in very
good agreement with available computer simulation
results in all dimensions. As shown in Figure 5, the
anomalous dimensions η and η̄ are in good agreement
with the best known values obtained by large-scale
zero-temperature simulations. This is also true for
the other critical exponents. (Unfortunately there
are so far no computations of finite-size scaling func-
tions in simulations, to which one could compare
the nonperturbative FRG predictions for fixed-point
functions.) Furthermore, the exponents satisfy all
expected relations associated with scaling as well as
the known rigorous bounds (e.g., η ≤ η̄ ≤ 2η [144],
η ≥ (4− d)/2, and η̄ ≥ 4− d).

– The nonperturbative FRG provides a description
of the physics of random-field systems in terms of
avalanches at zero temperature and droplets at finite
temperature that is supported by real-space analyses
in computer simulations [80,82,84,91]. This descrip-
tion shares many similarities with the behavior of an
elastic manifold in a random environment, for which
many FRG predictions have been successfully tested.

– The minimal nonperturbative truncation of the
FRG described in the preceding section is exact
at one-loop level near the upper critical dimension
duc = 6 and near the lower critical dimension of
the RFO(N > 1)M for long-range ferromagnetism,
dlc = 4. It is also exact in the large N limit.

– The nonperturbative FRG satisfies all the symme-
tries and supersymmetries of the theory and is able
to describe their spontaneous breaking.

– The approximation scheme is a systematic one and
its quality can be tested. We have already checked
the robustness of the results with respect to the
choice of IR cutoff functions [99,102,103] and, for the
RFO(N)M, with respect to the additional approxi-
mations (field expansion) [102,103]. As for the accu-
racy of the truncation given in equations (28)–(30)
the best assessment would be to consider the next
level of the approximation scheme. As mentioned
before, this represents a very hard numerical task
and we are still working on it. In the absence of such
a test, one can nonetheless draw some conclusions.
First, confidence in the truncation of the expan-
sion in spatial derivatives comes from the evidence
obtained from the study of simpler models without
quenched disorder that the expansion is a power-
ful and rapidly converging method for describing the
long-distance/small momentum sector of the theory
[140,141]. The truncation of the cumulant expansion
(which is also constrained to that of the derivative
expansion by the requirement of no explicit breaking
of the underlying SUSY) is harder to assess. There
is however an indirect way of doing it by considering
its consequence on the exponent τ characterizing the
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power-law distribution of avalanches sizes at critical-
ity for the RFIM [26–28,30,31]. It can be shown, by
following a procedure similar to that developed for
an interface in a random environment [145,146], that
truncating at the order of the second cumulant of the
renormalized random field as in equation (29) implies
that the exponent τ is equal to 3/2, its mean-field
value, for all dimensions d and whatever the (finite)
level of truncation of the derivative expansion [147].
It turns out, however, that this value appears to be
a rather good estimate of the exponent: In computer
simulations, τ has been found to slightly increase
with decreasing dimension, from 1.5 in d = 6 to 1.6 in
d = 2 for the athermally and quasi-statically driven
RFIM [28], and from a recent careful study of the 3-
d RFIM in equilibrium to be around 1.54 [122,123].
Overall, the error on the value of τ is thus of the
order of 5% or less. This suggests that the approxi-
mation neglecting the contribution of the third and
higher cumulants is a reasonable one for describing
the critical behavior of random-field systems.6

7.2 Perturbative FRG analyses

As mentioned above, an important property of the non-
perturbative FRG is that because of its one-loop structure
it reproduces through the minimal truncation the per-
turbative results obtained either near the lower critical
dimension of long-range ferromagnetism for the RFO(N >
1)M or near the upper critical dimension at the one-loop
order. It is therefore important to check if the scenario
remains valid when pushing the perturbative analyses to
the two-loop order. This is what we now describe.

7.2.1 Perturbative FRG for the RFO(N > 1)M
in d = 4 + ε

At the lower critical dimension of long-range ferromag-
netic order for random-field models with continuous O(N)
symmetry, dlc = 4, the fields become dimensionless, with
(d − 4 + η̄)/2 = 0, so that the perturbative RG a pri-
ori becomes functional [148]. D. Fisher was the first to
derive perturbative FRG equations for the RFO(N)M in
d = 4 + ε at one loop [148]. After a first partial analysis
given by Feldman [149], we have provided a complete anal-
ysis of the one-loop perturbative FRG in references [102,
103,105,109]. As expected, the results are fully compatible
with the nonperturbative FRG description.

To go beyond this first step, one must consider the next
order in the loop expansion. This can be done in a man-
ner similar to that developed for the pure model at low
temperature near d = 2, but with disorder now playing
the role of temperature (temperature being irrelevant and
eventually set to zero). The long-distance physics for weak
disorder can be described in a field-theoretical setting by

6 This conclusion is also supported by recent large-scale zero-
temperature simulations of the RFIM in d = 3 [128] which give
strong evidence that the critical behavior is independent of the dis-
tribution of the random field. Cumulants of the (bare) disorder of
higher order than 2 therefore do not modify the universal properties.

Fig. 7. Lower critical dimension of QLRO for the RFO(N)M
in equilibrium below d = 4: Comparison between the results of
the two-loop perturbative FRG (dashed green line) and of the
nonperturbative FRG (full red line). The two curves start from
Nc = 2.8347 . . . in d = 4. The black circle denotes the physical
case of the XY model in d = 3, a case which is clearly below
its lower critical dimension.

a nonlinear sigma model. The effective action is then per-
turbatively calculated in powers of the disorder correlator
R(z12). The latter is a function of a single variable z12,
which is the scalar product between two replica fields that
are unit vectors because of the fixed-length constraint.
When going beyond the one-loop level, the technical diffi-
culties become considerably more involved. On top of the
rapidly increasing number of diagrams, diagrams which in
the present case are functionals, the nonanalytic character
of the renormalized effective action at T = 0 leads to the
appearance of “anomalous” terms in the diagrammatics,
whose evaluation is a priori ambiguous. The solution of
this problem (see also Ref. [106]) results in a beta function
for the renormalized disorder correlator (which is equiv-
alent to vk(ρ1, ρ2, z12) in the above section with ρ1 and
ρ2 sent to ∞). The analysis of the ensuing fixed points
fully confirms the one-loop and the nonperturbative FRG
results concerning the restoration of dimensional reduc-
tion for a large enough value of N (see Fig. 2) when
d ≥ 4 (ε ≥ 0) [105,106,150–152]. It also shows that the
special point d = 4, Nc = 2.8347 · · · does not correspond
to a Berezinskii-Kosterlitz-Thouless transition at which
the whole beta function would vanish in the loop expan-
sion. In addition, one finds that for d . 4 (ε . 0)and
N . Nc a new, once unstable, fixed point appears, that
describes the transition between paramagnetic and QLRO
phases [105,106]. This provides the mechanism by which
the QLRO phase disappears below some critical dimen-
sion, in full agreement with the nonperturbative FRG
predictions: see Figure 7.

7.2.2 Functional perturbation theory around the upper
critical dimension for the RFIM

Conventional perturbation theory, i.e., an expansion
around a Gaussian reference theory in ε = 6 − d, and
the associated perturbative RG are known to fail in low
enough dimensions, as the ε expansion predicts at all
orders dimensional reduction (see above). Since avalanches
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on all scales are always present at zero temperature and
that breakdown of dimensional reduction is related to the
existence of a singularity, a cusp, in the functional depen-
dence of the renormalized cumulants of the random field
at the fixed point, perturbation theory can still be use-
ful provided one upgrades it to a functional approach. So
long as the cuspless fixed point exists below d = 6, one
can indeed take into account the effect of the avalanches.
This effect is then subdominant near the fixed point and is
characterized by an exponent λ > 0, which also allows one
to compute the fractal dimension df of the largest typical
avalanches at criticality (see above).

This new twist in the perturbation theory is made pos-
sible by studying cuspy perturbations, i.e., by including
in the theory functional operators that are nonanalytic in
the field dependence [107]. This can be done, e.g., in the
RFIM, by (i) adding to the bare action an “anomalous”
contribution

Scusp =
wB
4

∫
x

n∑
a,b=1

ϕa(x)ϕb(x)|ϕa(x)− ϕb(x)| , (38)

where only the operator with the lowest canonical dimen-
sion is considered, and (ii) perturbatively renormalizing
the amplitude of this contribution through a loop expan-
sion [107]. The lowest nonzero correction term appears at
the two-loop level. It leads for instance to a determination
of the exponent λ in powers of ε:

λ = 1− 1
2
ε− 5

36
ε2 +O(ε3). (39)

Clearly, if λ becomes negative, perturbation theory breaks
down (it can also break down before this happens). The
above result indeed shows that λ decreases as d decreases
below 6 and indicates that λ would go to 0 at some non-
trivial point [107]. This behavior is a confirmation of the
predictions of the nonperturbative FRG [109,117]. The
fractal dimension df predicted from equations (19) and
(39) is shown in Figure 3.

Note finally that the fact that singular corrections are
present but still subdominant near the upper critical
dimension is also supported by a recent perturbative loop
expansion around the Bethe solution [143].

8 Further results on random-field systems

The nonperturbative FRG approach has also been
extended to study more systems and phenomena in the
presence of random fields, which we briefly summarize
below.

8.1 Equilibrium critical behavior of the RFIM
with long-range interactions and long-range
disorder correlations

Aside from relevance to physical systems, the interest in
long-range models comes from the fact that the presence
of long-range interactions, which are power-law decay-
ing with distance as r−(d+σ), decreases the lower critical

dimension of a model and that varying the exponent
σ of the power law in a fixed dimension d allows one
to find a spectrum of critical behavior that goes from
mean-field for truly long-range interactions (σ ≤ σuc) to
the absence of transition for short-range decay (σ ≥ σlc)
while spanning a continuous range of nonclassical behav-
ior in between. In some sense, changing the exponent σ
at fixed d is like changing the dimension d in a short-
range model. In the case of the RFIM, this has the merit
to bring the critical passage at σDR(d) from a regime
where critical behavior is dominated by avalanches to a
regime where avalanches only play a subdominant role to
physically accessible dimensions, d ≤ 3. Actually, in d = 1
(and d = 2 as well) there can be no proper d → d − 2
dimensional reduction but a critical value of σ nonethe-
less separates a region where the fixed point is “cuspy”
from a region where the fixed point is “cuspless” [153].
In d = 3 on the other hand, the breaking of SUSY and
the associated dimensional-reduction breakdown can be
investigated by also considering long-range correlations of
the bare disorder, with a power-law decay of the corre-
lator ∆B(r) ∼ r−(d−ρ) with distance r [154,155]. SUSY
then requires that ρ = 2 − σ, but it is violated, as is
dimensional reduction, below some σDR ≈ 0.72, which is
intermediate between σlc = 1 and σuc = 1/2. To obtain all
the results, the formalism sketched in previous sections
has to be extended to include the singular momentum
dependence of the vertices resulting from the long-range
nature of the interactions and of the disorder correlations
[153,154].

8.2 Activated dynamic scaling for the critical slowing
down of the RFIM

By upgrading the nonperturbative FRG of the RFIM to
the dynamical formalism, one can study the critical slow-
ing down in the relaxation to equilibrium near the critical
point. Activated dynamic scaling, in the form described in
Section 3, is then obtained for all dimensions d < duc = 6.
The physical reason behind this dynamic scaling is the
presence of power-law rare droplets at low temperature
[61]. This is captured in the FRG through the thermal
rounding of the cusp in the cumulants of the renormalized
random field and the dangerous irrelevance of the tem-
perature. The exponent ψ characterizing the divergence
of the effective activation barrier [see Eq. (9)] is predicted
to be equal to the temperature exponent, ψ = θ, for d ≤
dDR ≈ 5.1 and to decrease as ψ = θ − 2λ, where λ is the
exponent characterizing the irrelevance of the avalanches
near the zero-temperature fixed point, for d ≥ dDR [121].
Above the upper critical dimension duc = 6 at which θ = 2
and λ = 1, activated dynamic scaling gives way to conven-
tional critical slowing down (with the dynamical exponent
z = 2).

8.3 Criticality in the RFIM in and out of equilibrium

As explained in Sections 2 and 3, the RFIM can be studied
in equilibrium but also out of equilibrium, where it dis-
plays a phase transition as a function of disorder strength
when it is quasi-statically driven by an applied source at
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zero temperature. The process leads to hysteresis and the
out-of-equilibrium critical points found along the hystere-
sis branches come with scale-free “dynamic” avalanches
(crackling noise) [26–28,30,31]. Quite strikingly, despite
the fact that one type of critical point is at equilibrium
and at zero external field (source) while the other is out of
equilibrium and at a nonzero value of the applied exter-
nal field, and that they take place at different values of
the disorder strength, the two critical behaviors are char-
acterized by exponents that have been found very close
in numerical simulations [30,31,122,123,156]. The nonper-
turbative FRG in the dynamical formalism allows one to
treat the two situations on an equal footing and to derive
functional flow equations that properly describe the two
different protocols (as first implemented in a perturbative
context in the FRG of a random elastic manifold in the
equilibrium pinned phase and near the depinning transi-
tion [74]). It has been shown that in spite of the similarity
of the critical exponents and of some scaling functions,
the two critical behaviors are not in the same universality
class and are controlled by distinct zero-temperature fixed
points whenever d < dDR ≈ 5.1 [136]. The signature of
this difference is more easily detected by looking at the Z2

or Z2-broken shape of some fixed-point functions. Above
dDR on the other hand, both types of critical points are
controlled by the “cuspless” dimensional-reduction fixed
point.

8.4 Higher-order random anisotropies in O(N)
models in equilibrium

When the theory has an underlying continuous O(N) sym-
metry, quenched disorder can take the form of random
anisotropies that couple to products of field components.
If these random anisotropies are only of even ranks, the
model has an additional inversion symmetry compared to
the random field model studied above in this article. The
starting point of the theoretical description is a bare action
similar to that in equation (2) but with S[ϕ;h] = SB [ϕ]−∫
x

∑N
µ,ν=1 τ

µν(x)ϕµ(x)ϕν(x) with the random anisotropy
tensor τ sampled from a Gaussian distribution with
zero mean and variance τµν(x)τρσ(y) = (∆2/2)(δµρδνσ +
δµσδνρ)δ(d)(x−y). Such a random anisotropy O(N) model
[RAO(N)M] with N = 2 (XY ) and N = 3 (Heisenberg)
describes the critical physics of amorphous magnets such
as rare-earth compounds [157,158] and of nematic liq-
uid crystals in a disordered porous medium [159]. The
same FRG treatment developed for the RFO(N)M applies
here, i.e., both an approximate nonperturbative method
[102,103] and a perturbative analysis up to two loops
near d = 4 [105,106]. It allows for a full description of
dimensional-reduction breaking and of QLRO. Interest-
ingly, the RAO(N)M has also a nontrivial behavior with
putative “glassy” phases in the large N limit, and this is
accessible through an FRG treatment [160].

9 Conclusion

The functional renormalization group, in its nonpertur-
bative implementation complemented when possible by

perturbative analyses near the upper or the lower critical
dimension, provides a complete theoretical description of
the long-distance (and long-time) physics of the random-
field Ising and O(N) models. As such, it has helped to
solve most of the pending puzzles concerning random-
field systems. The strength of the approach are: (i) a
unified account of the whole domain of N , which can
be continuously varied from 1 (Ising) to ∞, and d,
which can be continuously varied from the lower to the
upper critical dimension; (ii) a description of singular
collective events, such as avalanches present at zero tem-
perature and droplets present at low temperature, through
proper functional dependences of the renormalized disor-
der cumulants; (iii) a nonperturbative treatment which,
e.g., gives access, even away from any perturbative regime,
to the nontrivial critical dimension dDR(N) below which
dimensional reduction and SUSY break down; (iv) pre-
dictions for the critical exponents (and scaling functions)
that are in very good agreement with computer simula-
tion results, when available, and that satisfy all expected
relations associated with scaling and known exact bounds;
(v) an easy implementation of all symmetries and super-
symmetries of the theory, as well as a framework to study
their possible spontaneous breaking; (vi) the formulation
of a systematic approximation scheme.

The nonperturbative FRG approach is also a versa-
tile method that can be applied to the study of other
disordered systems. This is for instance readily done for
models with with a random mass [98], random anisotropies
[102,103,160], for a disordered Bose fluid [161], and for
an elastic manifold in a random environment [162]. More
generally, this can be carried out for any disordered model
whose local order parameter is a simple field as magneti-
zation, density or displacement. The method can also be
used to investigate nonuniversal quantities: Starting from
a microscopic model defined on a lattice, one can gener-
alize the lattice nonperturbative RG of references [163] to
compute critical temperature and phase diagram, actual
length scales, etc. On the other hand, extension to the
problem of spin glasses is harder due to the compos-
ite nature of the local order parameter [96], which is an
overlap between two configurations of the system, and
remains, yet, to be satisfactorily implemented.
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