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Abstract. Analysis on how network reciprocity may help promote the coordination of agents in a system
has attracted attention. However, designing effective methods for searching highly cooperative population
structures remains a challenge. In this article, we reveal how cooperation behavior survives and spreads from
a micro perspective, and further visualize the topology of influence transmission structure that supports the
spread of cooperation. Based on our analysis, a highly cooperative multilevel scale-free network (mlSFNs)
model is designed and compared with other existing scale-free network models. Meanwhile, we discover
the positive correlation between influence coverage rate and cooperation level from a correlation analysis
toward mass sample data. Thus, we introduce one rule for highly cooperative structures: influence coverage
rate is essential to cooperation, while the unaffected nodes should be less influential. In our experiments, we
find that this rule can provide effective guidance to the structure optimization algorithm termed fMA-CPD-
SFN, which successfully optimizes various structures subject to different strategy update rules. Moreover,
fMA-CPD-SFN is also applicable to the optimization of large-scale populations. In this case, we conclude
that this rule is instructive for future design of a highly cooperative population structure.

1 Introduction

Many problems in the reality can be represented by net-
worked systems. With the rapid growth of technology, the
demand to design and regulate a network system has been
a common challenge, especially when the scale of system
is large. Even if artificial intelligent has achieved great
progress, researchers find it is still hard to extend existing
single-agent methods to a multi-agent system [1]. Some
researchers have employed the evolutionary game theory
to deal with this problem, and they considered learning
from the organization of real population may be signif-
icantly helpful in constructing a large-scale multi-agent
systems.

Game theory has long been used to describe and ana-
lyze the interactions between self-interested individuals
[2–11]. Quite a lot of attention has been paid to investi-
gate and explain the emergence of cooperation among the
rational individuals. One of the most important progresses
made in this field is the network reciprocity proposed by
Nowak et al. [2]. They have revealed that topology con-
straints influence the evolution of cooperation, have been
also confirmed years later. Thereafter, many researches
have contributed to the study of network reciprocity in

a e-mail: neouma@mail.xidian.edu.cn

the background of evolutionary graph theory [12–14]. Pop-
ulation structures were considered to be essential in the
evolution of cooperation [15] and cooperators in Prisoner’s
Dilemma Games (PDG) forms clusters to defend against
the invasion of defectors [16]. Many extended works
have contributed to the correlation investigation between
some network properties and cooperation. Researchers
found that heterogeneity [9,17–19] promotes cooperation
in social dilemma games, and hubs plays a particular role
in the evolution of cooperation. However, some researchers
also pointed out that the effect of hubs can be largely
diminished if degree-normalized payoff value is applied
[20,21]; this situation will not be considered in this arti-
cle. Besides, some researchers have paid attention to
analyze the importance of influence players in popula-
tions [22–24]. Considering interaction commonly exists
between different life levels, researchers further focused
on the evolutionary game in interdependent networks
[25–30]. Recently, some researchers diverted their atten-
tion to investigate how the topology dynamics may influ-
ence the evolution dynamics. One of the most influential
progresses made in the near decades is the introduction
of coevolutionary rules first designed and proposed by
Zimmermann et al. [31]. They considered that individuals
may dynamically adjust their interaction with other play-
ers based on their gaming results [32–38]. Those works in
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this field provided us a new perspective to understand the
self-reorganization of populations in nature.

Most recently, Allen et al. provided a solution for weak
selection that applied to help understand the evolution-
ary dynamics on any population structures [39]. They
reflected how small changes in population structure may
influence the evolutionary outcome. Even so, no appli-
cation algorithm has been designed to verify its effect
on engineering issues. Thus, its significance in practically
helping the optimization of a given population structure
remains unknown. In our previous work [40] we suc-
cessfully introduced the heuristic optimization algorithm
[41–50] to reorganize a given structure. Corresponding
simulation results reflected that a network structure can
be reorganized and further obtain a high cooperation level,
even if its degree distribution remains unchanged. Besides,
some structure properties believed positive to coopera-
tion promotion are found to fail in the actual optimization
scenario, such as the clustering coefficient [51].

The difference between our work and most of the previ-
ous research is that we try to design an algorithm or a rule
that may help optimize the structure of a given network
and keeps its degree distribution unchanged. However,
most of the preceding research focused on revealing the
network properties that may contribute to coordination
of system or introducing how an intrinsic mechanisms of
system may push the evolution of cooperation. In con-
trast, our research attempts to provide guidance to how
we may adjust the network system instead of relying on
the self-adjustment of the system and reveal a more gen-
eral rule that a cooperative structure may follow in the
practical optimization process.

Different from our previous research [40] that simply
searched the solution space of network structures without
prior experience, in this article we attempt to introduce
a more general rule that can be employed as an efficient
prior experience to accelerate the optimization process.
In this way, we not only obtain a method that can reduce
the complexity of the optimization problem but also ver-
ify a rule’s generality through a large number of successful
optimization cases subject to different sizes and strategy
update rule. Our work in this article can be summarized as
follows. (1) We analyze the game dynamics in the spatial
structure from a micro perspective and reveal how coop-
eration spread in heterogeneity structures. (2) We further
introduce and virtualize a structure named as influence
transmission structure that contributes to the coopera-
tion based on our analysis results. Meanwhile, a network
model termed multilevel scale-free networks (mlSFNs) is
proposed and illustrated to be highly cooperative. (3)
We discover a positive correlation between cooperation
and influence structure, and further summarize a rule for
the cooperative structures. (4) We employ this rule as a
prior experience to optimize structures with different sizes
under different strategy update rule, and found out that
it can provide an efficient guidance to the optimization
algorithm.

The rest of this paper is organized as follows. An
overview of game dynamics on the structured populations
and the definition of influence transmission structures
are provided in Section 2. Details of multilevel scale-free

network model are given in Section 3. Section 4 describes
the details of fMA-CPD-SFN and the investigation about
the correlation between cooperation and influence cover-
age rate. Experimental results are provided in Section 5.
Finally, the conclusion is provided in Section 6.

2 Prisoner’s dilemma games on structured
populations and influence transmission
structures

In this section, we first review the prisoner’s dilemma
game and analyze game dynamics upon the structured
population from a micro perspective. Then, based on
our analysis results on how cooperation survives and
spreads, we introduce the influence transmission struc-
ture to extract and visualize the topology that supports
the spread of cooperation in corresponding population
structure.

The prisoner’s dilemma game is a useful tool to simulate
the competition between organisms. In the PDG, players
can select their strategies from defection (D : sx = 0) and
cooperation (C : sx = 1). Their payoff depends on their
strategy combination: The defector receives the highest
payoff T if its opponent cooperates and bears the cost S.
If the two players select the same strategy, they will receive
R for cooperation and P for defection. In this article, we
set R = 1, P = S = 0, and T = 1 + r, where r represents
the advantage of defectors over cooperators.

To simulate the realistic competition and analyze the
evolution of species, researchers pay attention to investi-
gate the infinite evolutionary game dynamics that arise
whenever reproductive success is influenced by interac-
tions with others. Even if there are various strategy update
rules existing in this field, the fittest is most likely to
survive and reproduce.

In this article, we focus on analyzing the game dynamics
under the proportional imitation and further generalize
our conclusions to other strategy update rules. When a
site x is updated, the current occupant and all its neigh-
bors compete to reproduce their offspring that succeed
their strategies in site x. The probability for a neighbor y
to successfully reproduce is

Wsx←sy =

{
(Py − Px)/(Dd>), Py > Px,
0, Py < Px,

(1)

where Pi and di respectively denotes the payoff and the
degree of node i and d> = max{dx, dy}, D = T − S.
Apparently, with probability Wsx←sx =

∏
l(1−Wsx←sy ),

the focal individual reproduces and the strategy in site
x remains unchanged. The relative probability for the
success of neighbor y is Wsx←sy/ΣlWsx←sy, where l
denotes the neighborhood of x. In this article, we employ
the synchronous update method to update the whole
population.

The payoff of an individual is accumulated from its
interactions with all neighbors. Suppose p percent of its
neighbors select to cooperate, its payoff can be estimated
as
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Fig. 1. A simplified game structure for analyzing the interac-
tion between different hub nodes. We suppose the hubs do not
share neighbors. Red color is employed to denote the defectors
while blue color denotes the cooperators.

Px =

{
pdxR+ (1− p)dxS, sx = 1,
pdxT + (1− p)dxP, sx = 0.

(2)

Existing research reveals that cooperators tend to
occupy the hubs of structure and spread its strategy.
Therefore, we construct a simplified structure model as
given in Figure 1 to analyze corresponding game dynam-
ics from a micro perspective. Obviously, star network is
a classic micro structure to help explain how cooperation
in the hubs spreads. Therefore, the simplified structure is
comprised of two interconnected star networks. To sim-
plify and analyze how cooperation spreads between hubs,
only centers of star networks are interconnected.

The analysis of game dynamics from the micro perspec-
tive has been studied [52]. However, we attempt to analyze
how cooperation survives and spreads from a micro per-
spective, thereby summarizing methods that may help
promote the structures of populations.

Individuals in the population are randomly initialized
with strategies. Thus, if hubs (x and y) in Figure 1 are,
respectively, initialized as defector and cooperator, their
payoff can be obtained by equations (3) and (4). Com-
bined with equation (1), it is obvious that only when
Py ≥ Px ∝ dy ≥ αdx y (cooperator) will not be slaugh-
tered by x (defector). Here, we can obtain α by solving
the inequality Py ≥ Px. Meanwhile, other individuals are
very likely to imitate the strategy in the hub site. Corre-
sponding game dynamics can be illustrated in Figure 2.
Obviously, the probability that y may be slaughtered
decreases during the game process. Therefore, a popula-
tion structure with a high cooperation level should protect
cooperators from the slaughter of defectors at the initial
game.

Px = p(dx − 1)T + (1− p)(dx − 1)P + T (3)

Py = p(dy − 1)R+ (1− p)(dy − 1)S + S. (4)

When each node x in a graph has a neighbor that
satisfies dy ≥ αdx as shown in Figure 3 and the corre-
sponding game dynamic satisfies the micro game dynamics
in Figure 2, then cooperation finally dominates if the top
node (n) is initialized as a cooperator.

As already mentioned, we have analyzed the situation
when a cooperator will not be invaded by its defec-
tive neighbors at the initial game. Moreover, the ideal

connection sequence reveals the potential widespread of
cooperation if the micro game process in Figure 2 is
satisfied. To intuitively illustrate and analyze such con-
nection sequences in a population structure, we introduce
the influence transmission structures that are represented
by directed graphs. Neighbor y that satisfies dy ≥ αdx
is considered as having influence on the focal site x :
directional connection from y to x exists. Corresponding
influence transmission structure can be obtained as given
in Figure 4.

To be mentioned, influence transmission structures
intuitively describe how cooperation may survive at the
current stage and further spread in the following gener-
ations. For example, if dy ≥ αdx and y is initialized as
cooperator, then y will not be slaughtered by imaginary
defector x. On the contrary, y may spread its strategy to x
in the following generation. Therefore, population struc-
tures with reasonable influence transmission structures
benefits the spread of cooperation. Of particular note is
that the influence transmission structure may dynamically
change during the game process, because α dynamically
changes with the distribution of strategy. To optimize
population structure subject to random initialization of
strategies, we only focus on the influence transmission
structure at the initial stage when the percent of coop-
erative neighbors around each focal site is equal.

3 Multilevel scale-free network model

Most real networks are found to be similar to scale-
free networks. Existing research reveals the positive effect
of heterogeneity to the emergence of cooperation [9,17].
Thus, analyzing the cooperation on scale-free networks
has become more and more important.

In the previous section, we analyzed game dynamics
upon structured populations from a micro perspective and
introduced the influence transmission structure to visual-
ize our analysis results. In this section, we further combine
our analysis conclusions with the design of a scale-free
structure model and investigate its difference with other
existing scale-free structures in terms of structures and
corresponding influence transmission structures.

Albert et al. first introduced the preferential attach-
ment and proposed the Barabási Albert networks (BANs)
[53]. They assumed that individuals with larger neigh-
borhood are more attractive to new members. However,
Holme and Kim networks (HKNs) were proposed to make
a balance between the global and local connections [51].
With the increasing of construction parameter p (details
in Ref. [51]), a new member becomes more likely to con-
nect with neighbors of its first connected node. Assenza
et al. declaimed that cooperation level of the constructed
structures climbs up with the increase in p [51]. What
should be noted is that, when p = 0, there is no difference
between HKNs and BANs.

Based on the analysis provided in the previous section,
two rules can be concluded for the construction of highly
cooperative network model: (1) corresponding influence
transmission structures should take in nodes as many as
possible and approximate the ideal structures (Fig. 3) and
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Fig. 2. Game evolution upon the simplified structure. These neighbors around hubs are likely to imitate the strategy in the
hub site. Therefore, in the following generations, payoff of cooperators increases while that of defectors decreases, which leads
to the rapid decrease of the probability Wsy ← sx.

Fig. 3. The connection sequence follows di ≥ αdi−1.

Fig. 4. The influence transmission structure of the simplified
structure in Figure 2. Directed edges represent the influence
direction: if x has influence upon y, x may spread cooperation
to y in the following generations. Therefore, for the influence
transmission structure at the initial stage, nodes with small
degrees are under the influenced of the hubs. While the influ-
ence to the two hubs above is necessary, nodes with larger
degrees are required.

(2) hubs should share fewer neighbors to satisfy the micro
game dynamic.

Based on the above rules, in our design of scale-free
structures, we pay more attention to the local hetero-
geneity. In the construction of HKNs, neighbors of the
first connected node are selected with equal probability.
However, neighbors in our design are selected according
to the preferential attachment, because the local het-
erogeneity can effectively enhance the influence of some
neighbors and thereby satisfy rule (1). To satisfy rule (2),
some neighbors with the largest degree are considered as
potential hubs and filtered from the selection to shrink cor-
responding shared neighborhood. Most importantly, in the
construction of HKNs, the new member always connects
with neighbors of the first selected node (reference node)
if corresponding probability is satisfied. However, in our
design, the corresponding reference node changes during
the selection. The reference is the newest connected node
with reasonable neighbors that can be further connected
with. Obviously, heterogeneity in our design is enhanced

from different levels: from global to local, from the newest
connected node to the oldest one. Thus, this scale-free
structure design is termed as multilevel scale-free network
in our article. The corresponding construction method is
summarized in Algorithm 1.

What should be noted is β in our experiments is set to
0.8. The comparison among BANs, HKNs, and mlSFNs in
terms of their network structures and influence transmis-
sion structures is provided in Figures 5 and 6. Apparently,
BANs have a closer structure while the structures of the
others are more hierarchical. Meanwhile, we find that
the influence transmission structures of mlSFNs are the
largest after comparing their average influence coverage
rate: the percent of nodes that its neighbor satisfy the
condition dy ≥ αdx when r = 1.

The cooperation level of these three network structures
obtained under different r is shown in Figure 7. Appar-
ently, mlSFNs have the highest cooperation level while
HKNs (p = 1) follows. Meanwhile, the corresponding
influence coverage rate follows the same trend. Therefore,
combining with the analysis of game dynamics provided
in the previous section, we preliminarily conjecture that
there is a positive correlation between cooperation and
influence coverage rate, which will be further verified by
the following experiments.

4 Fast structure optimization algorithm for
highly cooperative population structures

In the previous section, we preliminarily conjectured that
there is a positive correlation between cooperation and
influence coverage rate. Therefore, in this section, we fur-
ther investigate this correlation and complement a rule
that may be shared by cooperative structures. Finally, this
rule is employed to the optimization algorithm to verify its
value in optimizing structures toward higher cooperation
level.

We start our correlation analysis between cooperation
and influence coverage rate with a more rigorous and reli-
able data analysis. We use BANs, HKNs, and mlSFNs as
seeds of networks to produce more general scale-free struc-
tures. However, we randomly adjust those seeds produced
based on the edge switch method to effectively sample
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Algorithm 1: Multilevel scale-free network
Input:

n: number of connection;
N: Scale of network;
β: Filter parameter;
m0: Initial number of nodes;

Output:
G: Multilevel scale-free network;

1: Initialize the graph with m0 fully connected nodes;
2: for i = 1 to N-m0 do
3: Ω←∅; // List of connected nodes and index indicates the connection order. (the 1st record is the first
connected node)
4: A new node x is added into the graph;
5: Connect x with a node y from the current graph based on the preferential attachment;
6: Ω ← Ω ∪ y; //y is the 1st record
7: for j= 1 to n − 1 do
8: for the records z in Ω from kth downto 1st do //k is the number of records in the current list.
9: Θ ← Extract neighbor the degree of nodes z;
10: Sort Θ in descending order according to degree of nodes;
11: Θ ← Remove (1− β) nodes with the largest degree from Θ;
12: if Θ 6⊂ Ω then
13: break;
14: end;
15: end;
16: connect x with a node still not connected in Θ according to the preferential attachment;
17: end;
18: end.

(a) (b) (c)

Fig. 5. Network structures of BAN (a), HKN: p = 1 (b), mlSFNs (c) while the size of networks is 500, m0 = 2, and average
connection z = 4. These graphs are drawn by Pajek under the same layout style. Apparently, BANs have closer structures,
while structures of the others are more hierarchical.

the structure solution space. Meanwhile, the hill climbing
method is combined to control sampling direction in terms
of structures’ influence coverage rate. This is designed to
help fully explore the relational data space. As the adjust-
ment is a completely random operation, the hill climbing
method will not influence the true pattern of relational
data.

To control the density of samples and expend the sam-
pling space, different adjustment scales are employed in
our experiments. That means a given structure will be
adjusted by the edge switch method for s rounds before
it is evaluated. Details of the sampling methods are sum-
marized in Algorithm 2 and the edge switch method is

provided in Figure 8. The corresponding parameters of
the sampling methods are set as n = 100, m = 50 and
s = 50, 100, 150, 200. The size of networks is set to 1000.

Based on the above mentioned method, we sample
the structure solution space and provide the relationship
between cooperation level and coverage rate in Figure 9.
Obviously, the data are linearly distributed and the
correlation between coverage rate and cooperation level
of population structures tends to be positive.

So far, we have verified our previous inference that
highly cooperative population structures are usually
accompanied by larger influence coverage rate. However,
just a high influence coverage rate may not guarantee
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(a) (b) (c)

Fig. 6. Influence transmission structures of BAN (a), HKN: p = 1 (b), mlSFNs (c) when the size of networks is 500, m0 = 2, and
average connection z = 4. We ignore the isolated and almost isolated (very few) nodes in the above figures. And corresponding
average influence coverage rate (when r = 1) of different network models is provided below the graphs, respectively. These
influence coverage rate are obtained through averaging over 100 independent runs. Obviously, mlSFNs have the largest average
coverage rate while HKNs follows.

Algorithm 2: Sampling methods
Input:

n: number of samplings;
s: adjustment scale;
m: search pace;

Output:
D: data set of the samplings containing corresponding coverage rate and cooperation level;

1: for i = 1 to n do
2: Randomly select a scale-free network model from BANs, HKNs and mlSFNs;
3: Generate a network G and its copy G’ based on the selected model;
4: for j = 1 to m do

//Corresponding iteration of edge adjustment is s.
5: Employ the edge switch method to adjust G and increase the corresponding coverage rate;
6: Employ the edge switch method to adjust G’ and decrease the corresponding coverage rate;

//Evaluation of cooperation level is obtained through averaging over 100 independent runs.
7: Evaluate the influence coverage rate and cooperation level of G and G’;

// save influence coverage rate of structures pairs with corresponding cooperation level
8: Save the relational data to D if data is new;
9: end;
10:end;

a highly cooperative structure. Apparently, if the top
node (n) in Figure 3 is initialized as a defector, it is
necessary that node n (unaffected nodes) should be
as less influential as possible. In this case, we further
complement the rule that may be shared by cooperative
structures and formulated it by (5). f1 is to calculate
the influence coverage rate of a given structure G and
f2 is to calculate the influence strength of the unaffected
nodes. To be mentioned, f2 should be designed subject to
different strategy update rules due to different influence
strength, respectively. Design and calculation approach
of f2 will be provided in the following experiment part:

E = f1(G)− f2(G). (5)

Given equation (5), a fast structure optimization algo-
rithm that employs the above empirical formula as prior
experience is proposed. This algorithm is termed as
fMA-CPD-SFN and is designed to optimize an input pop-
ulation structure without changing its original degree
distribution, which is in consideration of the hetero-
geneity of individuals in reality. For example, different
predation capability leads to different interaction with
other individuals in the population.

Although an approach has been proposed in [40] to opti-
mize population structure, many problems still remains
to be solved: (1) The computational cost of the algo-
rithm proposed in [40] is too high, which is unacceptable
to provide real-time optimization or to solve large-scale
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Fig. 7. Cooperation frequency of different scale-free network
models (5000 nodes, m0 = 2, z = 4) under different r. The
corresponding result shown above are obtained by averaging
over 300 independent runs (evaluation times: 30 (independent
evaluations) × 10 (different networks) = 300). Apparently,
the cooperation level of mlSFNs is the highest while that of
HKNs (p = 1) follows. Each equilibrium cooperation frequency
is calculated through averaging over 1000 generations after a
transient period of 100,000 generations

Fig. 8. Illustration of the edge switch method. (a) Initial con-
nection. (b) Connection after adjustment. Two pairs of edges
(ab and cd) are randomly selected from the graph. If the tar-
geted created edges (ac and bd) already exist in the graph,
another pair of edges will be selected from the graph.

optimization problems, (2) recording large numbers of
structure solutions wastes too much storage resource, and
(3) operation in reference [40] is too complex and hard to
implement. The reason causing these problems is the lack
of general rules for optimizing population structure and
evaluation variance of cooperation level between runs.

Apparently, calculating E in (5) is much easier than
evaluating the cooperation frequency of a structure,
thereby saving the computational cost. Meanwhile, the
success of fMA-CPD-SFN in optimizing structures sub-
ject to different strategy update rules with a higher
performance will verify the generality of our rules: influ-
ence coverage rate is essential to cooperation while the
unaffected nodes should be less influential.

We employ the same basic evolutionary algorithm as
in reference [40]. Instead, the local search operation is
designed to optimize E of structures rather than coop-
eration level. Meanwhile, we reserve the statistic average

method to approximate the true cooperation level of
structures and reduce evaluation error [40].

5 Experiments

We provide a rule that may be shared by cooperative
structures based on the previous analysis. And in this
section, we apply fMA-CPD-SFN to optimize structures
of different populations (BANs and HKNs) subject to
different sizes and different strategy update rules. The
performance of fMA-CPD-SFN in optimizing a given struc-
ture will verify the generality of our rule. Since the local
search operator in evolutionary algorithm optimize the E
rather than cooperation level, the positive or negative cor-
relation between E and structure’s cooperation level will
directly influence the final optimization results.

In the first part, we investigate the performance of
fMA-CPD-SFN. In the second part, we employ fMA-CPD-
SFN with the attempt to optimize large-scale structures.
In fMA-CPD-SFN, corresponding parameters are set as
GS = 20, Pc = 0.2, Sm = 20, Sa = 200, genmax = 50, and
TN = 5. Corresponding parameter of PDG is set to the
extreme adverse situation for cooperation: r = 1. To avoid
unnecessary computational cost, equilibrium cooperation
level is calculated through averaging over 0.1 N genera-
tions after a transient period of N generations, where N
is the size of population structures. Equilibrium of results
has been verified in reference [40] and we do not further
provide similar analysis in this article.

5.1 Performance of fMA-CPD-SFN on different
small-scale structures

In this section, we try to verify the efficiency and adapt-
ability of our rule in advancing the optimization process
toward different structures (BANs and HKNs) subject to
different strategy update rules (proportional imitation,
Fermi rule, and unconditional imitation rule). Apart from
the proportional imitation introduced in Section 2, the
definitions of Fermi rule and unconditional imitation rule
are given as follows:

1. Fermi rule: A neighbor (supposed as y) of x is cho-
sen randomly. The probability for y to spring off at
site x isWsx←sy = 1/(1+exp(−(Py−Px)/k)), where
Pi is the payoff of individual i and k = 0.1 is the
amplitude of noise.

2. Unconditional imitation rule: Each individual x imi-
tate the strategy of its neighbor y with the largest
payoff, provided Py > Px.

In the previous section, we provided equation (5) to
formulate our rule: f1 calculates the percent of nodes x
with a neighbor y satisfying Py ≥ Px ∝ dy ≥ αdx in the
first generation. Specific α can be approached by solving
inequality Py ≥ Px based on the parameters of the game
and is irrelevant to the strategy update rules. However, the
second part (f2) of unaffected nodes’ influence strength
should be designed according to different strategy update
rules (suppose these nodes are imaginary defectors):

https://epjb.epj.org/


Page 8 of 12 Eur. Phys. J. B (2018) 91: 321

(a) (b)

Fig. 9. Relationship between coverage rate and cooperation level. Different functions are employed to fit the sampling data:
(a) Polynomial function. (b) Gaussian function. Apparently, fitting curve exhibits good linearity subject to different fitting
functions. Therefore, we can conclude that the coverage rate and cooperation level of population structure have a strong
positive relationship, and tend to be linearly related. Each equilibrium cooperation frequency is calculated through averaging
over 200 generations after a transient period of 2000 generations. Equilibrium of results under this simulation time can be
referred from reference [40].

Algorithm 3: Fast structure optimization algorithm to optimize scale-free structures for the promotion
of cooperation in the Prisoner’s dilemma game (fMA-CPD-SFN)
Input:
G0: Initial scale-free network;
GS: Size of EA population;
Pc: Crossover rate;
Sm: Mutation scale;
Sa: Adjustment scale;
genmax: Maximum number of iterations;
TN: Test number of evaluations;

Output:
G*: Optimized structure;

1: Adjusting Gi−1(i ≤ GS) based on the edge switch method (scale: Sa) to produce Gi and initialize EA population;
2: Evaluate the cooperation level of EA population through averaging over TN independent runs;
3: The roulette selection is employed to select parents and EA population reproduce with crossover rate Pc;
4: Offspring structure solution mutate on the edge switch method (scale: Sm);
5: Evaluate the cooperation level of the offspring solutions through averaging over TN independent runs;
6: Calculate E (cooperation estimation) of both parents and offspring;
7: Conduct the local search (details see Algorithm 4) upon both the parents and the offspring (scale Sa);
8: If the iteration generation exceeds genmax, output the current best population structure; otherwise, the best GS
solutions in terms of cooperation level are selected as parents for the next generation and go to 3.

1. Proportional imitation and Fermi rule: f2 calcu-
lates the average probability that an unaffected node
may transfer defection to its neighbors in the first
generation.

2. Unconditional imitation rule: f2 calculates the
largest expected payoff difference between the unaf-
fected node x and its neighbor y in the first genera-
tion. f2(G) = 1/(1 + exp(−(Px − Py)/k)).

Three different experiments have been conducted to ver-
ify that our rule has provided effectively positive guidance

to the optimization process. As can be seen in Figure 10,
fMA-CPD-SFN successfully optimizes different structures
subject to different strategy update rules and the out-
put structures have high cooperation level. Our preceding
research reveals that small population structures are usu-
ally accompanied by larger evaluation variance [40], which
leads to a commonly accepted problem that fails the opti-
mization process of evolutionary algorithm (EA cheat). To
deal with this problem, mlEA-CPD-SFN [40] has intro-
duced lots of additional components, which sacrifice stor-
age space and are computational expensive. Meanwhile,
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Algorithm 4: Local search
Input:

P: Parent population and offspring population;
C: Cooperation level of structures;
E: Cooperation estimation of structures;
TN: Test number of evaluations;

Output:
G*: Optimized structure;

1: for every structure Gi in P do
2: Conduct the edge switch method upon Gi to optimize its E based on the hill climbing method;
3: Evaluate the cooperation level of the adjusted structure Gi’ through averaging over TN runs;
4: if(CGi>CGi

’) //original structure has higher cooperation level
5: Another TN runs of evaluations upon Gi are conducted;

//Corresponding sum of evaluation results and number of evaluation runs are updated.
6: Update the cooperation level of Gi through combining results of the new TN runs;
7: Abandon Gi’ and keep Gi in the population;
8: else
9: Replace Gi with Gi’;
10: end;
11:end;

Table 1. The number of evaluations and running time of fMA-CPD-SFN and mlEA-CPD-SFN when optimizing the
same population structure under r = 1. OpenMP skill is employed to accelerate the local search part of these algorithms.

1000 BANs mlEA-CPD-SFN5 fMA-CPD-SFN

Cooperation level (after optimized) 0.79991 0.9437
Running time 15587.8s 1811.45s
Evaluation number 128064 19645
500 BANs mlEA-CPD-SFN5 fMA-CPD-SFN
Cooperation level (after optimized) 0.6848 0.8172
Running time 3293.25s 392.76
Evaluation number 114853 21140

simulation results in Table 1 have reflected that the effi-
ciency of fMA-CPD-SFN is much higher than those of
mlEA-CPD-SFN (details in Ref. [40]), thus fMA-CPD-
SFN has an obviously better performance. Most impor-
tantly, we change the local search target in fMA-CPD-SFN
from E to clustering coefficient and find corresponding
algorithm (fEAcluster) to fails in optimization (Fig. 11).
All these phenomena verify that our rule formulated by E
actually has a positive correlation with cooperation sub-
ject to different strategy update rules and network sizes.
Even if this rule is inspired from the analysis of game
dynamics under the proportional imitation, the essence of
our rule is the probability of strategy spread.

5.2 Performance of fMA-CPD-SFN on large-scale
structures

In the previous sections, we verified the positive cor-
relation between our rule and cooperative structures.
Since employing this rule as a prior experience can effec-
tively guide the optimization process and reduce the
computation complexity, we further analyze the efficiency
of fMA-CPD-SFN in optimizing larger scale structures.
In contrast, mlEA-CPD-SFN cannot support the opti-
mization toward larger scale structures due to its high
computational complexity. Considering the simulation

time, we only provide results obtained under the pro-
portional imitation. Obviously, evolutionary algorithm
(fMA-CPD-SFN) successfully optimizes population struc-
tures with 5000 nodes and promotes the cooperation in
PDG (Fig. 12). Even if E effectively decreases the compu-
tational cost required during the optimization, a faster
method to deal with large-scale structures and evalu-
ate the cooperation level of structures remains to be a
bottleneck to a real-time optimization algorithm.

6 Conclusions

How to control and regulate strategy distribution within a
network system has attracted lots of attention. With the
rapid development of technology, the demand to improve
the cooperation level of a large-scale network system
results in a new challenge. Meanwhile, a highly cooper-
ative group as a result of species evolution has been found
significant to the promotion of a group’s competitiveness
and intrinsically efficiency. Thus, learning from the orga-
nization of the cooperative network system composed by
self-interested agents and reveal control methods for the
promotion of cooperation should be a significant task.

In this article, we attempt to provide a more general rule
to help control the cooperation level of a network system
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(a)

(b)

(b)

Fig. 10. Optimization results of fMA-CPD-SFN subject to different network sizes and strategy update rules. Three different
strategy update rules are considered in the experiments: (a) proportional imitation, (b) Fermi rule, and (c) unconditional
imitation rule. In each subfigure, we provide optimization results of four types of structures, respectively, given in four
regions: BANs (1000 nodes), HKNs (1000 nodes), BANs (500 nodes), and HKNs (500 nodes). In each region, we pro-
vide the cooperation level of 10 independent structures before and after the optimization, with black points marking the
corresponding mean values. Cooperation level of each structure has been repeatedly evaluated 500 times to reduce the vari-
ance. For example, the left region in part (a) provides the initial and optimized cooperation level of 10 BANs with 1000
nodes. Cooperation distribution of each structure group lays within the blue bar. As can be seen, structures optimized
by fMA-CPD-SFN have obviously higher cooperation level than the initial BANs with 1000 nodes. Overall, fMA-CPD-SFN
successfully optimizes the population structures and promotes cooperation subject to different network sizes and strategy
update rules.

playing the prisoner’s dilemma game. Analysis of game
dynamics from micro perspective leads to the discovery of
correlation between cooperation and influence structure.
Besides, the high cooperation level of multilevel scale-free
networks (mlSFNs) and simulation results of relational
analysis support our preliminary inference: influence cov-
erage rate is essential to cooperation while the unaffected
nodes should be less influential. To verify that this rule
may be shared by cooperative structures subject to differ-
ent strategy update rules, we introduce this rule to guide
the optimization process of evolutionary algorithm. Our
results reflect that this rule provides an efficient positive
guidance to the optimization process subject to different

network sizes and strategy update rules, which verify the
generality and effect of our rule in optimizing coopera-
tion level of structures. Thus, we conclude that this rule
is instructive for future design of a highly cooperative
population structure.
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the Key Program of Fundamental Research Project of Natural
Science of Shaanxi Province, China under Grant 2017JZ017.
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Fig. 11. Optimization results of fEAcluster subject to differ-
ent network sizes under proportional imitation. We provide
optimization results of four types of structures, respectively,
given in four regions: BANs (1000 nodes), HKNs (1000 nodes),
BANs (500 nodes), and HKNs (500 nodes). In each region,
we provide the cooperation level of 10 independent struc-
tures before and after the optimization (blue bar), with
black points marking the corresponding mean values. Coop-
eration level of each structure has been repeatedly evalu-
ated 500 times to reduce the variance. Apparently, fEAcluster

fails to optimize the population structures and promote
cooperation.

Fig. 12. Optimization results of fMA-CPD-SFN to struc-
tures with 5000 nodes under proportional imitation. We
provide optimization results of two types of structures,
respectively given in two regions: BANs (5000 nodes)
and HKNs (5000 nodes). In each region, we provide
the cooperation level of 10 independent structures before
and after the optimization (blue bar), with black points
marking the corresponding mean values. Each structure
has been repeatedly evaluated 500 times to reduce the
variance. Apparently, fMA-CPD-SFN successfully optimizes
those large-scale population structures and promotes the
cooperation.
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