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Abstract. Two-dimensional arrays of interacting magnetic nanostructures offer a remarkable playground
for simulating, experimentally, lattice spin models. Initially designed to capture the low-energy physics
of highly frustrated magnets, they quickly became a lab-on-chip platform to investigate cooperative mag-
netic phenomena often associated with classical frustrated magnetism. This article reviews the many-body
physics which can be visualized, directly in real space, through the magnetic imaging of artificial arrays
of magnetic nanostructures. Particular attention is paid to classical spin liquid states, magnetic Coulomb
phases and magnetic moment fragmentation. Other phenomena, such as complex magnetic ordering, charge
crystallization and monopole-like excitations, are also described in light of the recent advances in the field.

1 Introduction

Artificially designed systems often provide a powerful
experimental platform to explore, model and challenge the
properties of matter. They may also provide an alternative
viewpoint compared to other experimental approaches
investigating natural systems with their whole complex-
ity. In fact, being able to fabricate a synthetic system to
capture a given phenomenon or property is a kind of mea-
sure of how deep our knowledge is of this phenomenon
or property. Differences between how an artificial system
behaves and how its natural counterpart actually behaves,
generally leads to very useful pieces of information. Arti-
ficial systems may also be fabricated to explore intriguing
or exotic effects, which do not exist in nature or which
would be too difficult to study otherwise. In that sense,
artificial systems may be seen as experimental simulators
of matter, complementing what theoretical models and
numerical methods can bring.

In magnetism, lithographically-patterned arrays of
superconducting architectures [1–7], macroscopic compass
needle systems [8–10] and two-dimensional binary alloys
[11–15] were introduced in the nineties as a possible way to
fabricate various types of spin models. These works were
later extended to artificial arrays of interacting nanomag-
nets [16–18] and colloidal systems [19–23]. This idea to use
lithographically patterned architectures, be they magnetic
or not, triggered a wealth of studies on spin systems. While
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they were initially made to mimic the exotic physics of cer-
tain compounds [18], their flexibility, tunability and ease
of fabrication allowed testing and revisiting many predic-
tions from spin models, but also to explore the many-body
physics of systems having no equivalent natural counter-
parts. Although a wide variety of two-dimensional spin
systems can be designed experimentally, most of the work
done so far, including what is presented here, addresses the
physics of frustrated spin systems, with the aim of investi-
gating the associated exotic physics through a lab-on-chip
approach.

The concept of frustration in magnetism was initially
introduced for spin glasses [24–26] to account for the
impossibility in these systems to satisfy at the same
time all exchange interactions due to structural disorder.
In the context of frustrated magnets, whether they are
artificial or natural compounds, systems have no (or neg-
ligible) structural or chemical disorder, and frustration
between interacting spins arises from the lattice geome-
try. The textbook example of a geometrically frustrated
spin system is the classical Ising antiferromagnet on a
triangular lattice (see Fig. 1a). In that case, the antiferro-
magnetic bonds between nearest-neighbor spins, together
with the odd number of corners in a triangle, lead to the
impossibility to minimize simultaneously all pairwise spin
interactions. The lowest possible energy for a given tri-
angle is obtained when it hosts one frustrated bond only.
Higher energy configurations are obtained when all three
bonds are frustrated, i.e., when all spins are ferromagnet-
ically coupled. For one single triangle, the ground state
(GS) configuration is thus six times degenerate, while the
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Fig. 1. (a) The eight possible spin states of a triangle, in which the Ising spins are coupled antiferromagnetically. Black and
orange circles represent ‘up’ and ‘down’ spins, respectively. Six configurations have one frustrated bond. They all have the
same lowest possible energy and thus define the ground state (GS). Two other configurations have three frustrated bonds and
correspond to a high energy state. (b) Building a chain of corner-sharing triangles leads to a large amount of configurations
belonging to the ground state manifold. In fact, the number of low-energy configurations increases exponentially with the length
of the chain. (c) Room temperature magnetic force microscopy images of two artificial, two-dimensional Ising spin systems
with antiferromagnetic interactions. Black and white contrasts give the local direction of magnetization, either ‘up’ or ‘down’,
perpendicular to the lattice plane (the nonmagnetic substrate appears in orange). In the left image, the lattice is hexagonal.
Because of the even number of corners in a hexagon, the system is not frustrated and shows almost perfect antiferromagnetic
ordering (alternation of black and white contrasts between neighboring nanomagnets). In the right image, the lattice has a
kagome geometry and the configuration is disordered, because of the odd number of corners in a triangle. Both arrays have felt
the exact same field demagnetization protocol to be brought in these arrested configurations.

excited states are twofold degenerate (see Fig. 1a). Build-
ing a chain of corner-sharing triangles (Fig. 1b) reveals
that the degeneracy of the ground state increases faster
than the system size. The ground state of such a chain
is said to be macroscopically degenerate as the number
of states belonging to the ground state manifold increases
exponentially with the length of the chain. In other words,
although the system considered here is disorder-free from
a structural point of view, it is extensively, magneti-
cally disordered. Because of this extensive degeneracy, the
statistical entropy per site remains finite, even at zero
temperature, thus contradicting the third law of thermo-
dynamics in its generally formulated expression (Planck
formulation, see Ref. [27] for more details). Assuming no
energy barrier for flipping a spin in the triangular chain,
such a system is never frozen: spins always fluctuate, even
at very low temperature, without the need of energy input.

This highly fluctuating magnetic state is not specific to
the antiferromagnetic Ising triangular chain, and highly
disordered manifolds can be observed in a large variety
of one-, two- and three-dimensional spin lattices, for both
antiferromagnetic and ferromagnetic interactions between
nearest neighboring spins, and for different types of spins

(spins do not have to be necessarily Ising-like variables and
not even classical objects). However, the lattice geometry
is often a key ingredient to induce magnetic frustration,
even though the geometry alone cannot be the source of
frustration: only the combination of geometry, type of spin
and nature of the spin–spin interaction may lead to geo-
metrical frustration. The importance of this combination
can be illustrated by considering Ising spins, coupled anti-
ferromagnetically, and placed on a hexagon, a square and
a triangle. Because of the even number of bonds in the
hexagon and square, no frustration occurs, contrary to the
triangle. At the scale of a lattice, the difference between
a hexagonal and a kagome lattice is striking (see Fig. 1c):
the former shows almost perfect antiferromagnetic order-
ing after being submitted to a demagnetization protocol
(see Sect. 2), while the latter is magnetically disordered
after having felt the very same protocol.

One key question that arises when studying geomet-
rically frustrated magnetic systems is how the spins
accommodate the frustration, locally, but globally as well.
As a matter of fact, probing individual magnetic moments
in bulk compounds, without altering the state of the sys-
tem, is challenging, if even possible. This is precisely
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where artificial spin systems might be useful. Artificial
arrays of magnetic nanostructures can be imaged routinely
using standard imaging techniques, such as magnetic force
microscopy or X-ray photoemission electron microscopy.
These techniques allow the magnetic imaging of global
configurations with nanomagnet resolution, i.e., the mag-
netic state of all individual magnetic elements in the
lattice is determined unambiguously, thus permitting the
observation of how spins arrange themselves locally, but at
large length scales as well. Contrarily to bulk compounds
(see for example Ref. [28]) that exhibit exotic proper-
ties at very low temperatures (about 1 K), artificial arrays
of nanomagnets also present the appealing advantage of
being accessible at or near room temperature (in fact this
temperature is also tunable at will).

For a theoretician as well as for an experimentalist, it
seems difficult to ask for more: all the quantities likely to
be evaluated by numerical approaches then become acces-
sible through the magnetic imaging of artificial arrays.
This is certainly the reason why the results obtained in
2005–2006 [16–18] on arrays of nanomagnets triggered a
wealth of studies at the frontier between nanomagnetism,
condensed matter physics and statistical thermodynam-
ics. The physics of artificial spin systems then became a
topic on its own.

The present work does not pretend to be exhaustive.
It provides a personal, biased view of what makes artifi-
cial spin systems such a rich and fascinating playground
for studying frustrated magnetism. In the following, we
only consider artificial spin systems based on arrays of
interacting magnetic nanostructures. We thus exclude sev-
eral other types of artificial spin systems, such as colloids
and superconducting systems, or arrays of compass nee-
dles. This work aims at complementing two previous
reviews on the topic [29,30]. Besides, detailed information
on the magnetic imaging techniques and nanofabrication
processes can be found in reference [31], while possi-
ble applications of artificial ferroic systems are presented
in reference [32]. The main objective of the current
manuscript is to introduce and discuss the many-body
physics which can be imaged in artificial frustrated spin
systems, in light of the advances made in the field these
last few years.

This paper is divided into six sections. The question of
whether the physics at play in artificial spin systems is
representative of a physics at- or out-of-thermodynamic
equilibrium is addressed in Section 2. In particular, we
show how this question can be answered simply based on
the statistical analysis of a single snapshot of an arrested
magnetic configuration. The rest of the paper describes
the many-body physics of spin liquid states in kagome
and square arrays of nanomagnets. There, we illustrate
through a few examples how collective phenomena and
exotic properties of frustrated, classical spin systems can
be captured within a single magnetic image of a two-
dimensional array of nanomagnets. We first discuss in
Section 3 the liquid nature of several artificial spin sys-
tems, and highlight the impact of the long range dipolar
interaction coupling the nanomagnets on their low-energy
properties. Section 4 focuses on one particular class of spin
liquids: the Coulombic spin liquid. The purpose of this

section is to show that such a phase, and its associated
monopole-like excitations, can be imaged and studied in a
properly designed artificial square system. We then turn
to another class of spin liquids which has been introduced
recently in condensed matter: the fragmented spin liquid.
The aim of this Section 5 is to highlight how artificial spin
systems provide a platform to observe these liquids both in
real and reciprocal space. Finally, we discuss in Section 6
several possible directions for future work in the field.

2 Probing at- or out-of-equilibrium physics?

Artificial spin systems offer the appealing opportunity to
image arrested magnetic configurations, in which the mag-
netic moments are resolved individually. A single snapshot
of such an arrested magnetic state potentially allows cap-
turing the many-body physics of frustrated spin systems
by providing local and global information at the same
time. But this imaging capability comes at a price: the
artificial spin system under investigation has no dynamics,
or this dynamics must be slow enough to be compatible
with the typical acquisition time of the imaging tech-
nique. In other words, although the driving idea behind
the study of artificial frustrated spin systems is to explore
the physics of highly degenerate phases, and thus highly
fluctuating magnetic configurations, artificial spin systems
are essentially imaged in a frozen state (although they are
a few exceptions, see Sect. 6).

We might then wonder whether the imaged frozen
configurations are representative of a physics at ther-
modynamic equilibrium, or if instead out-of-equilibrium
phenomena must be invoked. As one investigates frus-
trated spin systems for their exotic low-energy physics,
one might wish these magnetic configurations to be rep-
resentative of what is predicted by a spin model at
thermodynamic equilibrium. This brings the question of
how to prepare artificial frustrated spin systems so that
they do not get trapped into trivial states, and how the
resulting arrested magnetic configuration can be analyzed
to highlight collective phenomena.

In this section, we discuss the relevance of confronting
a single (or a limited number of) arrested magnetic con-
figuration(s) to predictions from frustrated spin models
describing highly fluctuating systems at thermodynamic
equilibrium.

2.1 Shaking artificial spin systems

Bringing artificial spin systems into their ground state or
within a low-energy manifold has been one of the first
challenges the community faced after the pioneering works
of Tanaka et al. [16,17] and Wang et al. [18]. Most of
the time, one is interested in imaging correlated disorder
or complex magnetic ordering. As mentioned above, the
artificial spin system under investigation must be frozen,
or only slowly fluctuating, to take a snapshot of a given
configuration. Strategies must then be used to prepare
the system into a nontrivial configuration, and to bring
it into a low-energy manifold, where exotic behavior and
many-body physics emerge.
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So far, two main directions have been followed. The
method initially proposed for athermal systems consists
in applying a field demagnetization protocol, i.e., to cycle
an external magnetic field in such a way that the overall
magnetization of the sample is reduced down to the low-
est possible value. Doing so, one then implicitly assumes
that the ground state and low-energy configurations of the
system are characterized by a small, possibly zero, mag-
netization (which is indeed often the case). The way the
field might be ramped down during the demagnetization
protocol has been discussed in several works [33–39] (see
Fig. 2a). One interesting result is that frustrated spin sys-
tems, whether they are characterized by an ordered or
a disordered ground state, continue to relax, even after
the global magnetization has been minimized [35]. In par-
ticular, if the overall magnetization rapidly goes to low
residual values, pairwise spin correlations further evolve as
nanomagnets are given more chance to flip (see Figs. 2b
and 2c). One possible interpretation is that the energy
landscape in frustrated spin systems becomes rather flat
once the global magnetization is low, and exploring the
configuration space while minimizing the system energy
requires a large amount of spin flip attempts. Another
intrinsic and fundamental reason is that collective spin flip
events are usually required to bring magnetic systems into
their ground state. This is even the case in unfrustrated
spin models. For example, if one tries to demagnetize an
artificial realization of an Ising ferromagnet on a square
lattice, we would likely end up with an arrested configu-
ration showing large patches of the ordered ground state,
i.e., large clusters of spins pointing ‘up’ and large clus-
ters of spins pointing ‘down’, separated by domain walls.
Unwinding and removing these domain walls is statisti-
cally unlikely in a large system with only a single spin
flip dynamics. To make the system bifurcate, one would
need experimentally to induce the reversal of entire clus-
ters (i.e., global spin updates) [40–42], like this is done in
numerical simulations. However, the spin dynamics in arti-
ficial spin systems cannot be collective, and a large number
of single spin flip attempts is necessary to affect pairwise
spin correlations, even after the overall magnetization has
been minimized.

One might also wonder why a given field demagne-
tization protocol, which is intrinsically a deterministic
process, allows reaching different, essentially uncorrelated,
disordered states when applied several times to an artifi-
cial spin lattice. In other words, one could wonder what
is the origin of the stochasticity observed experimentally
when comparing consecutive, and almost identical, field
demagnetization protocols applied to the very same array
of nanomagnets. One reason that can be invoked is the
non-ideal character of lithographically-patterned arrays of
nanomagnets, which can be modeled by a distribution
of magnetic properties. In particular, quenched disor-
der, either induced by a distribution of switching fields
to reverse magnetization in each individual nanomagnet
[43] or by a distribution of coupling strengths between
neighboring elements, was shown to play a key role in
bringing artificial spin systems into low-energy configu-
rations [44–47]. The source of stochasticity might also
be related to different types of magnetic ‘noises’ present

Fig. 2. (a) Time dependence of the external applied magnetic
field used to demagnetize several artificial square spin lattices.
The field direction is set within the lattice plane and the sample
is put in rotation. As shown in the other panels, the impor-
tant parameter in the demagnetization protocol is the field
step size ∆H. (b) Residual magnetization of the square arrays
after several field demagnetization protocols. As the field step
size ∆H is reduced, residual magnetization becomes smaller,
until it reaches a low value for step sizes of the order of 10 Oe
or smaller. (c) Dependence of the spin–spin correlations with
∆H. Even when ∆H < 10 Oe, correlations continue to evolve.
The D(1), L(1) and T(1) notations for the spin–spin correla-
tions are illustrated in the top-left sketch of the lattice (from
Ref. [35] c© 2008 the American Physical Society).
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experimentally (non-ideal character of the magnetic field
supplied by an electromagnet or role of temperature to
trigger magnetization reversal).

Later on, artificial spin systems were made thermally
active, either by reducing the volume of the individual
magnetic nanostructures to adjust their blocking temper-
ature [48–58] or by cooling/heating the system through
the Curie temperature (TC) of the constituent material
[59–70]. These two approaches are of course not equiva-
lent. Going through the Curie point implies that the con-
stituent material loses ferromagnetism above TC , and the
whole system is getting remagnetized below TC . Magnetic
interactions between nanomagnets thus vary during the
process, both in amplitude (interactions are proportional
to the magnetic moments, which is a temperature-
dependent quantity), and likely in direction as well (the
nanomagnets are probably not Ising-like pseudo-spins
close to TC). In addition, because of the quenched disor-
der, the whole array does not instantaneously remagnetize
everywhere, but more likely through a spin by spin process
[67]. On the contrary, working close to the blocking tem-
perature of the nanomagnets allows the entire system to
thermally fluctuate, while keeping the magnetic moment
and Ising character of the elements essentially unchanged.

Field demagnetization and thermal protocols seem to be
equivalently efficient to reach low-energy configurations.
They also share similar limitations. When the spin system
orders, these protocols usually allow reaching magnetic
states characterized by large patches of the ground state
configuration. This is the case for instance in the artificial
square spin system (see Sect. 3.5), in which large patches
of the antiferromagnetic ground state ordering are found,
regardless the protocol used. For degenerate systems, all
strategies are unable to bring the array into a (very) low-
energy manifold, although they permitted visualization of
collective phenomena, such as the fragmentation of mag-
netism in the kagome dipolar spin ice (see Sect. 5.3). As
mentioned above, this is so because the relevant (stochas-
tic) spin dynamics then involves collective spin flip events,
like loop or cluster moves. However, it is important to
understand that only single spin flip events are accessible
experimentally, at least in the systems used so far, whether
the system is field demagnetized or thermally activated.
Disordered artificial systems thus suffer from the critical
slowing down of the single spin flip dynamics, prohibiting,
intrinsically, access to low-energy magnetic states. This is
a crucial point as the systems we are interested in and
which exhibit collective and exotic phenomena become
loop models [71]1 in their low-temperature regime (see
Sects. 4 and 5). Otherwise said, the sad news is that

1 Loop models, as those described in [71], are defined by one-
dimensional degrees of freedom, which thermodynamics is driven by
their statistical weights in the partition function. In spin models,
as the ones discussed in this work, loops actually correspond to a
closed head-to-tail arrangement of Ising spins. For example, in the
low-energy square ice manifold, spin fluctuations are energetically
prohibited as the ice rule is enforced. Nevertheless, fluctuations are
possible, provided that they correspond to global fluctuations pre-
serving the ice rule constraint (see Sect. 4.1). Loop moves correspond
to such fluctuations, hence the correspondence, or mapping, between
spin ice models and loop models at low temperatures, i.e. within the
ice manifolds.

Fig. 3. Schematics illustrating the atom positions in an
arrested configuration obtained at finite temperature in a
hypothetical pure element. The question is whether the snap-
shot on the left is evolving towards a crystal if the temperature
could be further reduced, or if it would evolve towards a liquid
state.

exploring these loop models experimentally, with the cur-
rent approach provided by artificial spin systems (or even
in bulk compounds), is a lost battle. What saves us is
that these collective and exotic phenomena are neverthe-
less partially accessible, mainly because of the finite size of
the studied artificial systems. Fingerprints and signatures
of the many-body physics associated with frustrated spin
systems can then be captured, provided that these sys-
tems are efficiently demagnetized based on a single spin
flip dynamics.

2.2 Statistical analysis of an arrested magnetic
configuration

One of the main challenges usually faced with artificial
spin systems is the low statistics available with imag-
ing techniques compared to macroscopic measurements,
such as magnetization, susceptibility or neutron scattering
experiments generally employed when studying bulk com-
pounds. Most of the time with artificial systems, one is left
with one, or only a few, static magnetic images of a limited
number of elements, while the ultimate goal is to explore
collective phenomena. For example, spin liquids are often
described as highly fluctuating magnetic systems with a
spin dynamics persisting down to very low temperatures.
The question then arises of whether artificial spin sys-
tems can be considered as spin liquids although dynamical
imaging is in practice complex to achieve, except to image
very slow dynamical processes (see for instance Ref. [53]).

This intrinsic difficulty can be illustrated through a sim-
ple analogy. Considering a snapshot of atom positions like
schematized in Figure 3, the question we want to answer
is whether this snapshot represents:
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Fig. 4. Magnetic configurations (a–d) and their associated magnetic structure factors (e–h) for a square spin system. (a–d)
Red and blue arrows represent the local spin direction. The red, blue and green squares represent the local vertex configuration.
Blue and green squares are associated with type I vertices, while red squares are associated with type II vertices. In these four
magnetic configurations, the populations of type I and type II vertices are similar: (a) 38%/62%, (b) 41%/59%, (c) 38%/62% and
(d) 38%/62%, respectively. But obviously, they show distinct properties. (e–h) Magnetic structure factors reveal clear magnetic
Bragg peaks in the three first cases (e–g), while it shows in the last case (h) a diffuse signal characteristic of a spin liquid state.

– an arrested state of a crystal held at high tempera-
ture so that atom positions are not well-defined;

– a liquid, in which atom positions develop spatial
correlations;

– or a random distribution of particles, typical of an
ideal gas.

Increasing significantly the size of this image or, equiva-
lently, increasing the number of snapshots, would obvi-
ously help characterizing the nature of the ordered or
disordered state involved. But answering this question can
be more challenging if only a few static snapshots, with a
limited number of particules, are available.

From a magnetic image, where each individual spin
configuration Si is measured unambiguously, several
quantities can be estimated. For instance, the total mag-
netic moment M of a given state can be easily determined
as M =

∑
i Si. A second natural quantity that comes

to mind is the counting of the vertex populations. This
is particularly useful when the system is characterized
by a magnetically ordered ground state. In that case,
vertex populations give a good flavor of how far the
system is from perfect ordering. If one assumes that the
interactions are only between nearest neighbors, then the
system energy is simply the sum of all individual vertex
energies, and the estimate of the vertex populations is a
direct measure of the system energy. Counting the vertex
populations can also be interesting for understanding to
what extent certain constraints induced by the frustration
are obeyed in the array. However, this type of analysis
quickly shows strong limitations. First, as we will see
below, artificial spin systems are dipolar by nature and

considering only interactions between nearest neighbors
is a crude approximation. Second, this type of analysis
is essentially useful for trivial ground state ordering
but does not always provide meaningful information to
characterize a disordered state.

Looking at the square spin system is instructive,
although the same arguments apply for other geometries.
In the quest of the degeneracy in the square ice model (see
Sects. 3.5 and 4), one expects to have about 33% of type
I vertices and about 67% of type II vertices (see Sect. 3.5
for the definition of the vertex types in the square ice)
and zero net magnetization, at thermodynamic equilib-
rium. However, measuring the magnetization or the vertex
populations does not tell anything about the spatial distri-
bution of these two vertex populations. One can imagine
very different states with ordered or disordered patches
of type I and type II vertices such that their populations
are 33% and 67% (see Fig. 4). Comparing Figures 4a–4d,
one immediately sees that these two population values
alone do not tell much about the magnetic state of the
system. If these examples are obvious illustrations that
magnetization and vertex populations are not good quan-
tities to describe a disordered state, there might be more
subtle cases where this demonstration is not as trivial.
For example, Figures 4c and 4d show two fairly similar
magnetic configurations, not only in terms of vertex pop-
ulations, but, to a certain extent, also in terms of spatial
arrangement of these vertices. At first glance, seeing that
the physics at play is drastically different in these two
cases might be challenging.

This difference is however clearly seen after perform-
ing a Fourier transform of the pairwise spin correlations
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deduced from the real space configurations. Such a Fourier
analysis provides the so-called magnetic structure factor,
i.e., the magnetic diffraction pattern associated with the
considered real space magnetic state (see Figs. 4e–4h).
Comparison between Figures 4c and 4d, not in real space
but in reciprocal space, is now striking: one shows mag-
netic Bragg peaks, while the other is characterized by a
diffuse, but structured, background signal (see Figs. 4g
and 4h). In the former case (Figs. 4c and 4g), the mag-
netic configuration shows clear tendency to ordering, while
in the latter (Figs. 4d and 4h), the magnetic snapshot
ressembles a spin liquid state. Being able to character-
ize a disordered state then often requires to analyze the
magnetic correlations that develop in the array. Since arti-
ficial spin systems provide real space images of magnetic
configurations, pairwise spin correlations can be mea-
sured and averaged over the entire array or estimated
locally. Besides their interest to characterize magnetic
order or disorder, they provide a set of useful data that
can be directly confronted to model predictions. They
can be used for instance to test the relevance of dif-
ferent spin models to capture the physics at play (see
Sect. 3) and to determine if a given configuration is
representative of a physics at thermodynamic equilib-
rium or of an out-of-equilibrium physics (see following
Sect. 2.3).

2.3 Comparison with thermodynamics

The set of measurements providing the values of the resid-
ual magnetization, of the vertex populations and of the
spin–spin correlations can be confronted to predictions
from various spin models. Indeed, one might want to know
if the arrested configurations that have been imaged can
be described by a physics at thermodynamic equilibrium
or if an out-of-equilibrium physics is present. Once an
artificial spin system has been demagnetized, understand-
ing whether this system has been quenched or brought
to a magnetic configuration representative of a manifold
at thermodynamic equilibrium is of crucial importance to
identify the relevant scientific framework describing the
observed phenomena. As a matter of fact, this question
comes together with the choice of a spin Hamiltonian. As
we will see below, the physics at work in artificial spin
systems is most of the times a physics at thermodynamic
equilibrium, and the proper choice of the Hamiltonian
is a spin Hamiltonian that includes long range dipolar
interactions.

The claim that the physics of artificial spin systems
is well-described by the equilibrium statistical mechan-
ics of a dipolar spin Hamiltonian might sound trivial at
first sight. But considering that the nanomagnets used
experimentally:
– are not point-dipoles (their typical length is of the order
of the lattice constant);
– are not macrospin objects (their behavior is described
by micromagnetism, and magnetization reversal within a
given nanomagnet involves the nucleation and propaga-
tion of magnetic domain walls);
– and do not behave like pure Ising-like variables (the
magnetization distribution within a nanomagnet is not

uniform because of its micromagnetic character), it is in
fact quite a miracle that a simple Ising spin model on a lat-
tice captures most of the physics observed experimentally.
Furthermore, because artificial spin systems are never
defect-free and are often shaken using rough protocols (see
Sect. 2.1), being capable of measuring signatures of the
long range dipolar interaction coupling the nanomagnets,
within a single snapshot of an equilibrated magnetic con-
figuration is also quite astonishing. Otherwise said, the
whole complexity and high degree of imperfection of a
two-dimensional arrangement of magnetic nanostructures
can be encompassed by a spin Hamiltonian of the form∑

(i,j) Jij σiσj , where σ is an Ising variable and Jij is

the interaction strength that couples two point dipoles. It
is worth noting that including long range coupling terms
in the spin Hamiltonian is not simply a matter of how
accurate is the description of a given magnetic configu-
ration. In some cases, the short range and dipolar spin
Hamiltonians have very distinct low-temperature behav-
iors (see Sects. 3.2 and 3.3), although they are very often
not distinguishable in their high temperature regime.
In particular, the richness of the many-body physics in
the kagome lattice is intimately related to the dipolar
nature of the interaction coupling the nanomagnets (see
Sect. 5).

One important consequence of identifying the physics
at play is the possibility to associate an (fictional)
effective temperature to a given magnetic microstate
imaged experimentally [39,72]. Intrinsically, this effective
temperature does not represent much as artificial spin
systems are essentially athermal systems. For example,
this effective temperature does not provide any infor-
mation on how the system actually fluctuates or gets
frozen. However, it does provide key information to
evidence collective phenomena. If artificial spin systems
can be modeled by a dipolar spin Hamiltonian and a
physics at thermodynamic equilibrium, the properties
of a given arrested state are then known completely. In
particular, the average values and associated standard
deviations of quantities, such as magnetization, vertex
populations, pairwise spin correlations, energy, etc.,
are now determined at any temperature. This effective
temperature is thus interesting as it allows to say that a
given snapshot is characteristic (or not) of an ordered or
a disordered state at thermodynamic equilibrium.

In fact, the comparison between the experimental and
theoretical pairwise spin correlation coefficients is sensi-
tive enough to detect deviations from the predictions of
an at-equilibrium physics. This can be seen for exam-
ple in a thermally active artificial kagome dipolar spin
ice [67]. The spin–spin correlations Cαj for the seven
first neighbors have been calculated for all tempera-
tures using Monte Carlo simulations (see Fig. 5). These
spin correlators are represented by different colors and
greek symbols. The nearest-neighbor coefficient Cαβ is
represented in black, while the two nonequivalent third
neighbors (Cαν and Cαδ) are shown in green and light
blue, respectively. At high temperature, the system is
paramagnetic and all spin–spin correlation coefficients
equal zero on average. As the temperature is reduced,
correlations start to develop and the system encounters
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Fig. 5. Pairwise spin correlations Cαj as a function of
temperature T (normalized to the coupling strength Jαβ
between nearest-neighbor elements). The curves are deduced
from Monte Carlo simulations using a kagome dipolar spin ice
Hamiltonian. The dots are experimental measurements. Dif-
ferent colors are used to distinguish spin–spin correlators, as
schematized in the inset. All seven experimental values (dots)
fall on the Monte Carlo curves for a T/Jαβ temperature of the
order of 0.05, although the Cαδ and Cαν correlators deviate
substantially from their corresponding Monte Carlo predic-
tions. These deviations are attributed to kinetic effects during
the thermal annealing of the experimental array (from Ref. [67]
c© 2014 the American Physical Society).

several phase transitions (see Sect. 3.3). In this figure,
the experimental values deduced from a set of magnetic
images are represented as colored dots. With a good
approximation, these seven dots fall on the predicted
curves for a temperature of about 5% of the coupling
strength Jαβ between nearest neighbors. However, the Cαν
and Cαδ spin correlators slightly deviate from these pre-
dictions. Cαδ even reaches a value that is not in the range
of possible values predicted by the Monte Carlo simula-
tions. These differences can be accounted for by including
some kinetic effects during the (de)magnetization process
[67]. We emphasize here again that analyzing the residual
magnetization or the vertex populations cannot usually
provide such a fine description of the system, while cor-
relations are powerful quantities that were used to prove
that the physics is dipolar and not short ranged, and that
out-of-equilibrium physics can be even detected in specific
cases.

3 Artificial spin liquids

One of the initial motivations of fabricating artificial spin
systems was to access, directly in real space, the physics
of disordered magnetic states, such as spin liquids. More
generally, artificial spin systems offer the promise of being
capable to image, spin by spin, collective states of mat-
ter and cooperative magnetic phenomena, thus allowing
to probe, at the desired length scale, the complex many-
body physics of frustrated spin systems. The main purpose
of this section is to discuss to what extent artificial spin
systems behave as spin liquids, and after recalling what
we mean by spin liquid, the properties of several systems
will be reviewed. We leave aside for now other collective
phenomena that will be introduced and presented in the
following sections.

One important point we want to stress in this sec-
tion is that, by design, artificial spin systems are dipolar.
The associated spin models used to capture their ther-
modynamic properties are thus long ranged, and this is
not a small detail. For example, in the kagome spin ice,
the dipolar interaction leads to new collective phenom-
ena, such as charge crystallization, spin fragmentation and
Coulomb phase physics (see Sects. 4 and 5) that are simply
absent in the short range version of the very same model.
Experimentally, signatures of all these three phenomena
are found, indicating that dipolar interactions drive the
(low-temperature) physics of artificial spin systems. From
our point of view, it is precisely the long range nature of
the magnetostatic interaction coupling the nanomagnets
that makes the physics of artificial spin systems rich and
interesting. Attention will then be paid in this section to
illustrate the impact of the dipolar interaction on the liq-
uid behavior of several artificial spin systems studied these
last few years.

3.1 What is an artificial spin liquid?

Before describing the physics of spin liquid state(s), we
define here what we mean by artificial spin liquid. The
motivation of this subsection is twofold. First, although
the concept of spin liquid is not new and relatively well
understood, at least for classical spin systems, finding a
simple, well-admitted and general definition is in fact a
difficult task [73–75]. Second, new concepts, such as the
magnetic moment fragmentation [76], emerged recently,
extending the idea of spin liquids to fragmented spin liq-
uids [77], characterized by their own dynamics and exotic
properties (see Sect. 5).

First of all, throughout the paper, we limit our discus-
sion to classical spin systems as no quantum effects are
expected in assemblies of nanomagnets as those we usually
consider in artificial spin systems. Moreover, in all systems
studied so far, spins have an Ising character, meaning that
continuous degrees of rotation as those found in XY or
Heisenberg models are not considered. Within this (very)
restricted framework, by artificial spin liquid, we mean a
disordered but correlated magnetic state, built from an
assembly of classical interacting Ising variables, in which
pairwise spin correlations are not zero, but decay to zero
at large distances.
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However, it must be pointed out that the term liq-
uid might be confusing and is mainly intended to draw
an analogy with the three conventional states of matter
(solid, liquid and gas) [73]. In particular, if one can reason-
ably compare a paramagnet to a gas (i.e., an uncorrelated
disordered state at high temperature), and a ferromag-
net (or an antiferromagnet) to a crystal (i.e., a long range
ordered state at low temperature), the concept of spin liq-
uid is more subtle in many aspects. First, contrary to the
three conventional states of matter, certain spin liquids
remain disordered even at the lowest possible tempera-
ture, while some other spin liquids do crystallize when
reducing the temperature. For example, the kagome Ising
(kI) antiferromagnet remains fluid at any temperature (see
Refs. [78–80] and Sect. 3.2 below), while the kagome dipo-
lar spin ice is characterized by a well-defined long range
order (LRO) at low temperature [81,82]. Second, whereas
classical liquids have only local correlations, some classical
spin liquids can be characterized by a correlation length
that diverges and pairwise spin correlations that are long
ranged. These properties are not intuitive and make spin
liquids different from conventional liquids.

In fact, two types of classical spin liquids are usually
studied. The first one is often called a cooperative param-
agnet [83], has a finite correlation length (of the order of
one lattice constant) and spin–spin correlations that decay
exponentially with the distance. The kI antiferromagnet
(or equivalently the short range kagome spin ice) described
below is an example of a cooperative paramagnet. The
second one, although also a cooperative paramagnet, is
often called an algebraic spin liquid as the pairwise spin
correlations have a power-law dependence and an infinite
correlation length. This is the case for example of the spin
ice II phase present in the kagome dipolar spin ice (see
Refs. [81,82] and Sect. 3.3).

3.2 The kagome Ising antiferromagnet

The triangular and kagome Ising (kI) antiferromagnets,
together with the square ice, are probably the first stud-
ied classical spin liquids in two dimensions [78–80,84,85].
The kI antiferromagnet consists of a kagome lattice on
which Ising spins are located, their anisotropy axis being
perpendicular to the kagome plane (see Fig. 6a). In this
model, spins interact antiferromagnetically, between near-
est neighbors only. The corresponding spin HamiltonianH
can then be written as:

H = −J
∑
<ij>

Si · Sj (1)

where J is negative and defines the coupling strength
between the spins Si and Sj residing on the sites i and j,
respectively. In this expression, <ij> means that the sum-
mation is made over nearest neighboring spins. Because
each spin points along the direction perpendicular to the
kagome plane, the Hamiltonian can take a scalar form:

H = −J
∑
<ij>

σiσj (2)

Fig. 6. Schematics of the kagome Ising (kI) antiferromagnet
(a) and kagome spin ice (b). The grey arrows represent the
spin direction: spins are pointing along the angle bisectors in
the kagome spin ice, while they all point out of the kagome
plane in the kI antiferromagnet. The blue and red clouds at
the vertex sites correspond to the magnetic charges associated
with the spins, when these spins are described using a dumb-
bell charge picture. In the kagome spin ice, a red/blue cloud
(+1/− 1 magnetic charge) is associated to the head/tail of an
arrow. In the kI antiferromagnet, a red/blue cloud (+1/1 mag-
netic charge) is associated to the head/tail of an arrow for a ∆
triangle, while the opposite convention is used for a ∇ triangle
to ensure charge neutrality. The unit vectors ei used to define
the spin directions are represented by blue arrows on the left
(from Ref. [92] c© 2014 the American Physical Society).

with Si = σiez, where ez is a unit vector normal to the
lattice plane, while σi is a scalar giving the spin’s orien-
tation along this direction (+1 if parallel to ez and −1
otherwise). The fact that σi = ±1 ensures that the spins
are Ising variables.

The thermodynamics of this model is described by two
temperature regimes separated by a crossover (there is
no phase transition) [79,80]. At high temperature, i.e.,
when T/J � 1, the system is in a paramagnetic state and
all types of local configurations are allowed on a given
triangle of the kagome lattice (all eight configurations
illustrated in Fig. 1a are accessible). As the tempera-
ture is reduced, short range correlations start to develop,
eliminating the two local configurations with the three
spins pointing in the same direction. When T/J � 1, the
system is in a cooperative paramagnet state. This name
comes from the fact that the system is highly fluctuat-
ing, in the manner of a paramagnet [83], although every
triangular unit cell of the kagome lattice must obey the so-
called (kagome) ice rule [86,87]: a local configuration can
be only one of the six low-energy arrangements reported in
Figure 1a. Otherwise said, the system is characterized by
a magnetic susceptibility that varies like 1/T down to the
lowest possible temperatures [88]. This low-temperature
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Table 1. Theoretical values (deduced from Monte Carlo simulations) of the pairwise spin correlation coefficients Cij
in the low-temperature manifold of the kagome spin ice and kagome Ising antiferromagnet [39,92]. Note that these
correlations are temperature independent once the system entered the spin ice manifold.

Cij αβ αγ αν αδ ατ αη αφ

nith 1 2 3 3 4 5 6
Spin ice 0.167 −0.062 0.101 −0.075 0.012 0.019 0.023
Ising AF −0.333 0.124 0.101 −0.075 −0.024 −0.038 0.023

phase is often referred to as a spin liquid state, character-
ized in that case by a macroscopically degenerate ground
state manifold (the entropy per site is 0.501) and pair-
wise spin correlations that decay exponentially with the
distance [89].

This short range kI antiferromagnet model can be
mapped, one to one, onto a short range kagome multi-
axis Ising ferromagnet model (kagome spin ice), where
geometrical frustration is provided by in-plane Ising-like
anisotropies [90,91] (see Fig. 6b). The corresponding spin
Hamiltonian H can be written as:

H = −J
∑
<ij>

Si · Sj (3)

where J is now positive. Because the spins point along the
bisectors of the equilateral triangles making the kagome
lattice, this Hamiltonian can also take a scalar form:

H = −J
∑
<ij>

σiσj ei · ej = +
J

2

∑
<ij>

σiσj (4)

with Si = σiei, where ei is a unit vector that now defines
the local anisotropy direction. It is important to note that
the two Hamiltonians reported in equations (2) and (4)
differ only by a factor −1/2. In other words, the two
models are identical: they are both described by two tem-
perature regimes, including a macroscopically degenerate
ground state manifold, and they must develop identical
exponentially decaying pairwise spin correlations in their
low-temperature spin liquid regime. The values of the first
seven spin–spin correlations are given in Table 1 for the
two models.

We emphasize that these two models are identical if
nearest-neighbor interactions only are considered. This
equivalence is of course not valid anymore if long range
dipolar interactions are taken into account. In particular,
while in the kI antiferromagnet all spin–spin interactions
favor an antiferromagnetic alignment of the spins for
all distances, in the kagome spin ice, these interactions
lead to a ferromagnetic or antiferromagnetic coupling
depending on the considered pair of spins. Adding long
range dipolar interactions to these models, one then
expects their low-temperature behavior to be modified
and distinct. We will see below that the analysis of the
spin–spin correlations measured experimentally indeed
confirms that each artificial system has its own story
to tell [92].

3.3 The artificial kagome dipolar spin ice

We mentioned above that the kI antiferromagnet and the
kagome spin ice (see Fig. 6) are expected to develop dis-
tinct low-temperature behaviors when long range, dipolar
interactions couple the spins. We address here the physics
of the kagome dipolar spin ice, and show how the cor-
responding phase diagram differs form the cooperative
paramagnet described in Section 3.2. For the sake of com-
pleteness, the spin Hamiltonian we consider in this section
can be written as:

H = −D
2

∑
(i,j)

[
3(Si · rij)(Sj · rij)

r5ij
− Si · Sj

r3ij

]
(5)

where D is the dipolar constant.
The kagome spin ice was the first geometrically frus-

trated system studied via an array of interacting nano-
magnets [16]. The pioneering work of Tanaka et al.
revealed that such artificial kagome arrays have clear
tendency to select local configurations satisfying the
(kagome) ice rule constraint [86,87]. Comparing the mag-
netic configurations obtained experimentally with pre-
dictions from Monte Carlo simulations of the nearest-
neighbor kagome spin ice [89], Qi et al. went a step further
and demonstrated that the observed ice-like physics in
arrays of nanomagnets could not be described solely by
a short range spin Hamiltonian [93]. In fact, the analy-
sis of the pairwise spin correlations deduced from the real
space magnetic images revealed substantial discrepancies
compared to the values derived from Monte Carlo simula-
tions [89], especially for the second (Cαγ) and third (Cαδ)
neighbors. This work is important as it shows that dipo-
lar interactions lead experimentally to a low-temperature
physics that differs from the one of the kI antiferromag-
net. This result has been later confirmed unambiguously
through the analysis of spin–spin correlations up to the
seventh neighbors [39].

The fact that an array of nanomagnets coupled through
magnetostatics behave as a dipolar spin system and not
as a short range spin system might sound trivial. How-
ever, it was first not obvious whether or not signatures
of the dipolar interactions could be detected experimen-
tally. For example, the intrinsic disorder present in any
experimental array could have screened completely the
dipolar interactions, and the imaged magnetic disorder
could have been dominated by local defects. In addition,
the finite length of the nanomagnets and the short edge-
to-edge distance between neighboring elements compared
to the lattice constant could have strongly reduced the
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impact of the dipolar coupling strength. And finally, since
the short range (Eq. 4) and the long range (Eq. 5) ver-
sions of the same Hamiltonian are hardly distinguishable
in their high temperature regimes [39], dipolar interac-
tions could have been neglected (and as a matter of fact,
they were first neglected) simply because of the technical
difficulty to bring an artificial spin system into its low-
energy manifold. In short, although the physics looks like
short range at first sight, the artificial kagome spin ice,
and more generally artificial spin systems based on arrays
of nanomagnets are dipolar.

The first consequence is that the phase diagram of the
dipolar kagome ice is much richer and way more exotic
than the kI antiferromagnet described in Section 3.2.
More specifically, Monte Carlo simulations of the kagome
dipolar spin ice reveal a two stage ordering process at
low temperatures (see Fig. 7a) [81,82]. The system first
exhibits a crossover from a high temperature paramag-
netic phase (i.e., when T/J � 1) to a first spin liquid
phase when T/J ∼ 1, J being the nearest neighbor cou-
pling strength. This liquid phase is often referred to as
the spin ice I phase in the literature. Similar to the kI
antiferromagnet described in the previous section, there
is no phase transition and the system strongly fluctuates
with an additional constraint associated with the so-called
kagome ice rule. As the temperature is reduced, longer
range couplings further correlate the system, which under-
goes a first phase transition towards a second spin liquid
phase (refereed to as the spin ice II phase). Most of the
residual entropy is released, but not all of it (see Fig. 7a),
meaning that the phase is still macroscopically degener-
ate [81,82]. Besides the ice rule constraint, this second
spin liquid phase has an additional constraint: spins are
allowed to fluctuate if they satisfy both the ice rule and the
formation of a magnetic charge crystal, given the dumb-
bell charge description of the magnetic moment [81,82,94].
Eventually, a second phase transition occurs at the lowest
temperatures and a LRO sets in (see Fig. 7b).

We emphasize that the spin ice I phase is not equivalent
to the short range kagome spin ice (i.e., the kI antiferro-
magnet). In particular, the pairwise spin correlations are
temperature dependent in the spin ice I phase, while they
are constant in the short range kagome spin ice [39,92].
The two spin liquids thus differ in the sense that the
spin ice I phase has continuously evolving spin–spin cor-
relations as the temperature is reduced, meaning that all
configurations satisfying the ice rule do not have the same
energy, contrary to the spin manifold associated with the
short range kagome ice.

One puzzling aspect of the spin ice II phase is the emer-
gence of a hexagonal pattern of alternating +1 and −1
magnetic charges located at the vertices of the kagome
lattice, on top of which spins can still highly fluctuate.
This property is not only predicted numerically, but has
been evidenced experimentally as well [39,55,62,65,67–69]
(see Fig. 8). The intriguing aspect of this charge crystal-
lization is that no charge degree of freedom is encoded in
the underlying dipolar spin Hamiltonian (see Eq. 5), and
the magnetic charge order somehow comes out of the blue.
We will see in Section 5 that its existence has in fact deep
roots in the associated dipolar spin model [69], but at this

Fig. 7. (a) Temperature dependence of the specific heat c(T )
(red curve) and entropy per spin s(T ) (green curve) for the
kagome dipolar spin ice. The dashed blue lines show several
levels of entropy per site: s = 0.693 (Ising paramagnet), 0.501
(spin ice I phase) and 0.108 (spin ice II phase) (from Ref. [82]
c© 2011 the American Physical Society). (b) Table illustrating

the different magnetic phases in the kagome dipolar spin ice.

stage, the spin ice II phase can be regarded as a spin liquid
that sits upon a magnetic charge crystal. Another intrigu-
ing property of this phase is the nature of the spin–spin
correlations: while these correlations decay exponentially
with the distance in the short range kagome ice, they
decay algebraically in the kagome dipolar spin ice. This
is also puzzling as algebraic spin liquids are usually asso-
ciated to Coulomb phases (see Sect. 4), and characterized,
in spin ice systems, by a divergence-free condition at the
vertex sites, in sharp contrast with the charged vertices in
the kagome lattice (see Sect. 5).

3.4 The artificial kagome dipolar Ising
antiferromagnet

While the at-equilibrium and out-of-equilibrium prop-
erties of the artificial kagome dipolar spin ice have
been extensively investigated, both numerically [81,82]
and experimentally [39,55,62,65,67,68,93], much less is
known on the thermodynamics of the artificial kagome
dipolar Ising antiferromagnet. In particular, the nature
of the spin liquid phase expected at low temperature
and the properties of the ground state have been only
partly addressed so far [92,95–97]. Many questions then
remain open, for example regarding the number of phase
transitions, the value of the residual entropy associated
with the low-energy manifold and the relevant collective
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Fig. 8. (a,b) From reference [62] (Reprinted by permission
from Springer Nature c© 2013). Emergent magnetic charge
domains in the artificial kagome dipolar spin ice. (a) Real space
magnetic image of an arrested spin configuration. (b) Corre-
sponding map of the magnetic charge distribution where the
red and blue dots represent the two degenerate magnetic charge
ordered states. (c–e) From reference [39] ( c© 2011 the American
Physical Society). (c) Theoretical nearest neighbor charge-
charge correlators (bold lines) and their standard deviations
(hatched regions) calculated from the short range (SI) and
dipolar (DSI) kagome spin ice models as a function of temper-
ature. (d) Experimental values of the charge-charge correlators
measured for 34 arrays of nanomagnets. (e) Histogram of the
experimental charge-charge correlators compared to the nearly
Gaussian distribution computed in the short range kagome spin
ice model.

spin dynamics that needs to be activated to overcome
the critical slowing down when approaching the ground
state [98].2

Interestingly, the first investigations on the kagome
dipolar Ising antiferromagnet were experimental and
made through the magnetic imaging of lithographically
patterned arrays of ferromagnetic nanodisks having out-
of-plane magnetization [95] (see Fig. 9). At first glance,
the analysis of the pairwise spin correlations obtained
after an ac demagnetization protocol reveals striking sim-
ilarities with those found for the kagome (dipolar) spin
ice, suggesting a possible universality in artificial spin
ice behavior [95]. Further experiments later showed clear
limitations to this universality and permitted to under-
stand the origin of the similarities [92]. Both models
indeed develop similar pairwise spin correlations in their
high temperature regime, just after the system starts to
correlate upon cooling from the paramagnetic phase. How-
ever, longer ac demagnetization protocols, together with
stronger inter-island interactions, successfully lower the

2 During the reviewing process, a new article appeared addressing
some of these issues. We refer the reader to reference [98].

Fig. 9. Artificial arrays of ferromagnetic nanodisks with per-
pendicular magnetic anisotropy made to mimic the properties
of the kagome Ising antiferromagnet. (a) Scanning electron
micrograph of a portion of the array. The magnetic disks are
located on the nodes of a kagome lattice. (b) Magnetic force
microscopy image of the same lattice after a field demagnetiza-
tion protocol. Black and white contrasts give the local direction
of the out-of-plane magnetization (from Ref. [95] c© 2012 the
American Physical Society).

effective temperature of the system and allow reaching a
temperature regime where both systems develop distinct
behaviors (see the predicted temperature dependence of
the spin–spin correlators reported in Figs. 10a and 5 for
the kagome dipolar Ising antiferromagnet and the kagome
dipolar spin ice, respectively).

Another way to visualize these differences is to consider
the nearest-neighbor charge-charge correlator rather than
the pairwise spin correlations. As discussed in Section 3.3,
the concept of magnetic charge has proven to be partic-
ularly useful to describe the two-stage ordering process
present in the kagome dipolar spin ice [81,82]. Although
less intuitive for the kagome dipolar Ising antiferromag-
net, the very same definition of the magnetic charge can
be used [92]. In particular, recalling that the short range
versions of the kI antiferromagnet and kagome spin ice
show identical physics (see Sect. 3.2), the temperature-
dependence of their nearest-neighbor charge-charge corre-
lations are also identical (see Fig. 8c, where 〈QiQi+1〉 =
−1 at high temperature and −1/9 in the spin liquid
phase). However, when long range dipolar interactions
are taken into account, the pairwise charge correlators
show distinct trends and even have opposite signs (see
Fig. 10b). The nearest-neighbor charge-charge correlator
is thus a convenient quantity to distinguish experimentally
the two physics, especially when demagnetization proto-
cols hardly bring the corresponding artificial arrays into
their low-energy manifold.

Monte Carlo simulations of the kI antiferromagnet also
reveal that long range dipolar interactions drastically
modify its low-temperature behavior [92]. More specifi-
cally, if the low-energy manifold is not known, the system
seems to present a long range ordered ground state. A
potential candidate for this ground state has been pro-
posed [96] and consists of a rectangular crystal of a 12-spin
magnetic unit cell, commensurable with the underlying
triangular Bravais lattice, as reproduced in Figure 10c.
This ground state candidate is also characterized by ferro-
magnetically charged stripes (Fig. 10d), in sharp contrast
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Fig. 10. Temperature dependence of the (a) pairwise spin correlations and (b) nearest-neighbor charge correlator. Inset in
(a) gives the notations used to label the first seven spin–spin correlation coefficients. (c) The spin configuration of the ground
state candidate is a crystal of 7-shaped unit cells with a rectangular basis (A1,A2). Each unit cell contains 12 spins, represented
by red and blue dots corresponding to the ‘up’ and ‘down’ spin states, respectively. (d) Vertex magnetic charges, represented by
magenta and cyan dots for the +1 and −1 charge states, respectively (from Ref. [96] c© 2016 the American Physical Society).

with the antiferromagnetic charge crystal observed in the
kagome dipolar spin ice.

Several important questions are still unresolved regard-
ing the low-temperature physics of the kagome dipolar
Ising antiferromaget. What is essentially missing is a
Monte Carlo simulation throughout the whole tempera-
ture range, especially to confirm [98]2 or infirm that the
current candidate for the long range ordered ground state
is actually the ground state. Another central question
Monte Carlo simulations could answer is the possible exis-
tence of phase transitions at low temperature [98].2 We
might expect at least one phase transition from the spin
ice phase to the long range ordered ground state. But like
the kagome dipolar spin ice, we cannot exclude the exis-
tence of an intermediate phase transition, which could, for

example, describe a spin liquid state sitting on top of an
antiferromagnetic pattern of charged lines (see Fig. 10d).

3.5 The artificial square spin system

So far, we only considered the kagome geometry. How-
ever, the square lattice has been extensively studied as
well since the seminal paper of Wang et al. [18]. One of
the initial motivations in fabricating a square arrange-
ment of interacting nanomagnets, as the one illustrated
in Figure 11a, was to mimic the properties of pyrochlore
spin ice materials [90], and to visualize in real space how
the nanomagnets accommodate the geometrical frustra-
tion [18]. Otherwise said, such a square arrangement was
expected to behave as a spin liquid, and more specifically
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Fig. 11. (a) Scanning electron microscope image of an artificial
square spin system. (b) Magnetic image providing the local
direction of magnetization and allowing to resolve all vertex
configurations. (c) Schematics of the different vertex types and
their associated magnetic contrast. Type I vertices, which have
the lowest energy, are highlighted in orange and yellow. One
type II vertex and one type III vertex, which can be observed in
(b), are also highlighted in green and blue, respectively (from
Ref. [53] c© 2013 the American Physical Society).

as a Coulombic spin liquid (see Sect. 4 for more details).
But in contrast with the kagome geometry, the nonequiv-
alent nature of the magnetostatic interactions between
nearest neighbors in the square lattice lifts the degeneracy
of the expected disordered ground state manifold (we will
come back to that point in Sect. 4.2). These artificial real-
izations were then unsuccessful in achieving a spin liquid
state, until recently [99]. Instead, artificial square arrays
show a conventional Néel ordering from a high tempera-
ture paramagnetic phase to an antiferromagnetic state at
low temperature [48,53,61,64,68]. This antiferromagnetic
ground state is characterized by a flux closure of magnetic
loops with alternating chirality, as shown in Figures 11b
and 11c.

For the purpose of this paper, this square arrangement
is less interesting for investigating exotic states of matter
or cooperative magnetic phenomena. Nevertheless, it is
worth mentioning that it is precisely because the system
first failed to capture a liquid-like physics that it triggered
a wealth of studies and opened the field of artificial spin

systems. In particular, the well-defined antiferromagnetic
ground state was used as a target configuration for:

– improving the efficiency of demagnetization proto-
cols [33,35,38,48];

– optimizing the magnetic properties of the con-
stituent material [59,61,68];

– characterizing the role of the intrinsic disorder [46,
100,101];

– studying thermal fluctuations [64,102] and magneti-
zation reversal processes [103–106];

– or understanding how charged excitations move in an
otherwise uncharged but ordered background [107,
108];

– just to name a few selected examples. In addition,
results on square arrays inspired the community for
designing other lattice geometries (see Sect. 3.6) to
recover the macroscopic degeneracy of the ground
state manifold expected initially.

We note that artificial arrays like the one reported in
Figures 11a and 11b are often referred to as artificial
square ice systems. This semantic might be confusing in
condensed matter physics. The reason is twofold:

– The square ice usually refers to a vertex model of sta-
tistical mechanics (also called the six vertex model)
which is characterized by a residual entropy at 0 K
[85,109]. In this vertex model, over the 16 possible
vertex configurations (see Fig. 11c), only the six ver-
tices associated with two spins pointing inwards and
two spins pointing outwards (type I and type II ver-
tices) are considered: this is the ice rule constraint.
These six vertices are supposed to have the same
energy and the 10 remaining vertices (type III and
type IV) are disregarded. In all the artificial arrays
of nanomagnets fabricated so far, these assumptions
are not valid: either type I and type II vertices have
different energy, or type III vertices remain present.

– As mentioned above, the square ice model is a
vertex model, while artificial arrays of nanomagnets
are experimental realizations of spin models. This
is so because artificial spin systems are made from
arrays of magnetic islands that interact through
magnetostatics. These arrays are thus assemblies of
interacting magnetic elements that mimic pseudo-
spin lattices. The energy of a given spin microstate
is then the sum of all pairwise spin configurations,
in contrast with vertex models, in which the energy
of a given microstate is the sum of all individual
vertex energies.

To avoid confusion in the following, we will refer to the
artificial square spin system (and not square ice) when
describing an array as the one shown in Figure 11a.

We might have left the impression that no collective
phenomenon takes place in the artificial square spin sys-
tem. This is not quite true. In particular, although the
system orders at low temperature, reaching the ground
state requires collective motions of spins: once the tem-
perature prevents the formation of charged local configu-
rations (type III and type IV vertices), only loop and/or
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Fig. 12. (a) Lattice geometry of the Shakti spin system. Each green element is an in-plane magnetized nanomagnet.
(b) Example of a spin configuration in the Shakti spin system. All square vertices have a type I configuration, while the
T-shape vertices, defined by two blue and one red arrows, are either of type I′ or type II′. (c) Vertex configuration associated
with the spin state shown in (b). Type II′ vertices are indicated by circles. (d) The vertex configuration in (c) can be mapped on
an emergent 6 vertex model. (e) The seven types of vertices for the square and T-shape vertices. (f) Monte Carlo simulations of
the Shakti spin system provide the temperature dependence of the vertex populations (top two panels), of the entropy density s
and specific-heat c (bottom left panel), and of the order parameter QN characterizing the Néel-type charge order in the ground
state (from Ref. [111] c© 2013 the American Physical Society).

cluster moves allow the conversion of the remaining type II
vertices into type I vertices. The spin dynamics is thus
intrinsically collective, at least from the model point of
view [110].

3.6 Other geometries

As illustrated in the previous sections, artificial arrays of
nanomagnets can be used to capture and study disordered
magnetic states of matter often associated with frustrated
spin systems. In that context, one of the main interests of
using such arrays is their flexibility in designing almost
any type of two-dimensional arrangement, whether this
arrangement exists or not in nature. Among the recent
attempts to recover the ground state degeneracy of the
square ice model, which is lacking in the artificial square
spin system, another lattice topology has been proposed
[111,112]. In this so-called Shakti lattice, the nanomag-
nets are arranged in such a way that the vertices have
mixed coordination numbers three and four (see Figs. 12a–
12d). Like in the square spin system, the nanomagnets
are in-plane magnetized and the magnetization axis is
defined by the long axis of the magnetic elements (see
magnetic configuration in Fig. 12b). Type I vertices (see
Figs. 11c and 12e) are then energetically more favorable
for vertices with coordination number four, because of
the nonequivalent strengths of the magnetostatic interac-
tion coupling collinear and orthogonal nanomagnets. For
the very same reason, T-shape vertices with coordination

number three are energetically more favorable if the two
collinear nanomagnets are in a head-to-head or tail-to-
tail configuration (type I′ vertices, see Fig. 12e). If we
now assume that the energy hierarchy between all different
vertex types is such that:

εI < εII < εIII < εIV
εI′ < εII′ < εIII′

εII′ − εI′ < εII − εI
then at zero temperature, vertices with coordination num-
ber four have no other choice than being in a type I
configuration, while T-shape vertices cannot all have a
low-energy type I′ configuration [111,112]. In other words,
the square vertices are all in a well-defined state (type I),
while the T-shape vertices are either in a type I′ or a
type II′ state (with 50%/50% fraction per plaquette, see
top right panel in Fig. 12f). The lattice topology thus
leads to an interesting observation: the geometrical frus-
tration, i.e., the impossibility to minimize simultaneously
all pairwise spin interactions, together with the energy
hierarchy mentioned above, translate into a vertex frustra-
tion. At low temperature, T-shape vertices cannot be all
simultaneously in the lowest possible energy configuration.

This result is important as it provides means to restore
a ground state degeneracy in a square-based lattice. In
fact, a direct mapping can be made between the Shakti
lattice and the square ice model by associating the respec-
tive positions of the T-shape type I′ and type II′ vertices
with the type I and type II vertices of the square ice (see
Figs. 12c and 12d). This mapping has been confirmed
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by Monte Carlo simulations which show that, within a
temperature window, the system highly fluctuates and is
characterized by a macroscopic degeneracy (see bottom
left panel in Fig. 12f). Although not directly the square
ice model, the Shakti lattice provides an alternative way
to achieve the ground state degeneracy of the square ice,
but in an emergent form [112]. In particular, spin–spin
correlations in this emergent form of the square ice reveal
the expected algebraic decay [111] (see also Sect. 4).

Besides the Shakti lattice, other lattice topologies
have been proposed to investigate disordered magnetic
states [113–116]. For example, the tetris lattice also
exhibits interesting properties: its low-energy manifold
(not shown) consists of alternating ordered and disordered
stripes, the latter being described by a one-dimensional
Ising model at a fictional temperature [117]. The tetris
lattice thus provides means to reduce the dimensional-
ity of the physical behavior via vertex frustration [117].
Besides their own exotic properties, these lattice topolo-
gies illustrate once more the strength of being able to
design almost any type of two-dimensional lattice that
can serve as an experimental platform to bridge con-
cepts from condensed matter physics, nanomagnetism,
statistical thermodynamics, vertex and loop models.

4 Coulomb phase in artificial spin systems

In the previous section, we provided several examples
of artificial spin systems behaving as spin liquids, and
we briefly described the temperature dependence of the
spin–spin correlations that develop in these so-called
cooperative paramagnets. The kI antiferromagnet (see
Sect. 3.2) is the canonical case of a spin liquid with
exponentially decaying pairwise spin correlations and an
associated correlation length of the order of one lattice
constant. The kagome dipolar spin ice (see Sect. 3.3) or
the Shakti spin system (see Sect. 3.6) however are spin
liquids at low temperature with power-law decaying pair-
wise spin correlations. Counterintuitively, the correlation
length in these algebraic spin liquids is infinite, although
the system fluctuates in the manner of a paramagnet.

Besides pairwise spin correlations, the lattice topology
together with the local constraints associated with the
energy minimization can lead to additional properties.
More specifically, certain spin liquids can be seen as a
coarse grained, spatially fluctuating magnetic field that
obeys the laws of magnetostatics. When this is so, spin
liquids are often referred to as Coulombic spin liquids.
The purpose of this section is to describe the properties
of Coulombic (Ising-like and classical) spin liquids, and to
understand to what extent such a magnetic state of mat-
ter can be imaged using the lab-on-chip approach offered
by artificial spin systems.

We first recall the main ingredients needed to observe
a Coulomb phase and the basic features allowing its mea-
surement (Sect. 4.1). We then show why the artificial
square ice is a natural candidate for a Coulombic spin
liquid (Sect. 4.2), why it is tricky, but possible, to image
an artificial Coulombic spin liquid (Sect. 4.3), and why
this Coulombic liquid can host magnetic charge defects

that behave as classical analogues of magnetic monopoles
(Sect. 4.4).

4.1 What is a Coulomb phase?

The concept of Coulomb phase has been introduced by
Henley [118] to describe the properties of certain lattice
models (i.e., discrete models) using the fundamental laws
of electrostatics (or magnetostatics). Otherwise said, a
Coulomb phase is an emergent state for lattice models,
i.e., a state which is not obviously encoded in the physics
describing these lattice models, but which emerges, nat-
urally, after reformulating this physics. Although the
concept is quite general and applies to different types
of lattice models satisfying a set of three conditions (see
below), we only consider here lattice spin models. Accord-
ing to Henley [118], the three conditions for a Coulomb
phase are:
Condition 1: each lattice variable (the spin in our case)
can be mapped to a discrete signed (magnetic) flux pi,
running along bond i;
Condition 2: at each lattice vertex, the sum of these signed
fluxes is zero;
Condition 3: the system is in a highly disordered state
(i.e., liquid-like).
Coarse graining these lattice fluxes leads to a vector field
P(r), having the mean value of all the fluxes embedded
within a volume V centered at r, V being large com-
pared to the lattice constant, but much smaller than
the system size. Assuming that the vector field P(r) is
static (i.e., there is no dynamics in the spin lattice) but
spatially fluctuating, Henley showed [118] that P(r) is
divergence-free:

∇ ·P(r) = 0 (6)

and that the free energy F of such a spin lattice has the
following form:

F/T = const +

∫
1

2
K|P(r)|2d2r (7)

with K a constant and T the temperature. These two
equations ressemble the energy density of a magnetic
field and its divergence constraint in absence of magnetic
charge. Starting from a spin model on a lattice, we end
up with a coarse grained (continuous) physics that shares
common features with magnetostatics. Besides the ele-
gance of the analogy, this magnetostatic framework has
important consequences. First, the real space correlations
of the vector field P(r) have the spatial dependence of a
dipole–dipole interaction at large distances [119]. Second,
local spin configurations that violate the divergence-free
condition then behave as sinks or sources of magnetic flux,
i.e., as effective (magnetic) charges with Coulomb-like
interactions.

We point out here that Coulomb phases are not
restricted to spin ice systems and can be found in other
three-dimensional or two-dimensional spin liquids. For
example, Coulomb phases are also found in Heisenberg
antiferromagnets on the kagome [120], checkerboard [121]
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and pyrochlore [122] lattices. Notably, for spin ice systems,
because spins are Ising-like magnetic moments, the mag-
netic fluxes at each lattice vertex are parallel to the local
magnetic moments, so that the vector field P(r) is directly
proportional to the magnetization [118]. For spin ice sys-
tems, the algebraic field–field correlations are then also the
spin–spin correlations, while they are in general distinct
in the Heisenberg antiferromagnets mentioned above.

One might wonder why a highly disordered spin sys-
tem, characterized by a massively degenerate ground state
manifold, and thus a nonzero entropy per spin at very low
temperature, could have long range pairwise spin correla-
tions. In other words, one could wonder how a spin system
often called a cooperative paramagnet or, equivalently, a
spin liquid, could be such that spins communicate at large
distances. A useful picture to capture this phenomenon
[74] is to remember that the magnetic flux lines at the
lattice vertices may never start or end, because of the
strong constraint that applies locally on the flux diver-
gence (there is no source or sink of extra magnetic charge
above the charged or uncharged vacuum describing the
low-energy manifold). Flipping one single spin in the lat-
tice may thus be forbidden, but one other way the system
may still be able to fluctuate is to reverse an assembly of
spins making a closed loop that preserves the divergence-
free constraint. Such loops can be built up with a few
spins only, but can extend throughout the entire lattice
as well. These loop moves can then potentially propagate
spin correlations over large distances. Coulomb phases,
and more generally algebraic spin liquids, are thus systems
in which fluctuations are allowed through a loop dynamics,
i.e., collective motions of spins.

One question one now may ask is ‘what are the experi-
mental signatures of a Coulomb phase?’. Henley [119] and
others [120–125] showed that a Coulomb phase/algebraic
spin liquids have specific diffraction features. At certain
wavevectors in reciprocal space, the magnetic structure
factor is non-analytic and exhibits a singularity, which
takes the form of a pinch point. A pinch point means that,
depending on how the singularity is approached, the inten-
sity of the magnetic structure factor is either strictly zero
or finite (see Fig. 13). Since artificial spin systems can be
imaged in real space, this real space configuration can be
Fourier transformed to obtain the corresponding magnetic
structure factor, thus allowing to evidence pinch points
(see following sections).

4.2 The artificial square spin system: a natural
candidate to image an arrested configuration
of a Coulombic spin liquid?

Another question one may ask is ‘what type of two-
dimensional spin model fulfills the three required
conditions to observe a Coulomb phase, and which could
be fabricated using lithographically patterned arrays
of nanomagnets?’ In Section 3, we described several
artificial spin systems characterized by a spin liquid state.
However, most of the attention in Section 3 was devoted
to kagome Ising systems, in which the lattice vertices
all carry a magnetic charge. Because of this charged
background, artificial kagome systems do not appear as

Fig. 13. Magnetic structure factor on the pyrochlore lattice in
the [hhk] plane at zero temperature. The location of a pinch
point is indicated by a red circle. Along the straight line shown
in blue, the intensity is constant when crossing the pinch point,
while this intensity is zero when crossing the pinch point in
the direction perpendicular to the blue line (adapted from
Ref. [126], republished with permission of Royal Society; per-
mission conveyed through Copyright Clearance Center, Inc.).

natural candidates to prepare an arrested configuration
of a Coulombic spin liquid. Counterintuitively, we will
see in Section 5 that a Coulombic spin liquid can in fact
be observed in the kagome dipolar spin ice, but this case
is quite peculiar and associated to the spin fragmentation
process described later.

A natural system that first comes to mind is the arti-
ficial square spin system, which was initially fabricated
to mimic the intriguing properties of pyrochlore spin ice
materials and to explore the physics of the associated
six vertex model [18]. As mentioned in Section 3.5, the
square spin system consists of (multiaxes) Ising-like, in-
plane magnetic moments (see Fig. 11). Each vertex of the
lattice has a coordination number of 4 and hosts one of
the 24 = 16 possible spin states. These 16 configurations
can be classified in 4 different types (see Fig. 11c), hav-
ing possibly 4 different energies. Among these 16 states,
6 obey the so-called ice rule consisting in two spins point-
ing in and two spins pointing out at each vertex (type I
and type II vertices). In the particular case where type I
and type II vertices have the same minimum energy, while
type III and type IV vertices correspond to high-energy
(and non-observed) states, this 16 vertex model is known
as the square ice or six vertex model [85,109].

The square ice model satisfies all three conditions
required to observe a Coulomb phase:
(1) the magnetic moments can be mapped to a local signed
flux on a lattice (the flux is proportional to the magnetic
moment);
(2) each vertex satisfies the zero sum of the four signed
fluxes;
(3) the ground state manifold is liquid-like.
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As shown in Section 3.5, although conceptually simple,
square arrays of interacting magnetic nano-islands reveal a
different behavior than the one predicted by the square ice
model. This difference is due to the nonequivalent nature
of the magnetostatic interactions between collinear and
perpendicular nearest neighbors, which lifts the energy
degeneracy of type I and type II vertices. This gives
rise to an ordered ground state [48,53,61,64,68]. In other
words, artificial square spin systems do not mimic the
properties of the highly degenerate pyrochlore spin ice
materials and cannot be described by the square ice
model. Instead, their physics is better described by the
F model [127,128] introduced for antiferroelectric crys-
tals and associated to the condition E1 < E2, where E1

and E2 are the energies of type I and type II vertices,
respectively. Until recently, all attempts to make an arti-
ficial realization of the square ice model were unsuccessful,
whether the arrays are field-demagnetized [18,46,100] or
thermally annealed [48,53,61,64,68]. More complex topolo-
gies involving mixed coordination (such as Shakti lattices,
see Sect. 3.6) [111,112] were found to have a high degree of
degeneracy and to map on an effective square ice model.
However, exotic many-body phenomena such as Coulomb
phases and monopole-like excitations on a massively fluc-
tuating uncharged vacuum have not been demonstrated
in those experimental realizations.

4.3 Real space imaging of a Coulombic spin liquid

Soon after the pioneering work of Wang et al. [18],
Möller and Moessner [129] made a theoretical proposal
to recover experimentally the extensive degeneracy of the
ground state predicted in the square ice model. This pro-
posal consists in tuning the J1/J2 ratio, where J1 and
J2 are the nearest-neighbor coupling strengths between
orthogonal and collinear nanomagnets (see Fig. 14a), by
shifting vertically one of the two sublattices of the square
array. Doing so increases the distance between orthogo-
nal nanomagnets, while keeping unchanged the distance
between collinear nanomagnets. In principle, a vertical
shift between the two sublattices of the square array thus
allows to vary continuously the J1/J2 ratio from its initial
value (J1/J2 is larger than unity for unshifted sublattices)
to zero, when the vertical shift becomes infinitively large.
Consequently, a critical value for the vertical shift can be
found for which J1/J2 = 1.

The question then arises of how choosing experimen-
tally the relevant value of the vertical shift h. Several
approaches can be followed [129,130], but a natural one
when dealing with magnetic nanostructures is to perform
micromagnetic simulations. In particular, micromagnetic
simulations can use as inputs the real geometrical param-
eters involved experimentally, such as the length, width,
thickness of the nanomagnets and the vertex-to-vertex
distance. Besides, they allow taking into account the
nonuniform magnetization distribution within the nano-
magnets in the estimate of the coupling strength [39].
Results of such simulations reveal that the critical h value
required to reach the J1/J2 = 1 condition is of the order
of 100 nm or more for typical dimensions of the nanomag-
nets [99]. This fairly large value of the shift makes more

Fig. 14. (a) Schematic of the artificial square lattice in which
one (blue) of the two sublattices has been shifted vertically
by a height offset h above the other (green). The nearest-
neighbor coupling strengths between orthogonal nanomagnets
(blue and green; J1) and collinear nanomagnets (blue/blue or
green/green; J2) are indicated in red and yellow, respectively.
(b) Topography (top) and magnetic (bottom) images of an
experimental realization of the shifted square lattice. In the
topography image, the nanomagnets appear red, the bases used
to shift vertically one of the two sublattices are yellow, and the
substrate is gray. In the magnetic image, the magnetic contrast
appears in blue and red for negative and positive magnetic
charges, respectively (from Ref. [99], reprinted by permission
from Springer Nature c© 2016).

challenging both the fabrication process and the magnetic
imaging of the artificial square ice (see Fig. 14b).

Field demagnetizing a conventional (h = 0) and a
shifted (h = 100 nm) artificial square spin system leads to
very different results. In the former case, large patches of
the antiferromagnetic ground state, separated by type II
domain walls are observed throughout the lattice, consis-
tently with all previous results in the literature. In sharp
contrast, the latter case is highly disordered, with a pre-
dominance of type II vertices. Type I vertices seem to
be diluted and a non-negligible amount of type III ver-
tices is also observed (see Fig. 15a). Clearly, shifting one
sublattice of the square array has strong influence on the
magnetic configuration observed after a field demagneti-
zation protocol. As mentioned in Section 2.2, the magnetic
structure factor is a powerful tool to characterize the
order/disorder present in a given magnetic microstate.
Doing so on the two artificial arrays shows also strik-
ing differences. As expected, the unshifted square array
is characterized by magnetic Bragg peaks at the cor-
ners of the Brillouin zone, reflecting the antiferromagnetic
ordering in real space. For the shifted array however, no
magnetic Bragg peaks are observed and the magnetic
structure factor is characterized by a diffuse, but struc-
tured, background signal (see Fig. 15b). Comparing this
result to the predicted magnetic structure factor for the
square ice model (see Fig. 15c) reveals strong similarities,
suggesting that the artificial square lattice was brought
into a spin liquid state.

Moreover, the square ice model is known to be an
algebraic spin liquid. As mentioned in Section 4.1, an alge-
braic spin liquid has features in reciprocal space known
as pinch points. These pinch points are clearly visible
in the experimental magnetic structure factor shown in
Figure 15b. Since the square lattice satisfies all three con-
ditions mentioned in Section 4.1, these pinch points reveal
the fingerprint of a Coulomb phase.
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Fig. 15. (a) Real space magnetic configuration of a field demagnetized shifted square lattice in which the height offset is
h = 100 nm. Lattice vertices are colored in blue, red and white for type I, type II and type III, respectively. (b) Magnetic
structure factor corresponding to four averaged magnetic configurations similar to the one reported in (a). The color scale refers
to the intensity at a given point (qx, qy) of the reciprocal space. (c) Computed magnetic structure factor averaged over 1000
random and decorrelated spin configurations that satisfy the ice rule constraint. (d) Zoom of the region indicated by a red circle
in (b) showing an experimental pinch point. The q axes correspond to a scan from (3/2, 5/2) to (5/2, 3/2) in reciprocal space.
(e) Experimental (main plot) and theoretical (inset) intensity profiles across the pinch point averaged over the white rectangle
in (d). The error bars represent the standard deviation calculated from four demagnetizations for the experimental data and
from 1000 random ice-rule configurations for the theoretical data. The red curves are single-peaked Lorentzian fits of the pinch
points. r.l.u., reciprocal lattice unit; a.u., arbitrary units (from Ref. [99], reprinted by permission from Springer Nature c© 2016).

Going back to the real space image, one can conclude
that Figure 15a is a snapshot of a spin configuration
representative of an algebraic spin liquid. It is worth
emphasizing that the vertex populations are not exactly
those we would expect within the ground state manifold.
Besides the fact that a significant amount of type III
defects are trapped in this configuration (white vertices in
Fig. 15a), the ratio between type II and type I vertices is
not the one expected (∼ 2). Nevertheless, the experimen-
tal magnetic structure factor shows striking similarities
with the one predicted in the ground state manifold of
the square ice model. Although the system is not in its
ground state, the snapshot shows all the incipient features
of a Coulomb phase.

4.4 Monopole-like excitations trapped within
a Coulombic spin liquid

As shown above, real space magnetic imaging of a field-
demagnetized artificial square ice system reveals the
presence of a significant amount of monopoles embedded
within a Coulombic spin liquid. Note that this state-
ment is made possible because the spin configuration is
resolved both in real space (unambiguous visualization of
type III vertices, see Fig. 15a) and in reciprocal space
(clear evidence of a Coulomb phase, see Fig. 15b). In

fact, the monopole density can be determined exactly
for a given snapshot and is found to be of the order
of 9% when comparing several snapshots resulting from
successive field protocols [99]. Because of this nonzero den-
sity of monopoles, the artificial square ice has not been
brought, strictly speaking, into the macroscopically degen-
erate manifold of the corresponding six vertex model. This
difference between the (Lieb) ice manifold and the imaged
spin configurations of a Coulomb phase with trapped
monopoles can be rationalized through the analysis of
the pinch point width (Figs. 15d and 15e). This width
can be linked to a correlation length ξ, which can be
extracted from a Lorentzian fit to the intensity profile
passing through a pinch point (Fig. 15d) [131]. Doing so,
a correlation length ξ of the order of a fraction of the lat-
tice size is found [99]: ξtheo ∼ 5 in lattice constant units
for the Lieb ice manifold, while the experimental scan dis-
plays a broader peak associated to a shorter correlation
length ξexp ∼ 4 (Fig. 15e). The impact of the presence of
magnetic monopoles experimentally thus reduces slightly
the correlation length in the system, but preserves all the
features expected from the six vertex model.

The monopoles imaged in the artificial square ice (see
white vertices in Fig. 15a) differ substantially from the
charge defects previously reported in artificial square
spin systems [53,107,108,110,132–134]. The important
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Fig. 16. Pair of oppositely charged defects (red and blue circles) in a magnetically saturated background [type II background;
(a)], in the antiferromagnetic ground state [type I background; (b)] and within a disordered manifold [disordered background;
(c)]. Blue, red and green squares indicate type I, II and III vertices, respectively. The white arrows give the local spin direction.
The black arrows in (a) illustrate a chain of reversed spins (from Ref. [99], reprinted by permission from Springer Nature
c© 2016).

difference is that monopoles in artificial square ice are
particule-like excitations that evolve within a liquid phase,
i.e., within a highly disordered manifold, while charge
defects live on a magnetically ordered background in
artificial square spin systems. In the former case, the
excitations behave as deconfined quasi-particules which
interact via a Coulomb potential, while in the latter case
they behave as confined quasi-particules linked by a string
tension [110,113,132,133]. In fact, several cases may be
distinguished.

The first observation of charge defects in the artificial
square spin system was achieved after saturating an array
with a magnetic field applied along a (11)-like direction,
and by subsequently applying a field in the opposite direc-
tion with an amplitude close to the coercive field. The
protocol then induces the nucleation of charge defects and
triggers an avalanche process [107]. This leads to a uni-
directional motion of the defects that leave behind them
chains of reversed spins often referred to as Dirac strings
(see Fig. 16a). Similar results have been obtained in ther-
mally active arrays that have been first magnetically sat-
urated [53]. There, charge defects are embedded within a
magnetically saturated state, i.e., a spin configuration con-
taining mainly type II vertices (see Fig. 16a). They are not
magnetic monopoles in the sense of Castelnovo et al. [94].

The second observation of charge defects in artifi-
cial square spin systems was done in arrays approaching
the antiferromagnetic ordered ground state after being
demagnetized or annealed [53]. In that case, defects
do not necessarily move along straight lines, but are
always confined within a domain boundary separating
anti-phase ground state domains made of type I vertices
(see Fig. 16b). In this case as well, they evolve within an
ordered magnetic configuration characterized by a mag-
netic structure factor that only contains magnetic Bragg
peaks. They are not free particles but topological defects
allowing antiferromagnetic domains to grow by permitting
the motion of domain walls.

The artificial square ice has a distinct behavior: the
magnetic charges are free to move into a spin liquid

state, and are monopoles in the sense of Castelnovo
et al. [94]. This situation is illustrated in Figure 16c,
where a monopole/antimonopole pair is present within a
disordered magnetic configuration characterized by a dif-
fuse magnetic structure factor similar to the one reported
in Figure 15c. In sharp contrast with the two other cases
described above, the magnetic history which leads to the
formation of this pair of oppositely charged monopoles
is lost: we cannot identified the chain of spin reversal
that occurred to separate these two charges. In fact, with
this snapshot alone, many different paths can be chosen
arbitrarily to recombine the two magnetic monopoles.
Otherwise said, the trace of reversed spins that leads to
the deconfinement of the monopole/antimonopole pair
has been erased by the magnetic disorder, and there is
no obvious mean to know what was the trajectory of
these two quasi-particules. One immediate consequence
resulting from this impossibility to track back their
motion is that oppositely charged monopoles cannot be
paired.

In the artificial kagome dipolar spin ice, charge defects
can also be studied, although they present less exotic
properties. Their first experimental observation was made
in conditions similar to the first case mentioned above
for the square lattice. Initially saturated, a magnetic
field is applied to nucleate a few reversals that sub-
sequently propagate through a unidirectional avalanche
process [135–141]. However, because of the charged nature
of the vacuum on which these charge defects move, they
can quickly annihilate, such that the avalanche process
is in fact a periodic sequence of nucleation/propagation
events every two spin flips. An alternative description
of the avalanche mechanism is to consider the magnetic
charge transferred between two neighboring sites and not
the absolute value of the local magnetic charge. In that
case, the pair of charge defects is also described by a
line tension as it evolves within an ordered background.
When these charges live on a disordered background,
the pairing of oppositely charged defects is not possi-
ble and charges may be seen as monopoles. But from
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our point of view, the physics of those monopoles in
kagome lattices is less rich than their counterparts in
the square ice because they do not live on a Coulomb
phase. Nevertheless, their properties have been extensively
investigated for their micromagnetic properties. In par-
ticular, several works considered these defects as (chiral)
magnetic domain walls propagating in branched arrays
of nanostructures [142,143], which in turn shed light on
how artificial arrays of nanomagnets demagnetize under
an applied magnetic field or a thermal protocol [144–150].

5 Fragmentation of magnetism
in the artificial kagome dipolar spin ice

We showed in Section 3.3 that the kagome dipolar spin ice
presents a rich phase diagram with intriguing magnetic
properties. In particular, the so-called spin ice II phase is
characterized by a very unusual behavior: magnetic order
and magnetic disorder coexist within a finite temperature
window. This coexistence of order and disorder can be
visualized in real space: although a magnetic configura-
tion belonging to the spin ice II phase does not show
any obvious ordered spin pattern, the magnetic charge
associated with the dumbbell description of the mag-
netic moment does crystallize. As the concept of magnetic
charge is directly linked to the magnetic moment, charge
ordering implies spin ordering. The spin ice II phase is
thus doubly constrained; if all vertices have to satisfy the
(kagome) ice rule constraint (two spins pointing inwards
and one spin pointing outwards, or vice versa), the ice
rule constraint is itself constrained: if two spins point
inwards at a given vertex, two spins must point outwards
at the three neighboring vertices. The magnetic proper-
ties of the spin ice II phase are then puzzling in several
aspects:
– spin order does exist, but we do not see it, at least not
(easily) in real space.
– spin order is only partial since the spin ice II phase is a
spin liquid (it has a residual entropy, see Fig. 7a).
– spin order and spin disorder coexist at thermodynamic
equilibrium.

In fact, we will show below that it is very difficult to
get a mental representation of this unconventional state
of matter, especially because each single spin in the lat-
tice contributes at the same time, and everywhere, to the
magnetic order and to the magnetic disorder. Thus, we
are not discussing here the trivial case of coexisting, out-
of-equilibrium magnetic phases. We are neither discussing
cases where one sublattice could behave as a paramagnet
and one other sublattice could be magnetically ordered
[151]. What we will describe in that section is a dynami-
cal, collective state of matter, in which each single classical
magnetic moment contributes at the same time to an
ordered state and a liquid phase. We will first basically
rephrase what is reported in the seminal contribution of
Brooks-Bartlett et al., who introduced the concept of mag-
netic moment fragmentation [76]. Then, we will highlight
the most puzzling aspects of the spin ice II phase and
show how this phase can be observed in an artificial array
of nanomagnets.

5.1 What is spin fragmentation?

The magnetic properties of a spin model are generally well
described by the natural degree of freedom encoded in that
model: the spin. Otherwise said, to describe the magnetic
properties of a given spin model, the natural ingredient
to be considered is the spin. This might sound like a tau-
tology, but less common is another level of description,
which goes beyond the obvious and is often associated to
the concept of emergence. For example, a field is said to be
emergent when it is not present in the microscopic model,
but arises in an effective theory as an individual or a col-
lective degree of freedom. One such instance of emergence
is the recent introduction of classical magnetic monopoles
in order to describe the low-energy physics of spin ice
materials [94]. Within the associated spin models, the nat-
ural excitation is a local spin flip. However, one gains a
much deeper understanding of the physics by mapping the
spin degree of freedom onto an effective magnetic charge,
the emergent field, through a pseudo-fractionalization of
atomic magnets into opposite pole pairs [94,152]. In spin
ice materials, the success of this mapping is driven by two
major ingredients:
(i) any state of the ground state manifold is constrained
to have the lattice equivalent of a divergence-free field at
each vertex;
(ii) this constraint nevertheless allows this manifold to be
massively degenerate.
As a result, the lowest energy spin textures organize them-
selves as Coulomb phases [118], on top of which the
divergence fluctuations relate to a slightly higher energy
physics, the one of classical magnetic monopole statistics.

A more general scheme, embracing the previous one,
has been proposed recently to describe both aspects of
Coulomb phases and geometric organizations of effective
magnetic charges [76]. Within this approach, the spin
degree of freedom splits into two parts, or fragments, one
leading to a divergence-free field and the other one to a
divergence-full magnetism, regardless the inner structure
of the fields. A striking property of those two fields is the
relative independence of their dynamics, leading in some
cases to the coexistence of strong spin fluctuations on top
of a fragmented-spin crystal [76].

In the kagome dipolar spin ice, spin fragmentation
occurs within the spin ice II (SI2) manifold. Any SI2 mag-
netic configuration may then be mapped onto a global
static spin texture coexisting with a fluctuating, even
though constrained, magnetic manifold. Algebraically,
this corresponds to an Helmholtz decomposition of the
total magnetization at each vertex [76]:∑

i∈vertex

−→
S i =

−→
∇φ+

−→
∇ ×

−→
C (8)

where
−→
S i is the spin on site i, φ a scalar field and−→

C a vector field. When describing the SI2 phase, the

scalar field φ is static, while
−→
C is a highly fluctuat-

ing and collective Coulombic vector field. An example
of such a decomposition is given in Figure 17, starting
from a spin configuration belonging to the SI2 phase, i.e.,
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Fig. 17. Illustration of the spin fragmentation process on a small spin cluster belonging to the spin ice II phase. The Ising
spins on the kagome lattice are represented by black arrows. The magnetic charges resulting from the dumbbell description of
the magnetic moments are represented by red and blue triangles, corresponding to alternating +1 and −1 charged vertices.
The Helmholtz–Hodge decomposition applied on this cluster leads to a divergence-full sector and a divergence-free sector. In
those sectors, fragmented spins (white arrows) are represented by purple disks of diameters 1/3, 2/3 and 4/3, according to the
fraction of the initial magnetic moment they carry (from Ref. [69]).

characterized by a disordered spin state and a magnetic
charge crystal. Spins are represented by black arrows,
while the associated magnetic charges at the kagome ver-
tices are represented by a red/blue color, corresponding
to a +1/−1 charge state, respectively. There, the nearest-
neighbor charge–charge correlator is equal to −1, each red
triangle being surrounded by three blue triangles, and vice
versa. After the Helmholtz decomposition, each spin of
the lattice fragments into two parts, such that the mag-
netic configuration decomposes into a divergence-full and
a divergence-free sector. Note that in the two sectors, both
the spin direction and the spin length change. To better
visualize the fragmentation process, fragmented spins are
represented by purple circles of diameter 1/3, 2/3 and 4/3
(see Fig. 17). This type of decomposition can of course
be done for any spin configuration belonging to the SI2
phase. The divergence-full part then remains the same and
is independent of the initial spin configuration, while the
divergence-free part can fluctuate and ensures the mag-
netic equivalent of a Kirchhoff law (see Fig. 17). Thanks

to the massive degeneracy of the SI2 manifold, the
−→
C

vector field leads to a Coulomb phase [118].

5.2 Coexistence of spin order and spin disorder: a
counterintuitive, collective phenomenon

Another way to visualize the spin fragmentation process
is to plot the magnetic structure factor. Its tempera-
ture dependence for the kagome dipolar spin ice model
has been computed using Monte Carlo simulations (see
Fig. 18). Both the SI1 and SI2 phases are characterized
by a diffuse background, which becomes more geometri-
cally structured as the temperature is lowered. In the SI2
phase, this geometrical organization is associated to the
Coulomb phase coexisting with a fragmented-spin crys-
tal. The ordered part (the φ field) results in Bragg peaks,

while the dynamic one (
−→
C ) contributes to a diffuse signal

whose algebraic correlations are revealed by the so-called
pinch points.

We now examine the properties of the two fragmented
sectors in real space to visualize how the spin order looks
like. Monte Carlo simulations provide a large number

of decorrelated magnetic configurations at a given tem-
perature. For each sampled temperature, these magnetic
configurations can all be averaged. If a magnetic order is
present, this order should show up in the average config-
uration. On the contrary, if all these configurations are
random or liquid-like, the average configuration should
be zero everywhere. Such an analysis has been performed
starting from the high temperature regime, where the
system is paramagnetic, to the lowest possible temper-
ature, where the kagome dipolar spin ice presents a long
range ordered state [81,82]. As expected, in the high tem-
perature paramagnetic regime, each average spin is zero,
meaning that the probability for a given spin to be in one
direction or the opposite is 50%. Within the spin ice I
(SI1) phase, the result is the same (see Fig. 18). Although
the phase is constrained and must obey the kagome ice
rule everywhere, each spin is zero on average. For the low-
est simulated temperatures, the system is ordered and the
resulting average configuration reveals the expected LRO
pattern [81,82]. The magnetic moment of each spin is one,
consistently with the fact that all average configurations
provide the same magnetic pattern.

The result is strikingly different in the spin ice II phase.
There, the average configuration shows an ordered pat-
tern of all-in/all-out configurations. But the crucial point
is that each spin carries only one third of the magnetic
moment, contrary to the LRO state in which all spins
carry the full magnetic moment. This means that one
third only of the magnetism orders, while the two remain-
ing thirds highly fluctuate and give zero signal on the
average map. Partial magnetic ordering is then present
in the spin ice II phase. The ordered pattern is surprising
as it is made of all-in/all-out configurations. We must
point out that these configurations are not monopole-like
defects as each spin does not contribute to 1, but to 1/3 of
the magnetic moment. In other words, in the charge rep-
resentation, the magnetic charge each vertex carries is not
±3 (i.e., ±1± 1± 1), but ±1 (i.e., ±1/3± 1/3± 1/3). The
kagome ice rule is thus strictly obeyed in the spin ice II
phase. What is puzzling is the all-in/all-out configurations
that are usually obtained in antiferromagnetic spin sys-
tems. For example, this pattern would not be surprising
in a short range kagome spin ice with antiferromagnetic
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Fig. 18. Magnetic structure factors and their corresponding
real space configurations after averaging 104 Monte Carlo snap-
shots for the SI1, SI2 and LRO manifolds. For the magnetic
structure factor, blue/red means low/large intensity. Intensity
scale is not represented and is different for the three images
to better reveal the different features of these two-dimensional
maps. In particular, Bragg peaks in the LRO phase appear
white since the image has been thresholded. Intensity in these
peaks is then intentionally saturated, given an artificial spatial
extension. For the real space configurations, the length of the
arrows represents the mean value of the local spins after aver-
aging. This length is zero in the SI1, 1/3 of the total length in
the SI2 manifold and exactly 1 in the LRO state. The colored
triangles give the spin unit cell.

couplings between nearest neighbors. However, in the
kagome dipolar spin ice, the coupling between nearest
neighbors is ferromagnetic. But again, in this partial
order, the kagome ice rule is always satisfied and the
observed all in/all out configurations are still compatible
with the spin Hamiltonian.

As mentioned above, two thirds of the magnetism are
highly fluctuating in the spin ice II phase. This spin liquid
is surprising as well, as it exhibits counterintuitive proper-
ties. The Helmholtz decomposition shows that this liquid
state is made of Ising spins which carry a non-constant
magnetic moment. Indeed, the magnetic moment can be
either ±2/3 or ±4/3 (see Fig. 17). This does not mean
that each spin carries either a magnetic moment ±2/3 or a

magnetic moment ±4/3, but means that each spin can be
in one of these 4 states. However, each vertex must satisfy
the divergence-free condition resulting from the Helmholtz
decomposition, such that each vertex is made of a spin
±4/3 and two spins ∓2/3. As the system fluctuates, spins
can change state but they must do it coherently to obey
the divergence-free condition.

The fragmentation of magnetism in thus a collective
phenomenon. All spins in the system contribute coher-
ently to the ordered magnetic configuration, for one third,
and one third only, of their individual magnetic moment.
They also contribute collectively to the fragmented spin
liquid, which has to satisfy, everywhere and at any time,
the divergence-free condition. In fact, because this frag-
mented spin liquid satisfies the divergence-free condition,
it can be described as a Coulomb phase (see Sect. 4). The
fragmented spin liquid is in fact a fragmented Coulombic
spin liquid, with algebraic spin–spin correlations and their
associated pinch points (see Fig. 18).

5.3 Observation of spin fragmentation

The fragmentation process was evidenced experimentally
in two artificial kagome spin ice systems: a thermally
active ferrimagnetic alloy with a low Curie tempera-
ture (about 250 ◦C) and an athermal permalloy array
which has been field demagnetized [69]. Judging from
the real space imaging of these systems, the spin con-
figurations seem essentially disordered and no magnetic
pattern appears obviously. To characterize the imaged
disorder, the magnetic structure factors were computed
for the two systems. In both cases, the corresponding
diffraction pattern reveals the coexistence of a diffuse
background signal and Bragg peaks in the center of the
Brillouin zone. Since these systems have been shown to
be well-described by a dipolar spin Hamiltonian at ther-
modynamic equilibrium, the result strongly suggests that
the systems have been trapped within a magnetic config-
uration that shows the signatures of a fragmented spin
liquid.

The magnetic structure factor predicted by Monte Carlo
simulations at the effective temperature corresponding to
the experimental realization has been used for comparison
(see Fig. 19). Although the statistics is low experimen-
tally since the artificial array is made of a few hundreds of
nanomagnets only [69], a fairly good qualitative agree-
ment is found with the numerical predictions. In fact,
the agreement between the experimental findings and the
predictions from the Monte Carlo simulations is semi-
quantitative. This can be seen by comparing intensity
profiles along certain wavevector directions of the two-
dimensional maps. For example, comparison has been
made for q-scans running along two axes, the first one
passing through both the LRO and fragmented peaks
(dotted black line), and the second through the pinch
points (continuous black line), along the would be nodal
line within the SI2 phase (see Fig. 19b). In these inten-
sity profiles, the q-scans deduced from the Monte Carlo
simulations are reported in orange together with the
standard deviation associated with the finite size of the
system, while the experimental scans appear in light blue.
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Fig. 19. (a) Experimental (top) and theoretical (bottom) 2D maps of the magnetic structure factor. The position of the Bragg
peaks corresponding to the fragmented-spin phase and to the LRO are indicated by a black and a red circle, respectively.
Two particular directions in the reciprocal space are indicated by black lines. The pinch point scan (continuous black line)
corresponds to the nodal line present in Coulomb phases; the second scan (dotted black line) starts close to the origin of
the reciprocal space and passes through first, a LRO q-vector, and then through a fragmentation q-vector. (b) Comparison
between the experimental and theoretical q-scans along the 2 directions mentioned before. The dipolar spin ice model captures
most features of the spin–spin correlations and agrees semi-quantitatively on the amplitude, as well as on the positions, of the
correlations. r.l.u., reciprocal lattice unit; a.u., arbitrary units (adapted from Ref. [69]).

The conclusion here is that the kagome dipolar spin ice
Hamiltonian captures every feature of the q-scans and,
sometimes, even maps quantitatively onto the measure-
ments, especially through the fragmentation peak. If the
agreement with the q-scan running through the pinch
point might not be conclusive because of the poor statis-
tics available experimentally, it is still compatible. It has
to be emphasized that the experimental and numerical
scans have not been scaled one on another: the measured
intensity results from the raw data with no particular
adjustment.

5.4 Why charge crystallization and spin
fragmentation are intimately related phenomena

As we showed above, the fragmented spin crystal is an
alternation of all-in/all-out configurations made of spins
carrying one third of the total magnetic moment. Con-
sequently, these spin configurations can be represented
as an alternation of ±1 magnetic charges at the lattice
vertices. The fragmented spin crystal on the kagome
lattice can be equivalently described by a perfect ordering

of ±1 magnetic charges on a hexagonal lattice. These two
equivalent descriptions are illustrated in Figure 17, where
the ±1 magnetic charges are represented as red and
blue triangles. We emphasize that the magnetic charge
has no real meaning and is not encoded in the dipolar
spin Hamiltonian of the corresponding model. But since
spins and charges are related one another, we can wonder
whether the dipolar spin Hamiltonian can be rewritten in
such a way that the magnetic charge appears directly. It
turns out in the specific case of the kagome dipolar spin
ice model that indeed the Hamiltonian can be rewritten,
with no approximation, to include the magnetic charge
associated with the spins. The key point is to realize that
the nearest neighbor charge–charge correlation can be
expressed as a linear combination of three spin–spin corre-
lators Cij = Si.Sj . This is so, because the charge-charge
correlation links together five different spins, as schema-
tized in Figure 20. These five spins contribute to three
different spin–spin correlation coefficients: the nearest-
neighbor coefficient Cαβ , the next-nearest-neighbor coef-
ficient Cαγ and the next-next-nearest-neighbor coefficient
Cαν . Linking these different terms leads to the following
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Fig. 20. Schematic representation of the link between the
charge–charge correlation coefficient and the spin–spin cor-
relators. (a) A pair of nearest neighboring magnetic charges
involves five Ising spins (Si = σiei, with σi = ±1 and ei defin-
ing the local anisotropy axis). (b) The configuration of these
five Ising variables σi can be expressed using the first three
spin–spin correlators [Cαβ for the nearest neighbors (in black),
Cαγ for the second nearest neighbors (in red) and Cαν for the
third nearest neighbors (in green)] (from Ref. [69]).

expression for the charge–charge correlation coefficient:

Qu.Qv = −1 + 8Cαβ + 4Cαγ − 2Cαν . (9)

Injecting this expression into the spin Hamiltonian pro-
vides a new, exact expression, which is now the sum of
three different terms:

H = −J̃
∑
〈i,j〉

Si.Sj − K̃
∑
〈u,v〉

Qu.Qv +O

(
1

R3

)
|R≥2rnn

.

(10)

The first term is a spin Hamiltonian on a kagome lattice
coupling nearest neighbors only through a positive cou-
pling constant J̃ . This term alone gives rise to a spin
liquid. The second term is a charge Hamiltonian on a
hexagonal lattice coupling nearest neighboring charges
only through a negative coupling constant K̃. This sec-
ond term alone gives rise to an antiferromagnetic ordering
of the magnetic charges on the hexagonal lattice. The
third term includes exactly all the remaining terms from
the dipolar spin Hamiltonian. Because these three dif-
ferent terms are compatible one another, and because
| J̃ |>| K̃ |, they explain the whole phase diagram of the
kagome dipolar spin ice. Starting from the paramagnetic
regime and cooling down the system temperature, the
physics is dominated by the first term of the Hamiltonian.
The system enters the SI1 liquid phase and strictly obeys
the kagome ice rule everywhere. As the temperature is fur-
ther reduced, the second term in the Hamiltonian drives
the physics and orders the magnetic charges in an antifer-
romagnetic fashion. The system is then in the SI2 phase,
i.e., the fragmented spin liquid phase. When the system is
brought to very low temperature, the third term leads to
the long range ordered state.

In other words, if one introduces the concept of mag-
netic charges, the spin fragmented crystal manifests itself
through a magnetic charge crystal. We can then describe
the SI2 phase in two equivalent ways. In terms of spin, the

SI2 phase is made of the manifold in which the kagome
ice rule is strictly obeyed everywhere (Cαβ = 1/6 at each
vertex sites) and in which the linear combination of the
first three spin–spin correlators strictly equals −1 every-
where (−1 + 8Cαβ + 4Cαγ − 2Cαν = −1 for each pair of
adjacent vertex sites). This second constraint on the spin
arrangement can be expressed as:

4Cαβ + 2Cαγ − Cαν = 0 (11)

Cαβ being a constant (1/6), while Cαγ and Cαν are
temperature-dependent, i.e., 2Cαγ − Cαν = −2/3 for all
temperatures after the SI1/SI2 phase transition.

In terms of spin and charge, the SI2 phase is made of the
manifold in which the kagome ice rule is strictly obeyed
everywhere and in which the magnetic charge has crys-
tallized in an antiferromagnetic fashion. While the first
description does not help much to determine visually if
an experimental real space snapshot is fragmented, the
second description directly gives the answer.

We note that the observation of magnetic moment
fragmentation is not specific to artificial kagome spin sys-
tems and has also been reported in several compounds
[153–156].

6 Concluding remarks and possible future
directions

The results obtained these last few years showed that arti-
ficial spin systems provide an uncharted area, in which
the exotic many-body physics of frustrated magnets can
be studied via magnetic imaging techniques, in an almost
routine fashion. This capability of artificial spin systems
to investigate a wide range of phenomena through a lab-
on-chip approach offers the appealing opportunity to test,
revisit and extend many theoretical predictions from frus-
trated spin models. As illustrated in the above sections,
artificial spin systems triggered, for example, the discovery
of an unconventional state of matter in the dipolar kagome
spin ice [39,62,69,76,81,82], the prediction of a complex
magnetic order in the dipolar kagome Ising antiferromag-
net [92,96,98], and first attempts to explore vertex models
from statistical physics [99,111,112,116].

Because artificial spin systems are dipolar, many works
allowed to revisit seminal works on spin models, in which
nearest-neighbor couplings only were usually considered
[79,80,85,89,109,127,128]. It turned out that the dipolar
interactions sometimes greatly enrich the physics of the
considered system. This is the case for the kagome spin ice:
while the short range version of the model gives rise to a
conventional spin liquid state with exponentially decaying
spin–spin correlations, the phase diagram of the dipolar
kagome ice is way more complex and exhibits a fragmented
Coulombic spin liquid at low temperatures [76]. It is worth
mentioning here that while the short range version of the
kagome ice model has been known for quite some time
[89], its dipolar version, and the associated new exotic
physics, emerged from close interactions between physi-
cists working on highly frustrated magnets and physicists
investigating the properties of artificial arrays of magnetic
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nanostructures. Artificial arrays of nanomagnets are then
not just means to test predictions from known models.
Precisely because known models could not account for
the experimental observations, they were refined and new
properties were discovered. Going back to the very first
paragraph of the introduction, being able to fabricate a
synthetic system to capture a given phenomenon or prop-
erty is a kind of measure of how deep our knowledge is
of this phenomenon or property. Differences between how
an artificial system behaves and how it actually behaves
in nature or when it is modeled numerically, often lead to
very useful pieces of information.

The long range nature of the interaction in artificial
spin systems has another important consequence, as these
arrays are generally described as vertex systems, especially
when considering square-based geometries. For example,
if artificial spin systems did not succeed first to capture
the extensive degenerate ground state manifold of the six
vertex model [85,109], this was done recently [99,112,116].
But it is important to understand that strictly speaking,
artificial spin systems should not be described by vertex
models but rather by spin Hamiltonians. As a matter of
fact, there is a direct link between spin models and vertex
models: vertex models are models of statistical mechanics
in which a Boltzmann weight is attributed to each vertex
of a given lattice, while in their often associated frustrated
(Ising) spin models, the Boltzmann weight is attributed
to the bond connecting two neighboring vertices. Spin
and vertex models are then different types of models. If
there is a direct connection between the two when nearest-
neighbor interactions only are considered, this connection
does not hold anymore in arrays of nanomagnets coupled
via magnetostatics.

Designing vertex models is a natural extension of arti-
ficial spin systems that would allow to address a physics
in which the key ingredient is the energy stored at each
vertex site, rather than the two-body magnetic frustra-
tion. One possibility is to engineer the frustration in such
a way that the overall constraint translates into an emer-
gent vertex frustration (see Sect. 3.6). In that case, vertex
models may be used, at least to some extent, to describe a
system of nanomagnets interacting through magnetostat-
ics [111,112,157]. Another possibility could be to exploit
the micromagnetic nature of the nanomagnets and to
store energy in domain walls confined at the vertices
of physically connected arrays [158,159]. Interestingly,
micromagnetism was essentially neglected so far, except
in studies where magnetization reversal, magnetization
dynamics and domain wall propagation were considered
[142–150,160]. However, micromagnetism offers an extra
degree of freedom that might be used conveniently to
address the physics of vertex models [158,159]. This extra
degree of freedom combined with the possibility to design
at will almost any type of two-dimensional lattice might
play an important role in the forthcoming investigations.

Further investigations on artificial spin systems can also
be made by modifying the design of conventional geome-
tries in order to tune the energy hierarchy of vertices. The
idea is somehow similar to the one mentioned just above
when using micromagnetism as a knob and has been tested
recently [116,161]. In these works, additional nanomagnets

are used to control the vertex energies on a square-based
geometry to recover the ground state degeneracy of the
six vertex model by approaching the J1 = J2 condition
described in Section 4.3. These works provide another
instance of the advantage of being capable to engineer
the system under investigation to access a given physics.
Very likely, this type of approach will be further developed
in the future to explore collective phenomena in artificial
spin systems.

Most of the existing experimental studies are based on
artificial systems in which thermal fluctuations take place
on a slow time scale, compatible with the imaging con-
ditions [53,64,117,162]. In the experiments where these
fluctuations were accessible, collective phenomena were
not directly investigated. Real space imaging of the spin
dynamics in the kagome dipolar spin ice or in the artifi-
cial square ice would certainly bring important pieces of
information. In these two systems, the low-energy dynam-
ics is characterized by loop moves, in which an open
or closed loop of spins reverses in a single event. How-
ever, this type of collective motion is not possible in an
array of magnetic nanostructures, as magnetization rever-
sal takes a certain amount of time before the information
is transferred between neighboring elements. Since a very
low-energy physics was detected via macroscopic mea-
surements [55,57,163], imaging real time and real space
processes could bring new insights into the physics at play.

Although artificial arrays of nanomagnets are meant
for engineering frustration and interactions at will, the
role of the defects has been essentially unexplored exper-
imentally, except in a recent study [164]. Defects can
have different origins. They can be associated to material
imperfections, but also to dispersion in island positions,
magnetic moments and interactions. To a certain extent,
these defects can be designed on purpose by patterning
for example arrays with nanomagnets off their ideal posi-
tions or by modifying their length to affect their magnetic
moment and/or the coupling strength. Defects can also
take the form of vacancies by removing a given set of nano-
magnets in the lattice [164]. Since the concept of magnetic
frustration comes from structurally disordered spin sys-
tems, using arrays of nanomagnets to explore the role of
defects in artificial spin ice and artificial spin glass sys-
tems would be a natural extension of the current works in
the field.

Artificial spin systems have also been studied with the
idea of reaching exotic low-energy manifolds or capturing
particle-like excitations. The two ideas could be com-
bined to study how excitations behave as their density
is increased. For example, a rich phase diagram has been
predicted for monopoles in the square lattice [134], with
a gas of dilute particles changing into a monopole crystal
when the density of excitations is sufficiently high. Chang-
ing point of view and investigating collective phenomena
and phase transitions in the excitation spectrum could be
an interesting route to pursue. Besides, tracking the pres-
ence of local excitations within crystallites of the kagome
spin ice II phase could shed new light on the physics of
fragmented spin liquids. Indeed, a local excitation in such
a phase should also be fragmented, part of the excitation
belonging to the divergence-full sector, and the remaining
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component belonging to the divergence-free sector. Con-
fining or deconfining such fragmented excitations is a
natural, albeit challenging, experimental development, fol-
lowing the preliminary results obtained recently in the
dipolar kagome spin ice [69].

Finally, the vast majority of systems that have been
studied to date are based on Ising-like pseudo-spins. Few
attempts exist where XY pseudo-spins have been fabri-
cated using thin ferromagnetic disks in which in-plane
anisotropy can be neglected, thus leading to compass-like
lattices [66,165–167], similar to the arrays of macroscopic
compass needles [8–10], but at the nanoscale. Investigat-
ing frustrated or unfrustrated dipolar spin systems with
continuous degrees of rotation might also be an interesting
route to follow in the future. More generally, artificial spin
systems have largely exploited the possibility to select the
lattice geometry and dimensionality [117,168–171], but lit-
tle has been done so far to engineer the spin degree of
freedom. Exploring continuous (such as XY) or discrete
(Potts) [172] models might be interesting to connect nano-
magnetism and statistical physics, as well as to develop
new materials.
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