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Abstract. In this paper, we study the electronic properties of carbon nanocones with one and two nappes,
with pentagonal and heptagonal defects in their lattices. We use the continuum model, which is based
on a Dirac-like Hamiltonian with the topological defects described by localized non-Abelian gauge field
fluxes. We develop a geometrical approach that can describe the two nappes of the double cone surface
simultaneously, by extending the radial coordinate to the complete set of real numbers. We show that, for
some combinations of different nanocones, forming the double conical surface, the local density of states
near the apex of the cone does not vanish at the Fermi energy and presents a strong dependence on
the angular momentum. We also obtain the energy spectrum for finite-sized nanocones and verify that it
depends on the choice of topological defect on the surface, which suggests that a double nanocone can
be used to control the electronic transport in carbon-based electronic devices. Furthermore, we study the
effects of an uniform magnetic field parallel to the cone axis on its electronic states. The Landau Levels
are analytically obtained and a detailed analysis of the energy spectrum is done considering combinations
of the relevant quantum numbers. We find highly degenerated energy modes, as in the planar case, and
apical states dependent on the geometric parameters of the surface.

1 Introduction

Carbon nanomaterials have attracted a great deal of
attention in the last years due to their unusual physical
properties and the wide range of potential applications
[1]. The boom in the study of these materials occurred
after the discovery of fullerenes in 1985 [2] and car-
bon nanotubes in 1991 [3]. Since then, various carbon
nanomaterials have been obtained, such as nanocones [4],
graphene [5], nanoscrolls [6], onions [7] and nanotori [8].
In particular, carbon nanocones were first observed exper-
imentally in 1992 as endcaps of carbon nanotubes [9,10],
and in 1994 as free-standing structures [4,11]. Carbon
nanocones with cone angles of 19◦, 39◦, 60◦, 85◦ and 113◦

have already been observed [12]. The carbon nanocone is
a result of the introduction of a topological defect called
disclination in a planar graphene sheet, resulting from
the substitution of a hexagon by either a pentagon or a
heptagon in the graphene lattice.

The study of the electronic properties of carbon
nanocones revealed an enhancement in the local den-
sity of electronic states (LDoS) in the vicinity of the
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cone apex, which was obtained by first principles [13–15],
tight-binding [16–18] and continuum model [19,20] cal-
culations. This enhancement can be used in applications
of carbon nanocones in field emission [21] and scanning
probes [15], for instance. A carbon nanocone-based elec-
tronic rectification device was also proposed [22], and it
was demonstrated that carbon nanocones are excellent
thermal rectifiers [23], which makes them a promising
practical phononic device. Carbon nanocones have also
been suggested as cheaper and more easily produced alter-
native to carbon nanotubes for applications as gas storage
devices [24] and as capsules for drug delivery [25].

Another kind of conical structure that has been attract-
ing attention in the last few years is the double cone, where
two cones are connected by their apex. Theoretical stud-
ies indicate interesting properties like a high dependence
of the electronic states on the angular momentum of the
electrons, both for the classical and for non-relativistic
quantum dynamics problem [26]. In reference [27], it is
presented the relativistic quantum problem of a charged
particle restricted to a double cone with and without a
magnetic field. Even though these studies have shown
interesting properties for the double cone structure, the
literature for carbon double nanocones is still very scarce.
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In a computational simulation of carbon double nanocones
it was indicated that its experimental realization is
possible, since its formation energy is slightly lower than
the energy of a single cone [28]. These results motivated
us to explore other possible conical defects in carbon
structures and investigate their correspondent electronic
properties.

In this paper, we study the electronic properties of car-
bon nanocones for single and double conical surfaces. We
develop and use a continuum model to describe the double
conical surfaces, which is an extension of the continuum
model developed in reference [20] for nanocones with only
one nappe. Even though this model is limited to low-
energy electronic states near the Fermi energy, it is very
useful in long-distance physics, in which situation it is
difficult to deal with first-principles methods due to the
great number of atoms. The approach used here allows us
to explore many possible combinations of defects in the
nanocone with one or two nappes. We focus our attention
in pentagonal and heptagonal defects and verified that the
connection of two carbon nanocones by their vertexes, cre-
ating a double conical surface, brings up new electronic
properties that could be used in future applications.

The paper is organized as follows. In Section 2 we build
the continuum model for a double conical surface, based
on the effective Dirac equation for a graphene sheet, with
localized gauge fluxes which describe the defects needed
to create the nanocone. We solve the effective Dirac equa-
tion in Section 3, and investigate the LDoS and the energy
spectrum in Section 4, showing that it has a direct depen-
dence on the angular momentum and the kind of defects
that are present on the surface. The problem of a charged
particle in the presence of an azimuthal magnetic field is
solved in Section 5. We find the Landau levels and evalu-
ate the influence of relevant parameters on it. The paper
is summarized and concluded in Section 6.

2 The continuum model for a double carbon
nanocone

In this section, we will develop a continuum model to
describe a double carbon nanocone. The starting point
is the effective Dirac equation for low-energy states in
graphene. In this model, the lattice of the structure disap-
pears and the pentagons and heptagons in the structure
are included in the Dirac equation as localized fictitious
gauge fluxes. This model was first proposed in reference
[29] to investigate the electronic structure of fullerenes,
and has been widely used to describe carbon-based nanos-
tructures [19,30–32].

The low-energy electrons in graphene are modeled as
massless Dirac fermions obeying the effective equation

− i~vfσµ∂µΨ = EΨ, (1)

where vf is the Fermi velocity, E is the energy eigen-
value and the pseudospin operators σµ are the usual Pauli
matrices, which act on the spinor Ψ = (ΨA,ΨB)T . These
components are labeled with respect to the sub-lattices,
named A and B shown in Figure 1. Each component A

Fig. 1. In (a) we see the hexagonal structure of graphene built
by two triangular sublattices A and B. The lattice vectors
are a1 and a2. (b) is the correspondent Brillouin zone with
reciprocal-lattice vectors b1 and b2 in reciprocal space. The

Dirac points are localized at the points K and K
′
.

and B has two subcomponents related to two indepen-
dent points, K and K ′, in the first Brillouin zone (FBZ),
in reciprocal space. These are the points where the band
crosses the Fermi level. In other words, the low-energy
excitations are centered around these two points. Corner
points of the FBZ at 120deg from them are equivalent.
We notice an important covariance when the coordinate
frame (êµ, defined for K) is rotated counterclockwise
by θ. Under this rotation, the wavefunction is acted upon

by exp( iθσ
3

2 ), which preserves the Dirac Hamiltonian. We

observe the same behavior for K
′
, but the matching frame

is rotated by 180deg from the corresponding one at K. In
order to avoid this inconvenience, the K

′
frame is rotated

in order to coincide with the K frame. The dispersion
relation is the same in these two points, and this degree
of freedom is called K-spin [33]. The Pauli matrices acting
on the pseudospin and on the K-spin are labeled by σµ

and τµ, respectively.
In this paper, we focus our attention on graphene con-

ical surfaces with one and two nappes. The dynamics of
quantum particles on this kind of surface has been studied
in recent years due to its high dependence on the angular
momentum [26] and also to the possibility of experimental
realization [28].

While a single cone can be simply described in spher-
ical coordinates (r, θ, φ) by θ = const., the double cone
requires two values for θ. In order to work with this sur-
face, we modify the spherical coordinate system to keep a
constant θ as the double cone equation [27]. We do this by
extending the radial coordinate to the whole set of the real
numbers, as shown in Figure 2. The differential distance
vector in this case is given by

dr = dl êl + |l| sin θdφ êφ, (2)

where l ∈ R is the new radial coordinate. The square of
the line element is then

ds2 = dr.dr = dl2 + |l|2 α2dφ2, (3)

https://epjb.epj.org/
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Fig. 2. Coordinate system for a double cone surface.

where α = sin θ.
The tetrad formalism is specially useful [34–36] to deal

with the relation (3) and the Dirac equation (1). Using
the tetrad formalism, we introduce at each point a set
of locally inertial coordinates and a set of orthonor-
mal vectors, eaµ, fixing the transformation between the
local (Latin indexes) and the general (Greek indexes)
coordinates. These vectors are found by the relation
gµν(x) = eaµ(x)ebν(x)ηab, where gµν = diag(1, |l|2 α2) and
ηab = diag(1, 1). In our problem they are given by

eµa =

(
1 0
0 1

α|l|

)
. (4)

The σµ matrices in (1) are related with the flat space
matrices σa by σµ = eµaσ

a. Therefore

σl = σ1,

σφ =
σ2

α |l|
. (5)

In order to give the shape of a cone to the flat hexagon-
tiled surface of graphene one can substitute one of its
hexagons for a pentagon. This leads to the appearance
of a Aharonov-Bohm-like phase in the wavefunction of
quantum particles moving around it [37]. This effect can
be incorporated into the Hamiltonian of the continuum
model by the addition of two fictitious non-Abelian gauge
fields piercing the surface at the location of the pentagon.
The procedure is similar to the electromagnetic gauge
potential transformation used to compensate a change of
wave function phase in the Aharonov-Bohm effect [38]. In
the case described in this article a spinorial connection
is added to the covariant derivative. Thus, we introduce
the spin connection, Ωµ = − 1

8wµ,a,b[σ
a, σb], in the covari-

ant derivative ∇µ = ∂µ + Ωµ, where wµ,a,b is the spinorial

connection. This gauge field can be explicitly expressed as

Ωφ = − i
2
ασ3, (6)

where σ3 is the third Pauli matrix acting on the compo-
nents of the spinor related to the sublattices A and B.
The second gauge field introduced is the also non-Abelian
gauge field, for one and two defects [20], given by

aφ = −3

2

(α− 1)

α |l|
τ2, for one defect, (7)

and

aφ =
−3 (α− 1)

2α |l|

[
1− 2

3
(n−m)

]
τ3, (8)

for two defects.

We see in the relation (8), for two defects, a dependence
with n andm, which are the parametric coordinates (n,m)
of the defects’ centers in the graphene lattice, as defined
in [20].

The continuum model developed in this section allows
us to investigate the electronic properties of a variety of
graphene conical surfaces. In the next section, we use
this approach to solve the free particle problem in this
geometric approach.

3 Free particle problem

In this section, we solve the effective Dirac equation devel-
oped in the last section for the case of a free particle
constrained to a carbon conical surface. With this solu-
tion, we will be able to evaluate the influence of the
surface’s geometry on its electronic properties. We start
by writing the effective Dirac equation (1) including now
the non-Abelian gauge fields,[

σipi − i~σiΩi − ~σiai −
E

vf

]
ψ = 0. (9)

Choosing to work with the quadratic form of this equation,
we apply on it the operator[

σjpj − i~σjΩj − ~σjaj +
E

vf

]
(10)

and after some calculations, we get

pipiψ − 2i~Ωipiψ − 2~aipiψ − ~2ΩiΩiψ

+2i~2Ωiaiψ + ~2aiaiψ −
E2

v2f
= 0. (11)

Using the σµ matrices (5), the spinorial connection (6)
and considering that ai only has component in φ, we get

https://epjb.epj.org/
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− ∂
2

∂l2
ψ − 1

l

∂

∂l
ψ − 1

l2α2

∂2

∂φ2
ψ + i

σ3

αl2
∂

∂φ
ψ +

2iaφ
α |l|

∂

∂φ
ψ

− 1

4l2
ψ +

aφσ
3

|l|
ψ + aφ

2ψ − k2ψ = 0, (12)

where we defined

k2 =

(
E

~vf

)2

. (13)

The solutions of the above equation have the form

ψ(l, φ) = eijφψj(l), (14)

where ψj(l) is a function of the coordinate l only and the
angular momentum quantum number j is an integer plus
one-half.

We diagonalize equation (12) taking into account that
the only operators acting on the K spin are τ2 and τ3

from the gauge fields (7) and (8), respectively. Similarly,
the matrix σ3 that acts on the pseudospin is replaced by its
eigenvalue σ = ±1, where the plus (minus) sign is related
to the sub-lattice A (B). Equation (12) then becomes

− ∂
2

∂l2
ψj −

1

l

∂

∂l
ψj +

j2

l2α2
ψj −

jσ

αl2
ψj −

2jτa
′

φ

αl2
ψj

+
1

4l2
ψj +

a
′

φστ

l2
ψj +

a
′

φ

2

l2
ψj − k2ψj = 0, (15)

where τ = ±1,

a
′

φ = −3

2

(α− 1)

α
, for one defect, (16)

and

a
′

φ = −3

2

(α− 1)

α

[
1− 2

3
(n−m)

]
, (17)

for two defect,

in order to make explicit the radial coordinate (l) depen-
dence due to the gauge fields. We reorganize the terms in
equation (15) and rewrite it in the form

∂2

∂l2
ψj +

1

l

∂

∂l
ψj −

ν2

l2
ψj + k2ψj = 0, (18)

where

ν2 =

(
j

α
− τa

′

φ −
σ

2

)2

. (19)

Equation (18) is clearly a Bessel equation, whose solu-
tion is a combination of Bessel functions of first and
second kinds, respectively. Since we are including the ori-
gin (l = 0), we do not consider the Bessel function of

second kind because it diverges there. Thus the solution
is written as

ψj(l) = CJν(kl), (20)

where C is a normalization constant and Jν(kl) is the
Bessel function of first kind. It is important to notice that
the results obtained here reproduce the known results for
flat graphene and for the singly napped carbon nanocone
[19,20,39]. If we consider α = 1, the gauge fields (7) and
(8) vanish giving rise to a Bessel function of index j − 1

2 ,
as expected for the flat case.

At this point, we notice that the system of coordinates
used here has the advantage of allowing us to deal with
two single cones, joined by their apexes, in a unified form.
Since we have two single nanocones in the same structure,
we expect to reproduce the known results for a single car-
bon nanocone, but in a domain twice as large. This is
exactly what we obtain in this section. The solution is in
agreement with the known results for a single cone, but
now it is dependent on the extended radius l.

This unified system of coordinates brings us the possi-
bility of putting together different conical structures and,
in this way, combine their properties. In the next section
we will explore the electronic properties of some of these
combinations.

4 Electronic properties

The model developed in this article allows us to study a
variety of conical surfaces. The first parameter that gives
us freedom to model different deformed surfaces is the
parameter α which appears in the metric (3) and is given
by

α = 1 +
λ

2π
, (21)

where λ is the angle of the inserted (λ > 0) or removed
(λ < 0) slice from the flat graphene lattice in order to
make the cone, in the procedure known as the Volterra
process [40].

The hexagonal symmetry of the graphene sheet requires
that λ be a multiple of π

3 . Moreover, square or octagonal
defects are rare to occur due to the high deformation they
promote and consequently due to their high formation
energy [20]. Therefore, we consider here only pentagonal
(λ = −π3 ) and heptagonal (λ = π

3 ) defects.
Another possibility, is to consider two defects in the

same structure. The gauge field (8) gives the influence of
the defects in terms of their parametric coordinates (n,m).
It is known that the effects of topological defects in a
graphene surface are dependent on the relative position of
the defects. This sensitivity can be classified by a n −m
combination rule [20]. Two classes of defects are sorted
depending whether n −m is a multiple of three or not.
We choose one example of each class. For the class n 6≡
m(mod3), we choose the structure (1,1). For the class n ≡
m(mod3), we choose the structure (2,0). So, we consider
here six different cones, three with pentagonal and three

https://epjb.epj.org/
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Fig. 3. Conical defects on a graphene surface. (a), (b) and (c)
are pentagonal defects, wherein (b) has parametric coordinate
(1,1) and (c) (2,0). Structures (d), (e) and (f) have heptagonal
defects, wherein (e) has parametric coordinate (1,1) and (f),
(2,0).

Table 1. Values of α and a
′

φ,i for the different structures
with pentagonal and heptagonal defects, as illustrated in
Figure 3. Also the values of ν0, which are the values of ν
that minimize 2ν + 1 on the given class of the cone.

Type of defect α a
′
φ ν0

1 pentagon 5/6 3/10 −1/5
2 pentagons (1,1) (n 6≡ m(mod3)) 2/3 1/4 0
2 pentagons (2,0) (n ≡ m(mod3)) 2/3 3/4 −1/2
1 heptagon 7/6 −3/4 −2/7
2 heptagons (1,1) (n 6≡ m(mod3)) 4/3 −1/8 −1/4
2 heptagons (2,0) (n ≡ m(mod3)) 4/3 −3/8 −1/2

with heptagonal defects, which are shown in Figure 3. The
values of the parameters α and a

′

φ for each cone considered
here are given in Table 2. The double conical surfaces
that we consider are combinations of the cones shown in
Figure 3. The combinations with the same cone in each
nappe is shown in Figure 4.

4.1 Local density of states

One important quantity to characterize the electronic and
transport properties of a solid is the density of states
(DoS). It gives us information about the number of states

Fig. 4. Double conical surfaces built by juxtaposition of the
surfaces shown in Figure 3.

available to be occupied per interval of energy at each
energy level. Thus, it shows us the conducting charac-
teristics of the material, if it is a metal, insulator or
semiconductor.

Since we are focusing our attention in surfaces with
conical defects, which, in the continuum limit, present sin-
gular curvature, we will look more carefully to the local
density of states (LDoS) near the apex of the surface.
As pointed out in reference [20], the LDoS in the con-
tinuum theory can be written, by dimensional analysis,
for a conical structure as

dn

dE

∣∣∣∣
l

=
f2(|k| l)
π~vf l

, (22)

where f2(|k| l) is the scale function

f2(|k| l) =
kl

2α

|kl|2ν0

22ν0Γ(ν0 + 1)2
. (23)

As k is proportional to the energy E (see Eq. (13)), the

LDoS will be proportional to |E|2ν0+1
, where ν0 is the

value of ν that minimizes 2ν + 1 on the given cone class.
For a given class, the allowed values of ν (19) will depend
on the parameters j, τ and σ. The combination of these
parameters that minimizes ν, defines ν0. The values of ν0
for all cones considered here are in Table 2.

https://epjb.epj.org/
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Fig. 5. Schematic diagram for the density of states near the apex of the cone, according to equations (22) and (23). We plot
the LDoS for cones with pentagonal defects in (a), (c) and (e), where (a) is for single nappe structures, (c) for two identical
nappes and (e) for the combination of different nappes with the structure (2,0). We follow the same sequence for heptagonal
structures in (b), (d) and (f).

The LDoS in terms of the energy is plotted in Figure 5.
We consider structures with pentagonal and heptagonal
defects, in single and double carbon nanoconical surfaces,
combining different defected structures. It is important to
mention that, for all the cones considered here, the val-
ues of the angular momentum quantum number j that
minimizes 2ν0 + 1 is always ±1/2, which are the states
with zero orbital angular momentum. This is due to the
fact that we are looking at the LDoS near the cone’s
apex, and these states are more concentrated in this
region.

The LDoS for cones of a single nappe with pentag-
onal and heptagonal topological defects are plotted in
Figures 5a and 5b, respectively. As can be seen, the LDoS
shows a direct dependence with the type of defect on the
surface. In Figure 5a we reproduce the results obtained in
reference [20], which shows that the cone with (1,1) pen-
tagonal defect has the same linear LDoS near the Fermi
energy as planar graphene, while in the structure (2,0)
the LDoS is nearly flat and nonzero at the Fermi energy.

As can be seen in Figure 5b, for the case of heptagonal
topological defects, the flattening of the LDoS near the
Fermi energy for the structure (2,0) also occurs, but the
linear LDoS of planar graphene is not reproduced by any
of the cones. The enhancement of the LDoS observed
in the structure (2,0) occurs because the wave function
becomes more strongly concentrated at the apex as 2ν+ 1
decreases. The class that presents the minimum of 2ν + 1,
when we compare ν0 for all classes, is n ≡ m(mod3).
We are studying as example of this class, the structure

(2,0). In this structure α = 2/3 and a
′

φ = 3/4, this leads

to ν0 = −1/2, and as consequence 2ν0 + 1 = 0. The
same happens for the structure (2,0) with two heptagonal

defects, where α = 4/3 and a
′

φ = −3/8. In these cases, the

topological defects maintain the conducting characteristic
(i.e. semimetal) of the structure.

The LDoS of the cones with two nappes are plotted in
Figures 5c–5f. In Figures 5c and 5d we consider the cones
with the same topological defect in each nappe. The LDoS

https://epjb.epj.org/
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Table 2. Quantum states with respective energies of a
particle in the double cone, under an external magnetic
field. We considered Q = −1 and b = +1.

σ j
α

τ η E2/2(e |B0| ~vf )

+1 ≥ a
′
φ + 1

2
+1 +1 n

+1 ≥ a
′
φ + 1

2
+1 −1 n+ 1

2
+ j

α
− a

′
φ

−1 ≥ a
′
φ − 1

2
+1 +1 n+ 1

−1 ≥ a
′
φ − 1

2
+1 −1 n+ 1

2
+ j

α
− a

′
φ

+1 < −a
′
φ + 1

2
−1 +1 n+ 1

2
+ |j|

α
− a

′
φ

+1 < −a
′
φ + 1

2
−1 −1 n+ 1

−1 < −a
′
φ − 1

2
−1 +1 n+ 1

2
+ |j|

α
− a

′
φ

−1 < −a
′
φ − 1

2
−1 −1 n

in this case does not change its behavior, and the result is
just the double of the single nappe structure, as expected.
A more interesting result comes when the double cone
is the combination of two nappes with different defects
in the structure, as illustrated in Figures 5e and 5f. In
this case, the LDoS is the combination of the behavior of
the two different nappes. We choose as example, combi-
nations where at least one nappe is a (2,0) structure. As
a result, the (2,0) structure leads to a nonzero LDoS at
the Fermi energy, and therefore metallic behavior, in all
cases.

4.2 Energy spectrum: finite nanocones

If we consider finite cones with size l = L, the wave func-
tion for l ≥ L is equal to zero. So, the boundary condition
at the edge of the cone is given by

ψj(L) = CJν(kL) = 0. (24)

Then, the argument of the above Bessel function, kL,
has to be a zero of this function. This gives rise to a
discrete energy spectrum given by

En,j = jν,n
~vF
L

(25)

where jν,n is the nth zero of the Bessel function of
order ν.

In Figure 6 we plot the energy spectra for the finite case
of the conical surfaces studied in the previous section. We
consider spectra corresponding to the lowest value of j,
which gives a wave function that is more concentrated
in the cone apex. For this case, ν = ν0. It is possible
to see that the energy spectrum of the cone depends
on the topological defects present on the surface, even
though different cones may have the same energy spec-
trum, as for the case of two pentagons and two heptagons
n = m(mod3). We remark that the size of the cone, L,
can be used to control the interval between subsequent
allowed values of energy.

For the case of a double conical surface we have two
values for L, one for each cone. Since the energy spec-
trum depends on L and on the topological defect in the

Fig. 6. The energy spectrum for the pentagonal and heptag-
onal finite conical surfaces considered here. For all the cases,
we consider L = 50 nm, vF = 106 m/s and ν = ν0.

cone, there are many possible combinations of cones with
the most varied energy spectra. Thus, one can choose
two specific cones in a double conical surface in order to
control the electronic transport from one to the other.
From the classical point of view, the two cones are con-
nected only by the states with zero angular momentum.
In the quantum regime, the lowest angular momentum
states are more concentrated in the cones’ junction/apex,
so they will have a higher probability to move between the
cones.

Therefore, an structure with two cones allows us to
explore the energy spectrum for a combination of dif-
ferent defects and sizes, for each nappe. Besides that,
it is interesting to include an external field that breaks
the symmetry between the nappes. We do that in the
next section evaluating the Landau levels for an azimuthal
magnetic field.

5 Landau levels

In this section, we study the effects of an azimuthal mag-
netic field, B = B0êz, applied on the carbon double cone
surface and how the surface’s curvature affects the Landau
levels. As we are introducing a magnetic field in the model,
we insert a minimal coupling of the vector potential Aµ
in the effective equation (9) and obtain[

σipi − i~σiΩi − ~σiai +
eQ

vf
σiAi −

E

vf

]
ψ = 0, (26)

where e is the electron charge in absolute value and
Q = ±1 according to the kind of particle, being +1 for
holes and −1 for electrons. To obtain the quadratic form
of the Dirac equation (26), we apply on it the operator[

σjpj − i~σjΩj − ~σjaj +
eQ

vf
σjAj +

E

vf

]
(27)

https://epjb.epj.org/
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and thus, we find

pipiψ − 2i~Ωipiψ − 2~aipiψ + 2
eQ

vf
Aipiψ

−~2ΩiΩiψ + 2i~2Ωiaiψ − 2i~
eQ

vf
AiΩiψ + ~2aiaiψ

−2~
eQ

vf
aiAiψ +

e2

v2f
AiAiψ + is

eQ

vf
piAjεijkσ

kψ

−E
2

v2f
= 0. (28)

In order to solve this equation we use the σµ matrices
(5), the spinorial connection (6) and choose the vector
potential Aµ in a gauge such that

A =
B0l

2
φ̂. (29)

As we did in Section 3, we diagonalize the differential
equation (28), considering that the only operators acting
in the K-spin are τµ from the gauge fields (7) and (8),
which have eigenvalues τ = +1(−1), related to the pseu-

dospin K(K
′
). Similarly, the matrix σ3 that acts on the

pseudospin is replaced by the eigenvalue σ = ±1, where
the plus (minus) sign is related to the sublattice A (B).
As result, we get

− ∂
2

∂l2
ψ − 1

l

∂

∂l
ψ − 1

l2α2

∂2

∂φ2
ψ + i

σ3

αl2
∂

∂φ
ψ

+
2iτa

′

φ

αl2
∂

∂φ
ψ − ieQηB0

α~vf
∂

∂φ
ψ −

(
− i

2
α
σ3

α |l|

)2

ψ

+
τa

′

φσ
3

l2
ψ − eQηB0σ

3

2~vf
ψ +

a
′

φ

2

l2
ψ −

eτηQa
′

φB0

~c
ψ

+
e2

~2v2f

(
B0l

2

)2

ψ +
eQ

~vf
σ3B0ψ − k2ψ = 0, (30)

where k = E
~vf and we defined a new parameter η that

gives information on which nappe the particle is. This
parameter is defined as

η =
l

|l |
=

{
+1, for l ≥ 0
−1, for l < 0

. (31)

Also, we redefined the gauge fields (7) and (8) as

a
′

φ,1 = −3

2

(α− 1)

α
(32)

and

a
′

φ,2 = −3

2

(α− 1)

α

[
1− 2

3
(n−m)

]
, (33)

in order the make explicit the dependence in |l|.

To solve equation (30), we use the separable solution
(14). After some calculations, we get

∂2

∂l2
ψj+

1

l

∂

∂l
ψj −

1

l2
M2ψj +Kψj

−
(
eB0

2~vf

)2

l2ψj = 0, (34)

where

M2 =

[
j

α
− τa

′

φ −
σ

2

]2
, (35)

N =

[
j

α
− τa

′

φ +
σ

2

]
(36)

and

K =
eQηB0

~vf
N +

E2

~2v2f
. (37)

We simplify equation (34) performing the change of vari-

ables ζ =
(
e|B0|
2~vf

)
l2. With the new coordinate ζ, we write

this expression as

d2

dζ2
ψj +

1

ζ

d

dζ
ψj −

M2

4ζ2
ψj +

K
′

ζ
ψj −

1

4
ψj = 0, (38)

where we redefined the parameter K as

K
′

=
~vf

2e |B0|
K. (39)

A common strategy to solve this kind of equation is to
propose a solution looking at its behavior in the asymp-
totic limits l → ±∞ and l → 0. Using this strategy, we
propose the solution

ψj = e−
ζ
2 ζ

|M|
2 F (ζ), (40)

and replace it into equation (38). The resulting differential
equation is given by

ζ
d2

dζ2
F (ζ) + (|M |+ 1− ζ)

d

dζ
F (ζ)

+

(
K

′

A −
|M |+ 1

2

)
F (ζ) = 0. (41)

This equation is known as the confluent hypergeometric
equation and F (ζ) is a confluent hypergeometric function

that can be expressed as F
(
|M |+1

2 −K ′
, |M |+ 1; ζ

)
. The

energy spectrum is obtained if we remember that physi-
cally acceptable solutions need to be normalizable. In the
case of the solution (41), we need to truncate the hyper-
geometric series. This condition lead us to impose that
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−n =
(
−K ′

+ |M |+1
2

)
, where n = 0, 1, 2, . . . From this

condition, we obtain the energy spectrum

E2 = 2e~vf |B0|
{
n+

1

2
+

1

2

∣∣∣∣ jα − τa′

φ −
σ

2

∣∣∣∣
+
Qηb

2

[
j

α
− τa

′

φ +
σ

2

]}
. (42)

A new parameter, b, was included to express the sign
of the magnetic field. It value +1(−1) for a magnetic field
pointing in the positive (negative) direction of the z axis.
As expected from the classical problem of a charged parti-
cle in presence of a magnetic field, simultaneous inversion
of the signal of the charged particle (Q) and the direction
of the magnetic field (b) represents the same problem.

Many parameters influence the energy spectrum behav-
ior. For a better analysis of these parameters, we list in
Table 2 the combination of σ, j

α , τ and η. A ‘reflection’
symmetry is noticed when we simultaneously invert the
signs of the parameters, this inversion leaves the spectrum
unchanged.

It is expected for a good model that the obtained
results are in agreement with known simpler cases. Thus,
it is worthwhile to compare our results with the well
known cases of planar graphene [33] and the simple car-
bon nanocone [19]. When we assume α = +1, we model
planar graphene in our approach. Taking α as 1 turns
the gauge fields (32) and (33) to zero and reproduce the
known Landau levels for a planar graphene lattice. The
correspondence between the simple and double carbon
nanocone case is clarified when we look to the term η
in equation (42). The simple cone cases is directly repro-
duced when we assume η = +1, i.e, when we look for the
upper nappe. In the bottom nappe (η = −1), the mag-
netic field points in the direction of the apex of the cone,
case analogous to the single cone with magnetic field oppo-
site to êz. Therefore, the negative term introduced by η in
the bottom nappe expresses the difference in the direction
of the magnetic field in relation to the orientation of the
cone.

With the help of Table 2, we can classify the energy lev-
els in two groups. The first group consist of the levels that
also occur in planar graphene, they are called bulk levels
and are related to classical orbits that do not encircle the
apex in a semiclassical approach. These states appears in

cases where E2

2(e|B0|~vf ) = n or n+ 1, these two states are

infinitely degenerate and represent the same Landau lev-
els, except the states for n = 0 that present half of the
degeneracy and allow zero modes states. States depen-
dent on the gauge field form a second group of solutions,
called apical levels. These levels occur at distinct energies,
form the bulk levels and appear in Table 2 in the states

E2

2(e|B0|~vf ) = n+ 1
2 + |j|

α − a
′

φ. They are called apical lev-

els because they are related to classical orbits that encircle
the apex.

The apical levels depend on the parameter α. This
parameter gives a measure of the opening angle of the
conical surface. For pentagonal cones it assumes values in
the interval 0 < α < 1 and for heptagonal cones α > 1.

For a charged particle on a double conical continuum sur-
face, this parameter acts making the states larger than the
corresponding ones in the planar case (α = 1) [27]. In our
problem, the graphene lattice is treated in a continuum
model by the insertion of a gauge field a

′

φ, which depends
on α. The presence of the gauge field inserts a new depen-
dence on α. As result, for a pentagonal cones, the energy

levels become larger for j >
ταa

′
φ

1−α , or smaller for j <
ταa

′
φ

1−α
than the planar correspondents. For heptagonal cones the
behavior is the opposite. In Figure 7, we plot the landau

levels for values of j in the range j >
ταa

′
φ

1−α . We can see
the enlargement of the states for pentagonal cones and the
narrowing of the states for heptagonal cones.

The introduction of the parameter η in (31) brings us
the advantage of simplifying the calculation and allows
us to evaluate the influence of the magnetic field on each
nappe, according to Table 2. We see that the magnetic
field introduces a break of symmetry between the nappes.
The Landau levels for double cone surfaces appear alter-
nately as bulk and apical states. If an apical level is
presented in one nappe for some condition, a bulk level
will be noticed for the other nappe in the same condition.
In Figure 7, we plot some bulk levels for the planar case,
we also plot apical and bulk levels for pentagonal and hep-
tagonal nanocones with one and two nappes. The planar
case only presents bulk levels. When we introduce curva-
ture in the structure, in the single nappe cases, the apical
levels appear. If we consider two nappes, the second nappe
will introduce other bulk levels to the spectrum, since we
consider apical levels for the first nappe. The opposite sit-
uation also happens if we considered bulk levels for the
first nappe (chossing j

α ≥ a
′

φ − 1
2 , for instance). In this

case, apical levels appear in the second nappe.

6 Concluding remarks

The study of double carbon nanocone’s electronic proper-
ties is the purpose of this work. In the continuum model,
the nanocones electronic properties are modeled by an
effective Dirac equation with the topological defects in the
lattice represented by localized gauge fluxes. Each kind of
defect is represented by a specific gauge field and multiple
defects can be combined in a different net flux. This free-
dom allows us to explore a variety of defected surfaces,
namely, nanocones with one and two pentagons or hep-
tagons in the structure. We use a geometrical approach
that makes possible to describe the two cones simultane-
ously. This approach extends the radial coordinate to the
whole set of real numbers.

The LDoS for different combinations of nanocones in
the double conical structure is investigated. It is shown
that the class of nanocones with two defects and paramet-
ric coordinates n ≡ m(mod3) leads to an enhancement of
the apical wave function concentration, resulting in a non-
vanishing LDoS at the Fermi energy. We also obtain the
energy spectra for finite nanocones, which depends both
on their size and on the topological defects on the cone.
So, the combination of two nanocones in a double conical
surface with suitable topological defects can be used, for
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Fig. 7. Landau levels for conical surfaces with σ = Q = η = −1 and |B0| = b = +1. Bulk levels are represented by green color
and apical levels by purple color. We plot the energy levels for values of n = 1, 2, 3, 4, 5, with j = − 5

2
. In (a), we plot the bulk

levels for the graphene planar case. Conical surfaces with pentagonal defects are plotted in (b) and (c), being (b) the single
nappe case and (c) the double nappe case. Heptagonal defects are plotted in (d) and (e), being (d) the single nappe case and
(e) the double nappe case. We considered ~ = 6582× 10−16 eV s, vf = 106 m/s.

instance, to control the electronic transport from one cone
to the other.

Landau levels were also investigated. We obtained
highly degenerate levels like in planar graphene under a
magnetic field (bulk levels) besides the levels dependent
on the geometry of the surface via the gauge fields. The
magnetic field produces a break of symmetry introducing
alternating bulk and apical levels for each nappe of the
conical surface.

Finally, we remark that, although the results obtained
for the double cone are indistinguishable from the case of
two separate single cones, they provide a starting point
for the study of more realistic models. For instance, con-
sideration of self-adjoint boundary conditions [41,42] at
the common apex of the two cones might bring about

localized states which could provide a bridge between the
two nappes, making it possible for electrons to transit
between them. Even though reference [41] addressed the
dynamics of Schrödinger particles in a cone, and its anal-
ysis should be redone for the Dirac case, it is reasonable
to assume that some overall features will survive, like the
possibility of having bound states on the apex, for exam-
ple. We recall that the cone angle θ appears both in [41]
and in the present paper as the parameter α = sin θ. Also,
for two cones joined by a pentagon, α < 1. If the connec-
tion is done by a heptagon, α > 1. The main result of
reference [41] states that, while for α < 1 there is a sin-
gle bound state with zero angular momentum, for α > 1
there might be multiple bound states, both with zero and
nonzero angular momenta, depending on the value of α.
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If this holds true for Dirac particles, the apex may act
as a filter between the nappes for particles with selected
angular momenta. Furthermore, the real carbon structure,
being discrete, has the two cones joined by a pentagon or
heptagon, not a point. Therefore, a more realistic con-
tinuum model could be a one-sheeted hyperboloid with a
very narrow waist. We expect to explore these points in
forthcoming publications.
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