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Abstract. Many diseases, such as influenza and the common cold, cause recurrent epidemics. The classical
SIRS model fails to obtain recurrent epidemics as it predicts a globally stable endemic fixed point. This
endemic fixed point is, however, linearly unstable for most parameters, if one assumes that the time spent
in the recovered state is deterministic rather than exponentially distributed. In that case all trajectories
converge to a stable epidemic limit cycle. It has been shown that a similar region of instability exists for
systems with intermediate immune time distributions. Furthermore, it has been suggested that a bistable
region could exist. Here, we first characterize this bistable region using a combination of direct simulation
and bifurcation theory. We find that it has a bound where the stable epidemic limit cycle annihilates
with an unstable limit cycle in a non-local bifurcation. Secondly, we extend the bifurcation-analysis to
narrower immune time distributions than previous studies. Here, we find new levels of complexity in the
bifurcation diagram, including the possibility for at least two different epidemic limit cycles at the same
disease parameters. Overall our study highlights that a given disease may have multiple epidemic signatures,
dependent on how it is introduced.

1 Introduction

Models of spreading of infectious diseases [1–3] are an inte-
grated and important element in the analysis of epidemics.
Typically such models are variations of the so called
SIR-models [1]; describing a population of hosts who can
each be in one of the three states Susceptible, Infectious,
or Recovered. For a number of diseases, like most respi-
ratory viral infections, the immunity following infections
is neither complete nor permanent. This is modeled by
allowing hosts to escape from the recovered (or immune)
R-state and back to the susceptible S-state. It has been
shown that in the simplest case, when the infection-rate
is linear with the number of infectious host and the other
transitions happen with constant rate, the thereby defined
SIRS model has two fixed-points, one endemic and one
disease-free, and that one will always be globally sta-
ble [4]. This is in disagreement with the observation of
periodic epidemic out-breaks of for example influenza. A
number of mechanisms have been proposed to reproduce
the observation of repeated epidemic oscillations. These
include time dependent, oscillating parameters [5,6],
non-linear infection rates [7], infection networks [8–11],
finite population noise [12,13], and narrow transition-
time distributions [14–18]. This paper focus on the latter,
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by analyzing the SIRnS-model originally proposed by
Hethcote et al. [19] (Fig. 1). In this model the narrow
immune-time distribution is achieved by replacing the
R-state with a sequence of n states, each with constant
transition-rates. The advantage of this approach is that
the variance of the distribution can be easily varied – as
it goes as 1/n – while still using only ordinary differential
equations.

Previous examinations of the model have focused on
fixed-points and their stability [19,20], and local bifurca-
tion theory has been used to demonstrate the existence
of limit-cycles [19]. Here we extend these investiga-
tions by direct numerical integration, which allows us to
learn more about the periodic solutions than their mere
existence.

In particular, we investigate the shape of the parame-
ter region where there exist multiple metastable states –
a stable limit-cycle and a stable endemic fixed-point. This
was proposed in Hethcote et al. [19] but not quantita-
tively analyzed. Further, when extending our analysis to
much narrower immunity-time distributions we discover
an increasingly complex structure of the local bifurcation-
scheme for the endemic fixed-point. Accordingly, we find
that the same disease can exhibit different types of epi-
demic behavior dependent on initial conditions. This exis-
tence of multiple alternate limit-cycles, may be graphically
interpreted as ‘epidemic overtones’.
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Fig. 1. Schematic description of the SIRnS-model. The total
duration of the removed (immune state) is τ = 1/γ is split into
n substates. The black arrows represent the state transitions of
individual agents. The green arrow indicates that the transition
S → I happens with a rate that is proportional to the number
of infected hosts (I).

2 Model

We consider spreading of diseases in a well mixed
population of hosts that each can be Susceptible, Infec-
tious or Resistant. Further, we assume that hosts can
change cyclically between the states, S → I → R→ S and
thus again become susceptible after some period in the
resistant state. The transition S → I occurs with a rate
proportional to the infectious fraction of the population, I,
and the transition I → R happens with constant rate. Our
objective is to analyze how the epidemic pattern behav-
ior depends on the probability-distribution of the time
spent in the resistant state. As was already discussed by
Hethcote et al. [19], there is a class of time-distributions
which can be rephrased into ordinary differential equa-
tions, namely the ones that can be reproduced by a chain
of n sub-steps:

dS

dt
= −β · I · S + nγRn (1)

dI

dt
= β · I · S − α · I (2)

dR1

dt
= α · I − nγR1 (3)

dRi
dt

= nγRi−1 − nγRi for i = 2, 3, . . . , n (4)

1 = S + I +
n∑
i=1

Ri. (5)

The average time a host spends in the infectious state is
1/α. In the following we will use this as the time-unit by
setting α = 1.

We call this the SIRnS model. For n = 1 the distribution
of immune times for individual hosts is exponential. Thus
in an agent based implementation of the n = 1 model,
each individual will switch from resistant to susceptible
state at a time t that is distributed as P (t) = γ exp(−γt).
This is unrealistic since it implies that individuals can
loose the gained immunity/resistance immediately after
recovering after they have recovered from the infection.
The distribution of the time it takes to pass through a
chain of n states, each with a constant transition-rate

nγ, is obtained by calculating the n-fold convolution of
exponential distributions:

P (t) =
(n · γ · t · e−γt)n

t · (n− 1)!
, (6)

which has the mean value 〈t〉 = τ = 1
γ (independent

of the number of states) and the standard-deviation
σt = 1

γ
√
n

= τ√
n

. From this we see that splitting the

removed state into a longer chain, results in a more nar-
row time distribution. In the limit n→∞ the distribution
will converge to a delta-distribution, corresponding to a
deterministic delay. In this case the model reduces to a set
of delay differential equations that have been extensively
studied before [7,15,16,21].

The basic reproduction number for the disease,
R0 = β/α, quantifies the capacity of the disease to spread
in a completely susceptible population. From equation (2)
it is easy to see, that if R0 < 1 then the growth rate of
the fraction of infectious hosts is negative even in a com-
pletely susceptible population S = 1. Hence our analysis
will only be of interest for R0 > 1, corresponding to cases
for which either repeated epidemics or an endemic state
are possible. As we will see later, rich epidemic behavior is
only possible if R0 is not too large, i.e. alternative states of
epidemic dynamics are only seen for moderate R0 values.

2.1 Parameter summary

The above set of equations can be fully characterized by
3 parameters, the basic reproduction number R0 = β/α,
the average duration of the resistant state τ = 1/γ, and
the number of states in the resistant state chain n, which
determines the width of the duration distribution.

3 Methods

This paper presents a sequence of results concerning the
coexistence of linearly stable attractors in the SIRnS-
model.

First we use a Gillespie simulation to illustrate how
finite system noise can result in stochastic switching
between metastable attractors (Fig. 2). In this case the
two attractors are an endemic fixed point and an epidemic
limit-cycle.

The main part of the results, however, are about the
deterministic system arising in the thermodynamic limit
of infinitely many hosts. As long as the basic reproduc-
tion number, R0, is greater than one, this system always
has a single endemic fixed-point, which can be calculated
analytically [19]. The stability of this fixed-point can be
determined by the linearizing the dynamics around it, and
inspecting the eigenvalues of the corresponding matrix.
When any of these eigenvalues has a real part greater
than zero, the fixed-point in unstable. The linear sta-
bility results presented in this paper are found by first
calculating the matrix of the linearized dynamics analyti-
cally, following the same procedure presented by Hethcote
et al. [19], and then numerically calculating its eigenvalues
point-wise (in parameter space).
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Fig. 2. The SIRnS-model can exhibit bi-stability and can then
switch between alternate attractors of epidemic behaviour.
This is here demonstrated in an agent based model with
1 million hosts, n = 9, α = 1, β = 1.6 and γ = 1/100. The
update is done by a Gillespie type algorithm [22] in which
each agent i is assigned a time for next transition ∆ti =
− ln(randi)/ratei with ratei as the corresponding transition
rate from equations (1)–(4) and randi ∈ [0, 1) is drawn from a
uniform random distribution. The first update is chosen, and
procedure repeated. To prevent extinction, a small external
source of infection is added, corresponding to one constantly
infectious host. The figure shows percentage of infectious hosts
as a function of time. The inserts show examples of the
behaviour at each of the attractors.

In order to investigate the non-local bifurcations, we
rely on numerical integration of the differential equations
using the Euler method. In general the stable endemic
limit-cycle with the largest amplitude is the attractor
reached by the dynamics when initializing the system
in a state where the entire population is infectious.
This is the method behind the parameter-scan shown in
Figure 3, where such a simulation is performed for each
pixel.

In the case where we both detect a stable endemic limit-
cycle and the local linear stability analysis show that the
endemic fixed-point is stable, we search for an unstable
limit-cycle using the following approach: first we analyti-
cally calculate the endemic fixed point, x0, and choose any
point, x1, which is located on the epidemic limit cycle. We
then initiate the system at different points on a straight
line between the x0 and x1, defined by (1− a) · x0 + a · x1
with a ∈ (0, 1). We use bisection to search for a critical
value, a∗, such that trajectories starting at points with
a < a∗ will converge to the endemic fixed-point, while
those with a > a∗ converge to the epidemic limit-cycle.
When trajectories are initiated very close the critical
point, we observe extremely long transients. The major
part of such a transient is spent in an almost periodic (but
unstable) orbit. We plot these transient trajectories as the
unstable limit-cycle when we have found initial-conditions
close enough to the critical point, that they can complete
multiple epidemic outbreaks (orbits) with variations small
enough to be invisible to the human eye.

In some cases the local linear stability-analysis indicates
the coexistence of two stable epidemic limit-cycles. If the
endemic fixed-point is unstable, the limit-cycle with the
smallest amplitude can be found as the attractor of tra-
jectories initiated very closed to that. To find the small
stable limit-cycles for parameters where the endemic fixed-
point is linearly stable (such as in Fig. 4c) we first find the
small limit-cycle for a near-by parameter point where the
endemic fixed-point is unstable, and then continue run-
ning the dynamics while slowly changing the parameters
to the desired point.

For the numerical integrations we have chosen the sim-
plest possible option, namely the Euler-method. This
method is sometimes criticized for its poor error propaga-
tion properties which may cause instability, especially in
marginally stable systems. For linearly stable trajectories,
however, the dynamics are automatically correcting errors
as long as they are small enough to stay within the basin
of attraction. Therefore we have prioritized simplicity over
better error convergence rates.

All figures are produced using a timestep of ∆t = 0.001
(in units of the mean susceptibility time). To verify that
this choice is small enough, we have compared some our
results with simulations with both smaller and larger
timesteps. We find that the orbits are indistinguishable
by visual inspection when the timesteps are a factor ten
smaller, and that the qualitative behaviors are robust even
when the timesteps are a factor ten larger.

4 Results

First let us consider the SIRnS model with a typical set of
realistic parameters. We choose a transmission rate char-
acterized by R0 = 1.6 and a resistance period τ = 100
with a relative spread between individuals of one third
(n = 9). Such conditions may lead to both endemic and
epidemic behaviour. Thus both behaviours can be seen
with the same set of parameters (n, R0, and γ). As
Figure 2 illustrates, the noise introduced by simulating
a finite population size (1 million hosts) allows for tran-
sitions between a linearly stable epidemic limit-cycle and
a linearly stable endemic fixed-point. Below we present a
systematic analysis of alternating dynamical behaviour in
the SIRnS model as the parameters are varied.

For n ∈ {1, 2} and R0 > 1 it can be been shown that
the endemic fixed-point is globally stable [23,24].

When n ≥ 3 the parameter space has a region of linear
instability of the endemic fixed-point as described by [19].
As long as n is relatively small, this region of instability
corresponds to one pair of eigenvalues, of the linearized
dynamics matrix (expanded around the endemic fixed-
point), having a positive real part. The bifurcation scheme
is indicated in Figure 3 in the case of n = 9 (correspond-
ing to a relative standard deviation of 1/3 of the time
spend in the recovered state chain): the dashed black line
indicate the local bifurcation of the endemic fixed-point,
and bounds the region of linear instability. Consider a
gradual increase of R0 for a given high value of τ >> 1.
For R0 that slightly exceeds 1, the endemic fixed point
becomes unstable. At this transition a stable limit cycle
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Fig. 3. (b) Parameter scan of maximum to minimum ratio
of infected hosts, during epidemic cycles epidemic cycle. The
black, dashed line encloses a region where the endemic fixed-
point is linearly unstable, see also [19]. The black crosses mark
the parameters for the top and bottom figure. The parameter-
scan is performed in an SIRnS-model with n = 9 resistant
states. (a) and (c) Stable epidemic limit-cycle [blue, outer]
and the unstable limit-cycle [red, inner] at parameters marked
in the middle-figure (R0 = 1.6 in (a) and R0 = 2.025 in (c);
τ = 100 in both). Notice I is shown on one axis whereas
log10(I) is shown on another axis. This allows us to track the
dynamics at extremely low values of I.

corresponding to recurrent epidemics emerges, shown as
the blue (outer) orbit in Figures 3a and 3c. At higher R0

(∼ 1.5) the endemic fixed-point becomes stable again, by
emitting an unstable limit-cycle. This unstable limit cycle,
shown as the red (inner) curve in Figures 3a and 3c, sep-
arates two alternative types of dynamics of the disease.
Accordingly, a bistable regime of the SIRnS-model occurs
when the endemic fixed-point undergoes a sub-critical
Hopf-bifurcation, ‘emitting an unstable limit-cycle’. This
bi-stability was suggested in [19], but no explicit orbits

were shown. Increasing the value of R0 further to about
∼ 2, the stable endemic limit-cycle “merges and annihi-
lates” with the unstable limit-cycle in a global bifurcation.
This is indicated in panel (c) where the inner (red) orbit is
close to the outer (blue) one. For R0 greater than critical
value at which the two limit-cycles annihilate, the stable
endemic fixed-point appears to be the only attractor of
the system. A similar bifurcation scheme is observed in
a related cellular automaton representing a discrete time
version of the SIRnS model [25]. In between these two R0

values, the model has two attractors and can exhibit the
bi-stable switching shown in Figure 2 if simulated with
random infections and recovery in a finite population.
In practice, one of these attractors might have a much
longer escape-time than the other and it may therefore
be difficult to observe both states in a given historical
record.

It is worth noting that for the epidemic limit-cycles,
the fraction of infectious hosts tend to get very low
between the epidemic outbreaks, especially when the
immune-times are long and narrowly distributed.

Since the maximal fraction of infectious hosts dur-
ing one period, Imax, is smaller than one it follows
from the parameter scan in Figure 3b that the minimal
fraction, Imin, falls below 10−20 as the average immune-
time approaches 200 infectious periods (distributed on 9
immune states, and with an R0-value around 1.8). Such
a low infection-level would clearly mean extinction of the
disease in any realistic human population. Even for much
shorter average immune-times, Imin become so small that
the disease would be very susceptible stochastic fluctua-
tions in a finite population. To circumvent this problem
in the finite population simulation shown in Figure 2 we
have had to introduce a small external source of infection,
corresponding to one eternally infectious host.

The bifurcations scheme in the SIRnS model becomes
more complex, when the distribution of immune times
becomes even narrower (n & 20). The small variance
allow for a new mode of stable limit cycles, in which
the epidemic outbursts are smaller, but more frequent.
Consequently, it becomes possible for one given disease
to express different periodically epidemic patters with-
out a change in parameters. For example, one set of
initial conditions could lead to an epidemic every year,
whereas another starting condition could lead to returning
epidemics every third year.

An example of two different epidemic signatures with
the same parameters is illustrated in Figure 4. In Figure 4a
the region of instability is shown in orange. This region
consists of two distinct patches. As in the previous n = 9
case (Fig. 3), the presence of each patch signals the
onset of epidemic limit cycle that in fact survives also to
values of R0 that are larger than the orange region indi-
cates. Figures 4b and 4c show two different limit cycles
which are obtained at the same parameter point R0 =
1.8 and τ = 250. This parameter point is marked by
the red dot in Figure 4a, from which it is clear, that
the endemic fixed point is also linearly stable. Conse-
quently this disease actually has three stable attractors.
One endemic fixed-point, and two different epidemic limit
cycles.

https://epjb.epj.org/
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Fig. 4. (a) The orange region mark parameters for which the
endemic fixed-point in SIRnS-model with n = 25 is unstable.
The inset shows the two largest real parts of (non-trivial) eigen-
values of the linear stability analysis as a function of R0, for
τ = 250. The two ‘tongues of instability’ observed in the main
panel correspond to different eigenvalue-pairs, and thereby to
different types of epidemic patterns. The red dot at R0 = 1.8
and τ = 250 mark the parameter-set used to obtain the time
series in both panel (b) and (c). (b) Dynamics of epidemic
limit-cycle reached from an initial condition with a fully infec-
tious population. (c) Dynamics of epidemic limit-cycle at the
‘second tongue of instability’ (highest value of R0). In (b) and
(c) the vertical axis in the lower panels index the resistant
states with R1 at the top to R25 at the bottom. The hosts is
distributed as indicated by the intensity of red.

The inset in Figure 4a shows the two largest real parts of
(non-trivial) eigenvalues of the linearized dynamics matrix
as a function of R0, for constant average immunity-period
τ = 250. This illustrates that the two orange patches
correspond to two different pairs of eigenvalues having
positive real part.

The bottom part of these panels indicates the frac-
tion of the population in each of the 25 removed states

Fig. 5. This figure uses same color scheme as the top-panel
in Figure 4, but shows the results of n = 49 resistant states.
The orange unstable area now consist of three patches corre-
sponding to three different eigenvalue-pairs. Two of the patches
have a substantial overlap (R0 values where blue and dashed
blue curves both are above zero in the inset). The eigenvalues
shown in the inset are calculated at τ = 400, as indicated by
the horisontal black line in the main figure.

(listed from top to bottom). In Figure 4b almost the
entire population is infected during an epidemic out-
break. The population then ‘moves as a slowly dispersing
wave across the string of removed states’, and accu-
mulate in the susceptible state (not plotted), waiting
for the next epidemic outbreak to occur. In Figure
4c a smaller fraction of the population is infected per
epidemic outbreak and therefore a new outbreak can
begin even before the bulk of the wave of the pre-
vious infections has reached the susceptible state. As
a consequence, ‘the string of susceptible states’ now
simultaneously carries two waves as a kind of ‘epidemic
overtone’.

We have found that new patches of linear instability
of the endemic fixed-point keep occurring, as n increases,
and the duration of the resistant states becomes increas-
ingly deterministic. Figure 5 shows the more exotic
region of linear instability of the endemic fixed point
for n = 49 (relative standard deviation of 1/7). The
region is now composed of three patches, corresponding
to each their pair of eigenvalues. The inset shows the
real parts of the corresponding three eigenvalues as a
function of R0, for a fixed average resistance period of
τ = 400.

The ‘first’ and ‘second’ patch overlap. Hence there is no
Hopf-bifurcation at the lower (in terms of R0) boundary of
the second patch, and no stable limit-cycle is emitted. A
full understanding of this bifurcation-scheme will require
further investigation.

The third patch has no overlap with the two others, and
investigations similar to those shown in Figure 3 confirm
that, for increasing R0 across this patch, first a stable
endemic limit-cycle is emitted, then an unstable limit-
cycle, and finally the two ‘collide and annihilate’. Thus
for n = 49 we also find a maximum coexistence of three
linearly stable attractors.
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5 Discussion

The simple disease spreading models started by the
classical work of Kermack [1] had a decisive impact on
our way to characterize and predict epidemics in our
society. By considering that resistant or removed hosts
may re-enter the population as susceptible individuals,
this kind of ‘mass-action’ kinetics has let to insights into
recurrent epidemics as well. However, the details of how
this reintroduction happens matters. In some cases, the
disease mutates and the new epidemic of the mutant will
be influenced by mutation rates and possible random
properties associated to genomic variants.

In other cases, recurrent epidemics are remarkably peri-
odic suggesting simpler models with relatively determinis-
tic re-population of the fully susceptible population. The
SIRnS model analyzed here addresses the latter scenario.

Previous investigations of immune time distributions
mainly approached the problem using integro differential
equations. This method allows investigations of arbitrary
distributions of immunity times. And as Gonçalves et al.
point out [20]: “An accurate model should implement the
distributions based on empirical data”. However, there is
very little available knowledge on distributions of immune
times. In this light, the chain of constant-rate processes
in the SIRnS model provides a simple way to repre-
sent a family of increasingly narrow distributions immune
times.

One new finding is that a finite variance of the
immunity-time distribution results in a finite upper bound
for R0 above which the endemic fixed point is the only
attractor. This bound seems to increase as the variance
goes to zero, which is in agreement with previous studies
showing that the endemic fixed-point stays unstable for
arbitrarily large R0 in the deterministic case [20]. Our sim-
ulations strongly suggest, that this transition is a global
bifurcation in which the stable epidemic limit-cycles van-
ishes by ‘collision and annihilation’ with a corresponding
unstable limit-cycle.

We have shown that for intermediate width of the dura-
tion of the resistant/immune state, at least two stable
limit-cycles can coexist. These attractors may be inter-
preted as epidemic overtones. Finally, we have shown that
such ‘overtones’ may become unstable as the immune time
distribution becomes increasingly deterministic, which is
in agreement with previous studies of the fully deter-
ministic case, which have reported no such overtones.
Noticeably Abramson et al. [26] consider the determin-
istic delay limit with a seasonal variation of R0. At some
driving frequencies they found complex chaotic attrac-
tors that could be interpreted as an interplay between
our ‘overtones’ and the external driver. In any case a full
understanding of the destabilizing mechanism associated
to very narrow distributions of resistance times requires
further investigation.
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