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Abstract. We investigate numerically the dynamics of both symmetric and asymmetric Van der Pol-Duffing
oscillators driven by a periodic force F (t) = f cosωt. Each system is modeled by a different second order
nonautonomous nonlinear ordinary differential equation controlled by five parameters. Our investigation
takes into account the (ω, f) parameter-space in the two systems, keeping the other three parameters fixed.
We verify the existence of parameter regions for which the corresponding trajectories in the phase-space
are periodic, quasiperiodic, and chaotic, for the symmetric case. In the asymmetric case we verify the
existence only of periodic and chaotic regions in the (ω, f) parameter-space. Finally, we also investigate
the organization of the dynamics in the two systems, identifying Fibonacci and period-adding sequences of
periodic structures.

1 Introduction

In this paper we investigate numerically the dynamics of
two damped Van der Pol-Duffing forced oscillators, whose
general mathematical form is given by [1–3]

d2x

dt2
− µ(1− x2)ẋ+

dVi
dx

= f cos (ωt), (1)

where Vi (i = 1, 2) is the potential function, f and ω are
respectively the amplitude and the angular frequency of
the external forcing, and µ is the damping parameter.
Here we will consider a symmetric double-well potential
function V1(x) given by

V1(x) =
βx2

2
+
αx4

4
, (2)

and an asymmetric double-well potential function V2(x)
given by

V2(x) =
βx2

2
+
αx4

4
+
x3

3
, (3)

where β and α are parameters. Both functions are
depicted in Figure 1, with β = −1 and α = 1 kept fixed.
The symmetric case is represented by the red line, and the
asymmetric case by the blue line.

Symmetric and asymmetric Van der Pol-Duffing oscil-
lators, with the most varied types of forcing, have a
wide utility in many fields, with consequent application
to model several different nonlinear processes. Some few
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examples include the modeling of the stochastic response
of a vibroimpact system under additive colored noise
excitation [4], and optical bistability in a dispersive
medium [5]. Van der Pol-Duffing oscillators can be prop-
erly coupled, with the resulting systems being useful to
model electroencephalogram signals [6] and microelec-
tromechanical systems resonators [7], which have signif-
icant use as sensors, biomedical implants, and wireless
communication devices.

Our main goal in this work is to investigate the two-
dimensional (ω, f) parameter-space of the forced Van der
Pol-Duffing system (1), delimiting regions of different
dynamical behavior for both cases, namely the one that
considers the symmetric potential V1(x) in equation (2),
and the one where is considered the asymmetric potential
V2(x) in equation (3). The dynamical behavior of a very
large number of points in the (ω, f) parameter-space, more
exactly one million points, will be characterized for each
of the two cases, for β = −1, α = 1, and µ = 0.5. In other
words, each point in the (ω, f) parameter-space will have
its related trajectory in the phase-space characterized as
regular (periodic or quasiperiodic) or chaotic. With this
purpose, both parameters ω and f are simultaneously var-
ied in each case, system (1) is numerically integrated for
each pair (ω, f), and Lyapunov exponents are sequentially
calculated. Finally, the results obtained by considering
the symmetric and the asymmetric potential functions are
compared.

The paper is organized as follows. In Section 2 we
present numerical results related to the organization of
the dynamics in the (ω, f) parameter-space of system (1)
for the symmetric Van der Pol-Duffing system. The asym-
metric case is considered in Section 3, while concluding
remarks are given in Section 4.
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Fig. 1. Symmetric (red line) and asymmetric (blue line)
double-well potential functions, obtained respectively from
equations (2) and (3) with β = −1 and α = 1.

2 The (ω, f) parameter-space of a
symmetric Van der Pol-Duffing oscillator

Figures 2a and 2b show a global view of the
(ω, f) parameter-space of a forced symmetric
Van der Pol-Duffing oscillator, for 0 ≤ ω ≤ 5, 0 ≤ f ≤ 10,
and with µ = 0.5 kept fixed. They were obtained by
considering the symmetric potential V1(x) when β = −1,
α = 1, meaning that we are dealing with the symmetric
double-well potential function plotted in Figure 1, namely
that represented by the red line.

Numerical estimates of Lyapunov exponents spectra
(LES) were used to obtain the diagrams in Figure 2. Each
point, in each parameter-space, was painted according to
the dynamical behavior presented, which was character-
ized by the related LES. Thus, a chaotic region, for which
the largest Lyapunov exponent (LLE) is greater than zero,
and the second LLE is equal to zero, is related to the same
region that appears painted in yellow-red in Figure 2a,
and in black in Figure 2b, with the same interpretation
being given for the sets of diagrams in Figures 2c and 2d,
and in Figures 2e and 2f. A periodic region, for which
the LLE is equal to zero and the second LLE is less than
zero, is related with a same region painted in black and
grey, respectively in diagrams of Figures 2a and 2b, with
the same interpretation being applied also to diagrams in
Figures 2c and 2d, and in Figures 2e and 2f. A quasiperi-
odic region, for which the LLE and the second LLE are
both equal to zero, is corresponding to a same region
painted in black in the two diagrams of each of the three
sets defined above. We would like to point out that this
color code is also observed for all similar parameter-spaces
throughout this text.

Before proceeding, we give details of the procedure for
obtaining the diagrams in Figure 2. All of them, as well as
all similar diagrams further on in this text, were obtained
by computing LES in square grids of 103×103 parameters.
System (1) was always integrated from the same initial
condition, by using a fourth-order Runge–Kutta algorithm
with a fixed time step equal to 10−3, being discarded the
first 1 × 106 integration steps, considered as a transient.
To perform the computation of the average involved in

the calculation of each one of the LES, were considered
the next 1× 106 integration steps.

Figures 2a and 2b allow us to see that, for a small
amplitude of the external forcing, near to f = 1 in approx-
imate values, the symmetric Van der Pol-Duffing forced
oscillator is quasiperiodic in a wide range of the investi-
gated angular frequency, namely for 1 ≤ ω ≤ 5. Embedded
in the (ω, f) parameter-space, born in the quasiperiodic
region (same region in black color in Figs. 2a and 2b) and
extending to the chaotic region (same region in yellow-red
color in Fig. 2a and black color in Fig. 2b), we can see orga-
nized periodic structures in black color in Figure 2a, which
are similar to the Arnold tongues of the circle map [8].
Such periodic structures are better seen in the magnifica-
tions of the boxed regions A and B of Figure 2a, which
are shown respectively in Figures 2c and 2e.

Note that some of the periodic structures in Figures 2c
and 2e are labeled with a number which is related to
the period of the respective structure. Period here is to
be understood as the number of local maxima of the
variable x, namely xm, in one complete trajectory on
the (x, ẋ) phase-space attractor. These periodic structures
are usually depicted in conventional bifurcation diagrams
like those shown in the plots of Figure 3, appearing in
them as periodicity windows. Such diagrams help us to
determine the periods of some structures, like those num-
bered in Figures 2c and 2e. Each bifurcation diagram
in Figure 3 considers 103 values of the parameter ω,
and was obtained by plotting the local maxima values of
the variable x for each of them. Numerical integrations
were performed under the same conditions as before in
obtaining the parameter-spaces, then the local maxima
were counted and plotted in the respective bifurcation
diagram.

As can be seen in parameter-spaces depicted in dia-
grams of Figure 2, some type of organization of typical
periodic structures (the Arnold tongues) is present. With
regard to Figures 2c and 2e, as we move from right-hand
to left-hand, along the straight line drawn in each of
the diagrams, a same infinite set of periodic structures is
crossed, which become smaller and smaller, and accumu-
late in the border of the large period-1 region in black at
left. This set of periodic structures may be considered as
being formed by two subsets of period-adding sequences,
observed before in arrangements of other typical periodic
structures, namely the shrimp-shaped periodic struc-
tures, in different continuous-time nonlinear mathematical
models [9–19]. One subset is represented by the sequence
2→ 3→ 4→ 5→ 6→ . . . , started at period-2 with an
increase by a factor 1, while the other subset is repre-
sented by the sequence 3 → 5 → 7 → 9 → 11 → . . . ,
this last sequence started at period-3, with an increase
by a factor 2. In terms of the complete sequence, these
periodic structures embedded in the quasiperiodic/chaotic
region of Figures 2c and 2e are organized as 3→ 2→ 5→
3 → 7 → 4 → 9 → 5 → . . . , whose general term is given
by [20]

an = −1

4
(−3 + (−1)

n
) (n+ 2) , n = 1, 2, 3, . . . (4)
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Fig. 2. Regions of different dynamical behaviors in the (ω, f) parameter-space of the forced symmetric Van der Pol-Duffing
oscillator, according to estimates of the Lyapunov exponents spectra. Diagrams (a), (c), and (e) consider the largest Lyapunov
exponent, while (b), (d), and (f) consider the second largest Lyapunov exponent. (a) and (b) Global view for 0 ≤ ω ≤ 5,
0 ≤ f ≤ 10. (c) and (d) Magnification of the boxed region A in (a), where 1.4 ≤ ω ≤ 2.2, 0 ≤ f ≤ 1. (e) and (f) Magnification
of the boxed region B in (a), where 3.8 ≤ ω ≤ 4.5, 0.6 ≤ f ≤ 2.4.

Fig. 3. Bifurcation diagrams for the forced symmetric Van der Pol-Duffing oscillator. Plotted is the number of local maxima of
the variable x, as a function of the parameter ω. Numbers are related to periods. (a) Considering points along the straight line
f = 0.4166ω − 0.3332 drawn in Figure 2c. (b) Considering points along the straight line f = 2ω − 7 drawn in Figure 2e.

It is important to note that the sequence (4) was derived
based on numerical evidence detected in Figures 2c,
2e, 3a, and 3b. There is no analytical procedure
for this purpose. In general, organization of regular
and chaotic behaviors in parameter planes, needs to
be obtained in an independent way, through numerical
simulations considering the corresponding mathematical
model.

Arrangements of periodic structures resulting in a
sequence similar to that in (4), were before reported

to a Hopfield-type neural network modeled by a set of
three autonomous nonlinear first-order ordinary differen-
tial equations [21]. In this case, the periodic structures are
shrimp-shaped, embedded in a chaotic region. Such typ-
ical periodic structures, shrimp-shaped, also appear with
similar organization in a chaotic region of a periodically
forced compound Korteweg-de Vries-Burgers system [22],
which is modeled by a third-order partial differential
equation. Boat-shaped periodic structures, and periodic
structures similar to the Arnold tongues, are also present
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Fig. 4. Regions of different dynamical behaviors in the (ω, f) parameter-space of the forced symmetric Van der Pol-Duffing
oscillator, according to estimates of the Lyapunov exponents spectra. Diagram (a) considers the largest Lyapunov exponent,
while diagram (b) considers the second largest Lyapunov exponent. Both diagrams refer to magnification of the boxed region
in Figure 2e, where 4.3 ≤ ω ≤ 4.4, 1.2 ≤ f ≤ 2.0.

in this type of organization, in parameter planes of
another damped-forced oscillator, modeled by a different
second-order ordinary differential equation [12].

We would like to point out that the Arnold tongues
present in the (ω, f) parameter-space of system (1) have
self-similar properties. This is evidenced in Figures 2c
and 2e, where it can be seen the presence of tongues in
different length scales, between every two tongues belong-
ing to any of the period-adding sequences seen before.
Figure 4a shows a magnification of the boxed region in
Figure 2e, for 4.3 ≤ ω ≤ 4.4, 1.2 ≤ f ≤ 2.0, and following
we will investigate the organization of periodicities of some
tongues shown there.The largest tongue between period-3
and period-5 tongues is a period-8 tongue. Note that 8 is
the sum of 3 and 5. The largest tongue between period-5
and period-8 tongues is a period-13 tongue, 13 being the
result of the sum of 5 and 8. The largest tongue between
period-8 and period-13 tongues is a period-21 tongue, 21
being the result of the sum of 8 and 13. This behavior
is recurrent, and the result is the sequence of numbers
(periods) 3 → 5 → 8 → 13 → 21 → 34 → . . . , clearly
illustrated in Figure 4a. This time there is another type of
organization of the tongues, again based on their respec-
tive periods. The rule followed for writing the sequence
of numbers above considers that the period of a tongue
in a certain position, is the difference of periods of both
the subsequent and the previous tongues. Therefore, the
number 5 in the position 2 of the sequence, related to
the period-5 tongue, is the difference between 8 and 3,
which are numbers related respectively to both period-8
and period-3 tongues. The period-8 tongue in the posi-
tion 3 of the sequence, is the difference between 13 and 5,
which are numbers related respectively to both period-13
and period-5 tongues, and so on.

The sequence 3 → 5 → 8 → 13 → 21 → 34 → . . . ,
generated by considering the periods of a set of Arnold
tongues present in the (ω, f) parameter-space of the forced
symmetric Van der Pol-Duffing oscillator, is similar to the
Fibonacci sequence [23], in the sense that both sequences
obey the same law of formation. As a consequence, the
growth rate of the period in the sequence obtained here,
given by Pn+1/Pn, with n being an integer signifying
the position of each number in the sequence, converges
to the golden ratio φ = (1 +

√
5)/5 ≈ 1.61803398. To

illustrate, 34/21 = 1.6190476 . . . is the ratio between
periods of tongues at positions 6 and 5 in the sequence,
while 987/610 = 1.6180328 . . . is the ratio between peri-
ods of tongues at positions 13 and 12. We emphasize that
sequences similar to the above may be found between
every two neighboring tongues, belonging to any of the
sequences investigated before, and depicted in Figures 2c
and 2e.

3 The (ω, f) parameter-space of an
asymmetric Van der Pol-Duffing oscillator

Figures 5a and 5b show a global view of the
(ω, f) parameter-space of a forced asymmetric
Van der Pol-Duffing oscillator, for 0 ≤ ω ≤ 5, 0 ≤ f ≤ 10,
and with µ = 0.5 kept fixed. They were obtained by
considering the asymmetric potential V2(x) when β = −1,
α = 1, meaning that we are dealing with the asymmet-
ric double-well potential function plotted in Figure 1,
namely that represented by the blue line. As before in
Figures 2 and 4, diagrams in Figure 5 were obtained
by using numerical estimates of LES to characterize the
dynamical behavior of each point. It is therefore possible
to conclude that the system under study does not present
quasiperiodic behavior, since common regions painted in
black are not observed in any of the two sets of diagrams
((a)–(b), and (c)–(d)) in Figure 5.

The quasiperiodic region observed in the symmet-
ric Van der Pol-Duffing forced oscillator investigated in
Section 2, which as we have seen before is present in a
wide range of the angular frequency, for a small amplitude
of the external forcing, is this time, in the asymmetric
case, replaced by a periodic region. As a consequence
of the extinction of the quasiperiodic region when we
switch from the symmetric to asymmetric case, organized
periodic structures similar to the Arnold tongues of the
circle map [8] are not observed in the forced asymmetric
Van der Pol-Duffing oscillator. Therefore, the quasiperi-
odic behavior is extinguished by the asymmetry imposed
by the potential function V2(x)

Figure 5c, which is a magnification of the boxed region
in Figure 5a, shows another kind of typical periodic struc-
tures, namely the shrimp-shaped periodic structures [24],
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Fig. 5. Regions of different dynamical behaviors in the (ω, f) parameter-space of the forced asymmetric Van der Pol-Duffing
oscillator, according to estimates of the Lyapunov exponents spectra. Diagrams (a) and (c) consider the largest Lyapunov
exponent, while (b) and (d) consider the second largest Lyapunov exponent. (a) and (b) Global view for 0 ≤ ω ≤ 5, 0 ≤ f ≤ 10.
(c) and (d) Magnification of the boxed region in (a), where 0.65 ≤ ω ≤ 1.00, 1.0 ≤ f ≤ 1.6.

Fig. 6. A bifurcation diagram for the forced asymmetric Van
der Pol-Duffing oscillator. Plotted is the number of local max-
ima of the variable x, as a function of the parameter ω.
Numbers are related to periods. It was obtained by considering
points along the horizontal straight line f = 1.45 not drawn in
Figure 5c, for 0.8 ≤ ω ≤ 1.0.

whose organization this time occurs embedded exclusively
in the chaotic region of the (ω, f) parameter-space of
the forced asymmetric Van der Pol-Duffing oscillator. As
before in Section 2, in the symmetric case, numbers label-
ing some periodic structures in Figure 5c, meaning the
respective periods, were copied of the bifurcation diagram
in Figure 6, which was obtained in a manner analogous
to those diagrams in Figure 3. This time were consid-
ered points along the horizontal straight line f = 1.45,
not drawn in Figure 5c because it is visually easy to
locate. Note that as we move along this not drawn line
in Figure 5c, from the right side to the left side, we detect
a set of infinite periodic structures in black, numbered as
3, 5, 7, 9, 11,. . ., which are separated by chaotic regions in
yellow to red, while get smaller and smaller and accumu-
late in the border of the period-2 black region at left. Such

periodic structures constitute a part of a period-adding
sequence 3→ 5→ 7→ 9→ 11 . . . , where the periodicity
is increased by a constant factor equal to 2, as the param-
eter ω decreases. Note that the period of the accumulation
region, namely 2, is equal to the growth rate of the
sequence. This behavior in a two-dimensional parameter-
space, where typical periodic structures separated by
chaotic regions, are organized in sequences whose period
of the next structure is increased by a constant num-
ber equal to the period of the accumulation region, was
observed before in several other different continuous-time
mathematical models of real systems [9–14].

4 Summary

In this paper we report on the nonlinear dynamics of
symmetric and asymmetric Van der Pol-Duffing oscil-
lators driven by a same periodic force F (t) = f cosωt.
For each of the systems we have investigated a two-
dimensional parameter-space, namely that considering the
angular frequency ω and the amplitude f of the exter-
nal forcing. Regardless of the case under consideration,
symmetric or asymmetric, we have verified a certain orga-
nization of the dynamics in the two systems, in the (ω, f)
parameter-space.

Both systems show regions for which the correspond-
ing trajectories in the phase-space are periodic or chaotic.
Quasiperiodic regions are also observed, but only in the
symmetric case. We also investigate the organization
of the dynamics in the two systems, showing the exis-
tence of typical periodic structures embedded in chaotic
regions, the so-called shrimps, organized in period-adding
sequences in the asymmetric case. Finally, we have shown
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Page 6 of 6 Eur. Phys. J. B (2018) 91: 144

the existence of other typical periodic structures, the
Arnold tongues, born in the quasiperiodic region and
extending to the chaotic region of the symmetric case,
whose periods are organized as in a Fibonacci sequence.
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