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Abstract. We demonstrate how a recently developed method Nielsen et al. [Nielsen et al., EPL 101, 33001
(2013)] allows for a comprehensive investigation of time-dependent density functionals in general, and of
the exact time-dependent exchange-correlation potential in particular, by presenting the first exact results
for two- and three-dimensional multi-electron systems. This method is an explicit realization of the Runge–
Gross correspondence, which maps time-dependent densities to their respective potentials, and allows for
the exact construction of desired density functionals. We present in detail the numerical requirements that
makes this method efficient, stable and precise even for large and rapid density changes, irrespective of
the initial state and two-body interaction. This includes among others the proper treatment of low density
regions, a subtle interplay between numerical time-propagation and zero boundary conditions, the choice
of time-stepping strategy, and an error damping mechanism based on both the density and current density
residuals. These considerations are also relevant for computing time-independent density-functionals and
lead to a more precise implementation of quantum mechanics in general, which is mainly relevant for cases
in which there is notable contact with a boundary or when the low density regions matter.

1 Introduction

Computer simulations of physics at the atomic scale have
become an increasingly important and integral part in
the process of inventing, designing and optimizing many
modern devices. The appeal is obvious, as ideally, one
could for example examine all the processes that take
place in a computer chip or when a drug is admin-
istered by just running a computer program, thereby
saving the need to perform slow and expensive labo-
ratory tests. In practice, such simulations are however
strongly limited by the fact that their wave function
formulations quickly become computationally intractable
with increasing system size and significant approxima-
tions are therefore needed to overcome this bottleneck,
and to allow for a study of realistic systems. Presently
most simulations thus rely on density-functional theory
(DFT) [1] and time-dependent density-functional theory
(TDDFT) [2,3] since these methods keep an unusually
high level of precision while at the same time reducing the
computational cost from scaling exponentially to linearly
with system size. Even so, they still reduce the preci-
sion significantly as they, especially in the time-dependent
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case, rely on rather simplistic approximations to the so-
called Hartree exchange-correlation (Hxc) potential (or
simply the exchange-correlation potential if we subtract
the Hartree part). Much research has therefore already
gone into this quantity [4–9], but in particular in the
time-dependent case further investigations are still needed
to achieve chemical accuracy and to extend the range
of simulations. Adequate tools to perform such investi-
gations are therefore essential and in this work we present
a numerical method that allows to study the exact Hxc
potential in the time-dependent case.

In a recent work [10] we presented a numerical inver-
sion method to construct the external potential that, for
a given initial state, produces a prescribed time-dependent
density in an interacting quantum many-body system.
This technique is the first general method of its kind [2]
and only few other methods exist [11–15]. It combines
ideas from tracking [16,17] (a local control theory also
known as inverse control) with a fixed point formulation
of TDDFT [18–20] and forms a highly efficient method
which is precise and stable even for large and rapid density
variations regardless of the initial state and two-electron
interaction. It furthermore allows for the computation
of the many-body wave function and consequently any
property as a functional of the initial state and density,
including the exact Hxc potential. This is an explicit
realization of the Runge–Gross result [21–23] that any
observable is a functional of the density and initial state,
which forms the foundation of TDDFT. Our numerical
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implementation thereof thus allows us to investigate vir-
tually all fundamental aspects of TDDFT in a unique way.
This includes the exact benchmarking of present approxi-
mations to the Hxc potential, the study of exact features of
the Hxc potential for simple systems, and the study of how
more exotic functionals, like the kinetic energy, depend on
the density for use in orbital free TDDFT. In time, this
will hopefully lead to better, more physical, approxima-
tions to the Hxc potential, and thereby an even wider use
of simulations to complement laboratory work.

Inversions can be rather intricate to perform and there-
fore we will in this work focus on some key ingredients
needed for a successful implementation. This work there-
fore provides significantly more details than presented in
our earlier work [10]. This includes a discussion of the sub-
tle interplay between numerical time-propagation [24] and
the use of zero boundary conditions on the wave function,
and an in-depth analysis of why and how one must treat
the low density regions carefully. It also comprises an anal-
ysis of why we deliberately used an implicit time-stepping
procedure in [10] over an explicit as proposed in [14], and
a discussion on how to get a crucial error damping mech-
anism by using both the density and current residuals,
as well as many other details. Our discussion of the low
density regions is also very relevant to time-independent
inversions like the ones discussed in [25,26]. At the same
time we also explicitly extend the method to arbitrary
dimensions such that an in-depth study of the Hxc poten-
tial for realistic, i.e., two and three dimensional systems,
becomes possible. We highlight this capability by showing
first results for such higher-dimensional systems.

Finally, instead of using tracking to find the potential
that determines a desired density-path, like our method
does, an interesting alternative is to use optimal control
theory [15]. This provides some further options to penalise
unwanted features in the potential. However, as tracking
generally suffices for the task at hand at a significantly
lower numerical cost it is generally the choice to prefer.
We therefore stay with this choice throughout this article.

Outline - In Section 2 we first provide a brief overview
of TDDFT in the Kohn–Sham (KS) formulation to set the
background. We then explain a stripped down version of
our inversion algorithm in order to demonstrate that the
basic logic is rather simple and nothing but a variation of
tracking. Readers only interested in the basic ideas may
right after this section skip to the examples Section 7.

We stress, however, that such a naive implementation
of the method is very unstable. This relates not only to
the method itself, but also to an additional necessity to
implement quantum mechanics more precisely than one
usually does. We therefore discuss these aspects first in
detail before we present the final method. Some of these
aspects are also relevant for users, not just developers. For
example, one cannot just use a ground state from a code
that does not adhere to this rigour as an initial state in
an inversion.

In Section 3 we briefly present the main ideas behind a
typical implementation of the time-dependent Schrödinger
equation (TDSE) to establish the numerical frame-
work. We further point out that one must be care-
ful how to implement zero boundary conditions for

time-propagation, as it is not enough to require that
the wave function is zero at the boundary if one uses
analytic functions (as discussed in much more detail in
Appendix A). In Section 4 we demonstrate why it is
important to also treat the low density regions accurately
(and in Appendix B we show how to achieve this precision
even in extreme cases). With these things in place, we can
then finally address the inversions, and the good news is
that if one is cautious to follow the guidelines mentioned
above, it becomes relatively easy to perform the inversions
even in extreme cases. We present the main aspects of
our inversion methods in Sections 5 and 6 for respectively
time-independent and time-dependent inversions (time-
independent inversions compute the potential that has a
specific density as ground state density). In Section 7 we
then show results for 2D and 3D systems, as well as a series
of results for 1D systems, before we conclude in Section 8.

2 Overview

Throughout this paper we study the class of N -electron
systems governed by the time-dependent non-relativistic
spin-free Hamiltonian (atomic units are used throughout)

Ĥ(t)= T̂+Ŵ+V̂ (t)=−1

2

N∑
i=1

∇2
i+

N∑
i>j=1

w(rij)+
N∑
i=1

v(rit),

(1)

where T̂ is the kinetic energy operator, Ŵ the two-electron
interaction operator, V̂ (t) the external potential operator,
∇2
i the Laplacian with respect to the spatial coordinate

ri and rij = ri − rj . We further denote the initial state of
such a system by |Ψ0〉 = |Ψ(t0)〉, and the state |Ψ(t)〉 then
evolves according to the TDSE,

i∂t |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 . (2)

Given the state |Ψ(t)〉 we can then compute any desired
property by evaluating the expectation value of the opera-
tor of interest. For example, the density n(rt) and current
density j(rt) are the expectation values of the density and
current density operators

n̂(r) =
N∑
i=1

δ(r− ri), (3)

ĵ(r) =
1

2i

N∑
i=1

(
δ(r− ri)

−→
∇i −

←−
∇iδ(r− ri)

)
. (4)

Numerically, the computational cost of solving the exact
TDSE scales exponentially with the system size, limiting
us to systems with only a few degrees of freedom.

In contrast, for a non-interacting system (i.e., Ŵ = 0)
the computational cost scales only linearly with system
size assuming the initial state |Φ0〉 is a Slater determinant
(or a linear combination of a few Slater determinants),
since the time-propagated state |Φ(t)〉 remains a Slater
determinant (or a linear combination thereof) and we can
therefore represent it by one-particle orbitals φi(rt). In
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this case we therefore only need to propagate each of these
orbitals separately using a single-particle Hamiltonian

ĥs(t) = − 1
2∇

2 + vs(rt),

where we employed the usual convention to denote a
potential that acts on a non-interacting system by vs(rt).
All properties of the system can then also be expressed
in terms of the orbitals φi(rt). The density is for example
(typically) given by

n(rt) =
N∑
i=1

|φi(rt)|2.

The cost of computing one-body properties thus also
scales linearly with the particle number such that we
can treat very large non-interacting systems if we limit
us to such properties. The computation of many-body
properties is still more expensive, like quadratic for the
pair density, but still computationally cheaper than for
interacting systems.

2.1 Runge–Gross mapping and Kohn–Sham theory

The computational advantages of non-interacting systems
are exploited in the KS approach to TDDFT [2,27]. In this
approach a non-interacting system is introduced with the
same density as that of the interacting system of interest.
To define this system properly we first define the Runge–
Gross mapping for general interacting systems.

The time-propagation of an interacting system with
external potential v(rt) and initial state |Ψ0〉 produces
a time-dependent many-body wave function as a func-
tional of the potential and the initial state. A subsequent
evaluation of the density expectation value produces a
mapping (Ψ0, v) → n from potentials v(rt) and initial
states |Ψ0〉 to densities n(rt) which we denote by n[Ψ0, v].
The Runge–Gross mapping (Ψ0, n) → v is then defined
as the inverse of the mapping n[Ψ0, v] and can be shown
to exist under mild conditions on the potentials and ini-
tial states [28]. This implies that for a fixed initial state
|Ψ0〉 and two-body interaction there is a unique potential
v[Ψ0, n] (up to a purely time-dependent gauge function
c(t)) that yields a prescribed density n(rt) by solution of
the TDSE. The initial state is required to yield the pre-
scribed initial density n(rt0) and time-derivative of the
density ∂tn(rt0) (which can be calculated by evaluating
the expectation value of the current density with respect
to the initial state since ∂tn(rt0) = −∇ · j(rt0)).

The Runge–Gross mapping exists for systems with a
large class of two-body interactions. If we now consider
the special case of a system in which the two-body inter-
action is identically zero we deduce the existence of a
potential vs[Φ0, n] that yields the density n(rt) for an ini-
tial state |Φ0〉 in a non-interacting system. The functionals
v[Ψ0, n] and vs[Φ0, n] can be used to define the so-called
Hxc potential by

vHxc[Ψ0, Φ0, n] = vs[Φ0, n]− v[Ψ0, n] (5)

(often further the exchange-correlation potential vxc(rt) is
defined by subtracting the Hartree potential from vHxc(rt)
but this is not relevant for the present work). This func-
tional plays an important role in the KS construction
in which we can calculate the density of an interacting
system with prescribed external potential vext(rt) by time-
propagation of a non-interacting system with initial state
|Φ0〉 and potential

vKS[Ψ0, Φ0, n, vext] = vext + vHxc[Ψ0, Φ0, n],

which is called the KS potential. To see that this pro-
cedure indeed yields the desired density we note that
self-consistency is achieved, by definition, for the density
nsc(rt) that satisfies

vKS[Ψ0, Φ0, nsc, vext] = vs[Φ0, nsc].

From the definition of the functional vHxc we deduce
that this is exactly true whenever vext = v[Ψ0, nsc] or,
equivalently, when nsc = n[Ψ0, vext].

In practical applications of the KS formalism we need
an approximation for vHxc[Ψ0, Φ0, n]. The dependence of
this functional on the initial states is only known in very
specific cases [6] and is generally neglected. In the spe-
cial, but important, case that the initial states |Ψ0〉 and
|Φ0〉 are ground states they are functionals themselves of
the ground state density and then vHxc becomes a func-
tional of the density only. However, even in this case
approximations for vHxc are usually only available in the
adiabatic approximation and generally taken to depend
on the instantaneous density or orbitals while ignoring
the dependency on the density at earlier times. In fact,
one mostly uses approximations designed for ground state
DFT in TDDFT in an adiabatic approximation. The pre-
cision of such approximations is of course limited, but
still qualitative agreement is at least usually obtained
for a restricted time interval (dependent on how rapid
the dynamics is). There are, however, many situations
[2,7,10] in which it is necessary to go beyond the adia-
batic approximation. In the design of such approximations
the ability to compare to an exact benchmark is of great
value and therefore in this work we present a numeri-
cal method to explicitly construct exact time-dependent
density functionals.

In the remainder of this work we show how, for a
prescribed time-dependent density n(rt) and initial state
|Ψ0〉, we can numerically construct the potential v[Ψ0, n]
for any interacting system. The non-interacting poten-
tial vs[Φ0, n] can also be obtained since it corresponds
to a special case of the same method for a vanishing
two-body interaction. A quantity of special interest is
the Hxc potential which can be obtained from its def-
inition in equation (5). Another common situation is
that we have solved the TDSE of an interacting prob-
lem with a given external potential v and initial state
Ψ0 and we want to study the corresponding KS sys-
tem to develop and benchmark functionals in TDDFT.
In this case the interacting density n[Ψ0, v] is known
and the corresponding Hxc potential is obtained from
vHxc[Ψ0, Φ0, n[Ψ0, v]] = vs[Φ0, n[Ψ0, v]]− v, since this is the
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Hxc potential that yields the density n[Ψ0, v] in an exact
KS propagation. The wave functions |Ψ [Ψ0, n]〉 respec-
tively |Φ[Φ0, n]〉 are also obtained as our inversion method
steps through time, but are usually not stored (they can
always be recomputed later by a propagation with v[Ψ0, n]
respectively vs[Φ0, n]). This allows us to also compute a
large class of other density functionals as well, like the
kinetic energy or different contributions to the Hxc poten-
tial, by the evaluation of expectation values of operators
of interest using either the interacting or non-interacting
wave function.

2.2 Basic inversion method

In this section we present an outline of the main ideas
behind our inversion method while the numerical details
to make it highly efficient, stable and precise will follow in
later sections. The starting point of the discussion is the
quantum fluid reformulation of the TDSE, which consists
of the equations of motion of the density and the current
density

∂tn(rt) = −∇ · j(rt), (6)

∂tj(rt) = −n(rt)∇v(rt)−Q(rt). (7)

Here Q(rt) = 〈Ψ(t)|Q̂(r)|Ψ(t)〉 is the expectation value

of the internal local force operator Q̂(r) = i[̂j(r), T̂ + Ŵ ]
with respect to the many-body wave function |Ψ(t)〉 that
solves the TDSE with potential v(rt). By the Runge–
Gross mapping, Q[Ψ0, n](rt) is a functional of the density
and the initial state and has the physical interpreta-
tion of an internal force density. This furnishes an exact
density-functional reformulation of the quantum many-
body problem in terms of a quantum fluid system. A
good approximation for the functional Q[Ψ0, n](rt) would
allow for the calculation of the density and current den-
sity without the necessity of solving the TDSE. We
use equations (6) and (7) in a different way instead.
Combining the two equations leads to the expression

−∇ · (n(rt)∇v(rt)) = q(rt)− ∂2
t n(rt), (8)

where q(rt) = ∇ ·Q(rt). This equation is central to our
inversion method as it directly connects the density and
potential. The idea is to insert the density of interest into
this equation and then use it to solve for the potential in
which we regard q[Ψ0, v] as a functional of the potential
v(rt). In earlier work [18] we showed that the potential
obtained in this way indeed yields the prescribed density
when we use it in the TDSE. The basic strategy of our
inversion method to determine this potential is to use a
time-stepping approach from local control theory known
as tracking [16].

To keep the discussion as simple as possible, let us
consider the Euler method of time-stepping on an equidis-
tant time-grid with tn = n∆t where n is an integer.
We start by computing v(rt0) from the initial state
|Ψ(t0)〉 and density n(rt) that we prescribed. If we
compute q(rt0) from |Ψ(t0)〉 then at t0 both terms
on the right hand side of equation (8) are known

(since the density is known at all times) and we can
solve the equation for v(rt0) for which there exist
efficient solvers (see Sect. 6.2). We then use Euler

time-stepping with the corresponding Hamiltonian Ĥ(t0)

to obtain |Ψ(t1)〉 as |Ψ(t1)〉 = |Ψ(t0)〉 − i∆tĤ(t0)|Ψ(t0)〉.
Using |Ψ(t1)〉 we can repeat the whole procedure, i.e., we

calculate q(rt1) and subsequently v(rt1) and Ĥ(t1), which
is used to perform a new time step. Continuing this way
we step through all the time points tn thereby obtaining
the desired potential v(rtn) on the specified time grid. In
summary: Given |Ψ(tn−1)〉 we compute v(rtn−1) and use
it to step to |Ψ(tn)〉. Since we need to make each time step
only once the method is simple and very efficient.

The more sophisticated method that we will present
later uses a similar strategy that is only modified slightly
to prevent errors from building up over time. It also uses
a more advanced time-stepping method than the Euler
method making it only a few times more expensive than
a normal time-propagation when the potential is known
(instead of the density). It has the further advantage that
it avoids the direct use of the complicated quantity q(rt)
and instead employs quantities that can be expressed in
terms of v(rt) and n(rt) (and possible j(rt) for stability).
This also means that our method can be combined with
any spatial representation or propagation method, as long
as we can propagate the density (though for approximate
methods the inversion procedure may become unstable).
Especially, for non-interacting systems, we can usually
work in terms of orbitals, and the method is much more
efficient.

The basic inversion procedure to calculate the poten-
tial has an appealing simplicity, but it is important to
stress that a naive implementation of the method is
highly unstable even for moderately large or rapid density
changes. While the Euler method is mathematically guar-
anteed to converge for small enough time-steps, it usually
fails in practice within the inversion method due to dis-
cretization and round-off errors.1 One of the causes of the
instability is that the density at a given spatial point may
change in value by orders of magnitude. We therefore have
to be very cautious to preserve a large numerical accu-
racy in time. For example, the density at some point in
space could change from a value of 10−2 to a value of
10−10 at a later time. Consequently a small error of, for
instance, 10−8 in the density which is regarded as small
initially and which is preserved in time may be regarded
as a large error at a later time when it can become much
larger than the density itself. We therefore need to damp
any errors we make in the density (also already for much
smaller density changes), or a strong artificial potential
is often generated. We note that this feature is much less
severe for dipole tracking [16], where almost any naive
implementation will perform adequately. However, in the
case of the density inversion much more caution is needed.
This also applies to the calculation of the initial state
which needs to be accomplished with high accuracy even

1 This remains true also for more advanced Runge–Kutta meth-
ods and even the Krylov subspace based Lanczos method [29] and
therefore a more fundamental approach to cure this problem is
needed.
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in the low density regions. The way we ensure stability
and accuracy of the inversion method is explained in detail
in the next sections, while readers only interested in the
basic ideas may skip to the examples Section 7 right after
this section.

Note that tracking can also be used for other mutually
conjugate variables like the potential and density. This can
be used to construct exact functionals also for other types
of TDDFT like time-dependent current or dipole DFT,
or TDDFT for cavity quantum electrodynamics [30]. For
example, consider the potential v(rt) = v0(rt) + ε(t)x,
where v0(rt) is fixed and usually time-independent, e.g.,
it could be the potential from the nuclei in some molecule.
In contrast ε(t) is the field strength of a linearly polarised
laser (in the x direction treated in dipole approximation),
that one can adjust. In this case the field strength ε(t) and

dipole moment µx(t) = 〈Ψ(t)|µ̂x|Ψ(t)〉, µ̂x =
∑N
i=1 xi, are

also conjugates [31], and one can use tracking to find the
field strength ε(t) that from a given initial state |Ψ0(t)〉
yields a specified dipole moment µx(t) exactly the same
way as we find the potential v(rt) that yields a specified
density n(rt). Instead of equation (8) we just take the
second time-derivative of µx(t), instead of n(rt), to find a
similar relation for this case [16].2

3 Numerical framework

In this section we describe a time-propagation method
that will allow us to solve the TDSE much more efficiently
(as it allows for very long time-steps) and accurately than
with the Euler method. To describe the method we again
discretize the time-axis into small pieces of length ∆t. The
time-stepping for a time-dependent Hamiltonian Ĥ(t) is
presented pictorially as follows3

Ψ Ψ Ψ
Ĥ Ĥ

0 ∆t 2∆t
t

,

in which every arrow denotes a time evolution of the wave
function on each interval using a Hamiltonian Ĥ obtained
from Ĥ(t) by evaluating it at the midpoint of each time-
interval and employing it for the whole of each of the
intervals ∆t. Since the only time-dependent part of the
Hamiltonian is the potential this requires the evaluation
of the potential at the midpoint of each interval. The
time-propagation on each interval is performed with the

2 The conjugate pairs are very special though. For example, say
we start in a ground state, and prescribe that S(t) = 〈Ψ(t)|Ô|Ψ(t)〉
should go from 0 to 1, with S(t) the occupation of the first excited

state, Ô = |ψ1〉〈ψ1|. That is, we want to find the field strength ε(t)
that takes us from the ground state to first excited state in some
specific manner. Then most likely there just exists no such ε(t), as
most tracks are simply not physically possible, and so tracking will
usually run into infinite field strengths ε(t) [16,17]. In contrast, for
µx(t) TDDFT guarantees us the existence of a unique ε(t), so in
this case, or for other conjugates, we never run into trouble.

3 For simplicity we employ an equidistant time grid but all time-
stepping strategies that we present, including those for inversions,
can also use adaptive time steps to boost performance.

evolution operator Û(∆t) = e−iĤ∆t which we will hence-
forth denote as the time-step operator. It can be shown
rigorously [28,32,33] that for Lipschitz continuous poten-
tials we will converge to the exact continuous solution
of the TDSE in the limit that ∆t approaches zero. This
procedure allows us to step through time with a com-
putational cost which is determined by the fact that we
have to apply Û(∆t) repeatedly. As there exist good effi-
cient approximations to this operator, this approach is
both efficient and accurate.4 Note that the use of mid-
point potentials has the important property that it ensures
time-reversal symmetry and allows for longer steps than
for other choices of time-points to evaluate the potential
in.

The main question that remains is how to apply the

formal time-step operator Û(∆t) = e−iĤ∆t. A mathemat-
ically well-defined way of doing this is to first compute
all the eigenstates |n〉 and energies En of the Hamiltonian

Ĥ and then expand the state |Ψ〉 in terms of these eigen-
states, and use that the time-evolution of each eigenstate
is given by a simple exponential, i.e.,

Û(∆t) =
∑
n

e−iEn∆t|n〉〈n|. (9)

It is, however, generally very expensive to compute all
the eigenstates and this approach is therefore not very
practical, especially since the operator Ĥ changes every
time step. Instead, one usually assumes that the formal
time-step operator may be Taylor expanded,

Û(∆t) =
∑
n

(−i)n

n! (∆tĤ)n, (10)

since this sum can be truncated at low order while keep-
ing a high precision thanks to the rapid decay of the
terms (∆t)n for small ∆t. We will use the Krylov sub-
space projection method outlined in [29], which is also

known as the Lanczos method [24], to evaluate Û(∆T )|Ψ〉
approximately. This method can be viewed as a way
to get parts of all higher order terms in the truncated
sum in equation (10) at no extra significant cost.5 The
approach used here is more advantageous than general
purpose solvers like the Runge–Kutta methods, since it
has been made specifically for the TDSE. The exact time-
step operator preserves the norm exactly, as well as the
time-reversal symmetry since we use midpoint Hamiltoni-
ans. The Krylov subspace projection method [29] that we
use closely approximates the exact operator, and there-
fore also keeps these properties to a high extent, while the
Runge–Kutta method does not build them in. We further
note that in equation (10) we usually compute Ĥ|Ψ(t)〉
by direct application of the operator instead of using the

4 For Hamiltonians that change rapidly in time it can be advanta-
geous to allow for temporal change of the Hamiltonian within each
interval by using the so called Magnus expansions [29] but usually
this is not needed.

5 Presently the Krylov subspace projection method is generally
the method of choice although for wave functions with a very broad
spectrum the split-operator method [24] may perform better.
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eigenvector expansion, which is considerably more efficient
than using equation (9). For example, in real space, we can

directly evaluate the appropriate derivatives for T̂ and do
the multiplications with Ŵ and V̂ (t) to apply Ĥ(t) to a
wave function.

We finally like to point out a fundamental difference
between equations (9) and (10), which will be relevant for
the discussion of zero boundary conditions. The difference
only exists in the spatial continuum limit in which we have
to deal with unbounded operators (for a more detailed
mathematical discussion we refer to [20]). Our discussion
of the time-stepping above was completely independent
of the spatial representation and in particular the opera-
tor Û(∆T ) as defined by equation (9) is well-defined in the
continuum limit on the domain of wave functions on which
the Hamiltonian itself is defined. However, the expansion
in equation (10) is defined on a much smaller domain [23]
and only allows for (spatially) analytic potentials and ini-
tial states since only then one can apply the Hamiltonian
an arbitrary number of times. In contrast, equation (9)
applies also to systems that contain potentials with spatial
jumps, such as the finite square well. Another impor-
tant difference involves the incorporation of boundary
conditions. While for equation (9) the spatial boundary
conditions on the system are contained in the eigenstates
|ψn〉, the right hand side of equation (10) at first sight
seems not to contain any information on the boundary
conditions of the system. The only way to incorporate
them is in the specification of the domain of the opera-
tors Ĥn for all n [23]. Since we prefer to use equation (10)
for practical purposes it is important to know how this
is done. If an initial wave function, for example, has peri-
odic or hard-wall boundary conditions we like the operator
Ĥn to preserve that property. How this is dealt with in
practice is explained in detail in Appendix A.

The discussion up to now only involved the temporal
aspect of our framework. The remaining issue is to find
a suitable spatial representation to use. For general time-
dependent systems the wave function and density can vary
considerably both in space and time, and are difficult
to represent in terms of (time-independent) basis func-
tions (in contrast to for weakly perturbed systems). It is
therefore expedient to use an equidistant grid, as it will
essentially (dependent on the boundary conditions) rep-
resent the wave function equally well independent of its
spatial localization. For this reason real space codes are
very common in the study of strong field dynamics and
we will adopt the same strategy. An alternative would be
to use time-dependent basis functions. To evaluate the
necessary spatial derivatives we will further make use of
common finite difference techniques but make them more
accurate at the boundaries.

4 Low density regions

In this section we demonstrate why it is important to com-
pute the density accurately also in the low density regions
and how to do this. To illustrate the problem it suffices
to consider a single spin-free electron in 1D. We con-
sider the Hamiltonian Ĥ = − 1

2∂
2
x− cos( 2πx

L ) with periodic

-50 x 50
0

Ψ

0.4 (a)

30 x 50
-1e-14

Ψ

1e-14 (b)
Exact
Eigen
Matlab
Matlab
Python

Fig. 1. The ground state of the potential v(x) = − cos( 2πx
L

)
with L = 100, (a) in the whole interval and (b) zoomed in
on the vanishing density region, for five different eigensolvers.
An exact eigensolver, designed to also yield the correct result
in vanishing density regions, Eigen, a C++ library eigensolver,
Matlab’s eig and eigs solvers, and Python’s eigsh. Only the
exact eigensolver is correct for vanishing densities.

boundary conditions and take L = 100. By employing
a variety of different eigensolvers we can calculate the
ground state. A sample of such calculations is presented in
Figure 1a. If we zoom in on the vanishing density region,
see Figure 1b, we see that all the library eigensolvers
produce a very irregular wave function in the region of
function values of around 10−14. Since we know the exact
wave function (which is a Mathieu function) to be smooth
and nodeless these irregularities merely represent numer-
ical noise. The errors in this region are very large as
the values are off by as much as 13 orders of magnitude
and a randomly oscillating sign. Library eigensolvers by
design usually only guarantee that the eigenvalues are con-
verged to machine precision, while they make no further
guarantees for the precision of the eigenstates. For many
purposes, such as in the calculation of expectation val-
ues, such errors are generally negligible in the quantities
that are being calculated. However, for the inversion prob-
lems that we are concerned with in this work such noise
deserves careful attention even if the densities are low.
This is again illustrated with our example of the ground
state of Figure 1 of which we take the square to obtain
the density. Suppose we now want to find the potential
that yields this density by means of a numerical inversion
method. This should give back the − cos( 2πx

L ) potential,
and indeed it does provided we use the exact ground state
density. However, if we use one of the noisy ground states
to construct the density, we can only expect to obtain an
accurate potential in the inner region where the ground
state is well represented, while in the outer region we will
be trying to find a potential that yields very irregular
noise. Therefore the algorithm to find the potential will
likely not converge in this region, although this can easily
be fixed by for example imposing a suitable artificial form
of the potential in the outer region.

In the time-dependent case the situation is much more
intricate as any noise in the outer region tends to prop-
agate quickly into the higher density regions as we step
through time. One can still handle many simple cases by
artificially modifying the potential in the outer region [34].
However, this will cause the density we actually get to
drift apart from the prescribed density. This is an issue,
since tracking by design tries to get to the prescribed den-
sity within each time-step. Our method will therefore try
to compensate the full difference within each time-step,
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which requires a stronger and stronger potential, and one
is again limited by the time it takes the errors to propa-
gate inwards and grow in size, although much slower. This
raises the question how to construct a precise black box
approach to avoid excessive numerical noise and its prop-
agation in time-dependent inversions. The first step is to
compute the initial state to a high accuracy also in the
low density regions. If the initial state is given, for exam-
ple in some analytic form, then this is a straightforward
procedure. However, usually the initial state is required
to be an eigenstate of some Hamiltonian and we therefore
need to solve the time-independent Schrödinger equation
which is usually solved iteratively, like other large eigen-
value problems. The way to achieve high accuracy is to use
an extremely strict convergence criterion and a method
able to reach such high accuracy as discussed further in
Appendix B. The other issue is the propagation of numer-
ical errors. However, if the initial state is determined very
accurately both propagation and time-dependent inver-
sions can be done to high accuracy as well with little extra
computational cost.

Now, in most situations we do not have to deal with
such vanishing densities if we use a small domain. How-
ever, we stress that it is equally important to also treat the
moderately low density regions precisely, such as densities
like 10−4, which we commonly encounter. Otherwise the
same issues as described in this section arise. The most
important message of this section is thus that if we use
any approximations, whether it is in prescribing the initial
state |Ψ0〉 and density n(rt) or anywhere in the inversion
method, these approximations have to also be reasonable
in the moderately low density regions. The approxima-
tions do not necessarily have to be precise, but they should
at least be reasonable and consistent enough not to cause
too wildly fluctuating potentials during the inversion as
this will cause a breakdown of the method. This pro-
hibits the use of many common approximations, which
have often only been designed to get the high density
regions right while even moderately small density regions
may again be very non-physical. One is forced to pay care-
ful attention to the physics in the moderately low density
regions. Initial states also always have to be precise (pos-
sible within a certain approximation). In particular many
quantum codes designed for large systems by default only
treat the high density regions accurately (to save com-
putational effort), and therefore one should be careful if
using initial states from such codes.

5 Time-independent inversion

After the preliminaries in the previous sections we proceed
with the discussion of the actual inversion methods. In this
section we consider the case of a time-independent system
and look for a time-independent potential v(r) which pro-
duces a given ground state density n(r).6 A simple way
to find this potential is to use an iterative method along
the lines of [25]. We define an iterative sequence vk(r) of

6 This also lets us compute vHxc[n] = vs[n] − v[n] by applying
the method to both a non-interacting and interacting system and
subtracting the two results.

potentials by the solution of

vk+1(r)− vk(r) = δ ln

(
nk(r)

n(r)

)
, (11)

where nk(r) is the ground state density obtained by
solving the Schrödinger equation with potential vk(r),
δ a positive number, and n(r) the desired density. We
repeatedly compute the ground state density until it
converges, nk(r)→ n(r), while updating vk(r) each time.
Note that per construction, the procedure is guaranteed
to yield the right result if it converges, as the source
term (the right hand side of Eq. (11)) only vanishes
if nk(r)→ n(r). We further see that the procedure in
each iteration increases the potential where the density
nk(r) is too large, and thereby reduces the density
in that region, and decreases the potential where the
density nk(r) is too small, to attract more density. This
method performs equally well for interacting and non-
interacting systems, except that it is usually much faster
in the latter case, as one can usually employ orbitals in
that situation.

The main question remaining is how large a correction
one should add in each iteration, to make it large enough
that the procedure converges fast, yet small enough not
to over-correct so strongly that it causes the potential
to fluctuate wildly. The logarithmic right hand side of
equation (11) represents a decent first guess, since even
if one starts with a completely wrong potential v0(r) for
which the density n0(r) is off by orders of magnitudes at
some points, it still causes only a limited correction in
the right direction (even for a quite large δ). When the
density is nearly correct it causes a large enough change
in the potential to ensure a reasonably fast convergence.
This approach is never very fast though because the local
corrections need to gradually shape the global potential
that we seek for, but many other methods share this fea-
ture. There are many options for improvement, like an
adaptive r-dependent δ, but not an easy answer to what
is best in general and a more in-depth discussion is beyond
the scope of the present work.

If one imposes boundary conditions on the wave func-
tion that are consistent with the prescribed density, and
is cautious with the low density regions as described in
the previous section (or enforce an artificial potential in
the low density regions), the above method usually works
trivially. There also exists a plethora of other methods
to compute v[n](r) (see, e.g., [26]), some of which may
be somewhat faster than the above method, but many
of these methods often require extra care to perform,
and/or have other limitations. Many of them are further
specialised to non-interacting systems and orbitals for a
slight performance gain at the cost of generality, as such
a specialisation can be optimized further than a generic
algorithm. So the above method is a safe generic choice.

6 Time-dependent inversion

First we develop a more precise time-stepping strategy
to do the tracking. The key ingredient in this strategy is
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an update formula that we obtain by recasting a recent
fixed-point approach to TDDFT [18,19] in the form of
this more precise time-stepping strategy. These two items
combined form our final inversion algorithm.

6.1 Time-stepping strategies

We recall that in the time-stepping strategy of Section 3
we needed the potential at the midpoints of the time-
intervals and will in this section describe several ways
to compute this given the density n(rt) instead of the
potential v(rt).

We will in the following denote the potential at the
nth midpoint by v̄(rtn) = v(r, (tn + tn−1)/2). Our goal
is to evaluate this quantity and we assume that we
have obtained the potential v̄(rtm) for m < n at the
midpoints of the previous time intervals. We further
aim to set up an iterative procedure to obtain succes-
sively better potentials v̄k(rtn) which will converge to
v̄(rtn) if we increase k. We may get a good estimate for
the initial guess v̄0(rtn) at low computational cost by
extrapolation. For example, we may use linear extrap-
olation v̄0(rtn) = 2v̄(rtn−1)− v̄(rtn−2), or even simpler
v̄0(rtn) = v̄(rtn−1), although in practice we recommend
the use of higher orders as the computational cost is very
low. It is also possible to compute the previous on-point
potentials v(rtm) for m < n by solution of equation (8) at
time tm (since we know the wave functions |Ψ(tm)〉, see
Sect. 2.2) and use these in the extrapolation as well. This
is most useful in the first step where we only have access
to v(rt0) to do our extrapolation. Once we have obtained
the extrapolation v̄0(rtn) we often want to improve it by
some corrector steps before we use it to take a next time
step.

One common way to correct the midpoint potentials
v̄k(rtn) is to use it in a time propagation step to obtain
|Ψk(tn)〉 which approximates |Ψ(tn)〉. We subsequently
use |Ψk(tn)〉 to obtain an approximate on-point poten-
tial vk(rtn) and construct a better midpoint potential
using v̄k+1(rtn) = 1

2 (v(rtn−1) + vk(rtn)).7 This approach
is often used in KS theory where the use of two corrector
steps usually works well [2].8 Another common choice in
KS theory is to use no corrections at all and to employ
a higher order extrapolation instead at the expense of
requiring shorter time steps. This approach performs well
for dipole tracking but is generally not accurate enough
in our case.

To achieve much greater stability we use for our inver-
sion method a different way to update the potential which
uses the control target that we want to obtain. Again we
use v̄k(rtn) to perform a time-step to get |Ψk(tn)〉 and
a density nk(rtn). Subsequently we compute the residual
nk(rtn)−n(rtn) to measure how different the density that
we obtained is from the density n(rtn) that we want to
produce. The idea is then to find an update formula of the

7 It is important to add the potentials but not the wave functions
to obtain v̄k+1(rtn) since adding wave functions does not conserve
the norm.

8 This approach applies equally well to KS theory to compute
vHxc(rtn) and thus the midpoint Hamiltonian from |Φ(tn)〉 (and
the already known |Φ(tm)〉 if we include memory).

form

v̄k+1(rtn) = v̄k(rtn) + f [nk(rtn)− n(rtn)], (12)

where f is a given functional of the residual nk − n at
time tn that corrects the midpoint potential in such a
way that v̄k+1(rtn) yields a significantly smaller resid-
ual. The detailed form of this functional is presented in
the next section as it is irrelevant for the discussion of
the general update strategy here. We use it to repeat the
update in equation (12) a few times until the residual
becomes very small before we move to the next time-
step. The large advantage of this strategy is that it always
tries to compensate any tiny error in the time-propagation
by marginally changing the midpoint potentials to ensure
that the target density still is produced very accurately.
Even if n(rt) changes by orders of magnitude this pro-
cedure will still produce the density correctly (while the
potential will also be very accurate as we stay on the
prescribed density path in time).

In contrast, the standard correction formulas for the
potential that we mentioned before do not correct any
error in n(rt) except by sheer luck, and for example what
may be a small error to start with may become a major
error if n(rt) decreases over time by orders of magnitude,
which causes a breakdown of the method. In short, our
approach may be slightly more expensive but is much
more stable. We shall also see in Section 6.2 that it also
allows for further stabilising techniques.

6.2 Update formula

We now address the question how to derive a suitable
update procedure that can be used in equation (12). To
do so we use equation (8) to define an iterative sequence
vk of potentials on a given time interval, starting from an
initial guess v0, by the solution of

−∇ · (n(rt)∇vk+1(rt)) = q[vk](rt)− ∂2
t n(rt). (13)

In previous works [18,19] we showed (under mild assump-
tions) that indeed vk → v[Ψ0, n] in Banach norm sense.
We will reformulate this procedure in a way that suits
our time-stepping strategy. For much greater efficiency we
therefore compute the potential on many successive small
time-intervals of length ∆t instead of on a long global
time interval.9 We further find it advantageous to elim-
inate the quantity q[vk] from equation (13) to obtain a
simpler equation that depends on densities and potentials
only. This can be done by employing equation (8) for a
system with potential vk. We then obtain

−∇ · (n(rt)∇vk+1(rt)) = ∂2
t [n[vk](rt)− n(rt)]

−∇ · (n[vk](rt)∇vk(rt)) .

Furthermore, since n[vk] approaches n as vk approaches
v[Ψ0, n] we can replace the last n[vk] by n close to

9 One can only expect to find v[Ψ0, n] accurately at a given time
if it is already correct at previous times.
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convergence (which we always are as we find v[Ψ0, n]
step-by-step).10 We then obtain

−∇ · (n(rt)∇ [vk+1(rt)− vk(rt)])=∂2
t [n[vk](rt)−n(rt)] . (14)

This equation shows us how we can update vk given
the residual n[vk] − n, and (once time-discretized) pro-
vides our desired update formula. The functional f in
equation (12) is therefore implicitly defined by solution
of (14). We can however improve the update formula sig-
nificantly by also making use of the current. If we use the
continuity equation (6) we may also write

∇ ·(n(rt)∇[vk+1(rt)−vk(rt)])=∂t[∇· j[vk](rt)+∂tn(rt)] . (15)

While equation (14) is only converged if vk yields n,
equation (15) is instead converged when vk yields a
current density j[vk], that together with n satisfy the con-
tinuity equation (since exactly then does the source terms
on the right hand side vanish). By combining these two
equations we can require both n and ∇ · j to be as accu-
rate as possible, even when numerical errors try to build
up. This turns out to be another crucial ingredient in
stabilising the numerics and is perhaps the most crucial
innovation as it also acts as a damper on all errors.11 We
use a parameter µ (chosen as we see fit) to weigh the two
equations. This results in

−∇· (n(rt)∇ [vk+1(rt)− vk(rt)])

= (1− µ)∂2
t [n[vk](rt)− n(rt)]

− µ∂t [∇ · j[vk](rt) + ∂tn(rt)] . (16)

The only thing left to do now in order to arrive at the
desired update formula is to discretize this formula with
respect to time. By using only times tm with m ≤ n for the
derivatives, and employing the fact that we have already
converged the density and current up to time tn−1, we
obtain

−∇· (n̄(rtn)∇ [v̄k+1(rtn)− v̄k(rtn)]) ∆t2

= A [n[vk](rtn)− n(rtn)]

−B∆t [∇ · j[vk](rtn) + ∂tn(rtn)] , (17)

as our update formula. The constants A and B depend
on the discretization scheme and on the parameter µ of
equation (16), which effectively leaves the choice of their
values at our disposal. In practice we usually employ
values between 0.5 and 1 for them.12

10 The true right hand side of equation (14) has an extra term
−∇ · ((n[vk] − n)∇vk) that vanishes at convergence. Removing
it therefore has no effect on the final result if we converge. It
also does not affect the convergence rate itself as it only adds
−∇ · ((n̄[vk](rtn) − n̄(rtn))∇v̄k(rtn))∆t2 to the right hand side of
equation (17). If the potentials only differ in the last time step the
size of this term is of the order ∆t4 while the size of all the terms
in equation (17) are of the order ∆t2.

11 In simple terms it ensures that both the modulus and phase of
the wave function remain accurate. Adding more conditions for even
greater stability is possible but these conditions will have to be of
a consistent form and have to perform well in combination. This is
especially relevant to extent the method to other conjugate pairs.

12 The scale of A and B determines the scale of the correction
v̄k+1(rtn)− v̄k(rtn) that we add per iteration and should be large

Note that there exist very efficient numerical methods
to solve the Sturm–Liouville problem of equation (17),
i.e., to invert the self-adjoint operator −∇ · (n(r)∇) effi-
ciently. The solution is determined up to a constant which
is fixed by a gauge choice (for instance, we can require the
spatial integral of the potential to be zero). In the real
space finite difference framework that we used in our work
relaxation methods are a rather slow, but easy to imple-
ment, choice for this inversion [35]. For greater speed one
can accelerate these methods using the significantly more
involved multi-grid methods also given in [35]. This gen-
erally leaves the computational cost negligible compared
with the one required in the time-propagation of the wave
function.13 As iterating equation (17) further generally
converges within 5 to 10 iterations for each time-step,
our algorithm is essentially as fast as the time-stepping
scheme itself. We also find that the precision of the result-
ing potential is limited mainly by the time-step operator
(assuming a sufficient spatial resolution). By increasing
the precision thereof almost arbitrary precision can be
achieved even when the density changes by many orders
of magnitude.

Finally, note that our new update formula equation (17)
is a considerable improvement over that of our prior
work (see Eq. (10) in [10]). In that work we only
considered 1D multi-particle problems where a direct
integration of the Sturm–Liouville operator is possible.
However, solving equation (17) directly, instead of by
using two anti-derivatives, allows us to treat 2D and 3D
systems. Moreover, it is also simpler since we bypass a
non-trivial integration constant.14 Finding a very pre-
cise anti-derivative is often as difficult as inverting the
Sturm–Liouville operator so although it may seem easier
at first glance we discourage this route. The new update

enough to converge fast yet small enough to not over-correct. Differ-
ent relative weights of A and B eliminate different error build ups
slightly better, and it is mainly important to have some of each. The
presented values generally perform well and when the choice matters
it is usually due to an insufficient grid or time-propagation method.

13 Especially with multi-grid acceleration one should be cautious
to use a proper discretization of the Sturm–Liouville operator.
For example in 2D a proper 5-point formula is 1

2∆x2
[(ni−1,j +

ni,j)vi−1,j − (ni−1,j + 2ni,j + ni+1,j)vi,j + (ni,j + ni+1,j)vi+1,j ] +
1

2∆y2
[(ni,j−1 + ni,j)vi,j−1 − (ni,j−1 + 2ni,j + ni,j+1)vi,j + (ni,j +

ni,j+1)vi,j+1]. This preserves the self-adjointness of the continuous
Sturm–Liouville operator. Crucial to the stability of the multi-grid
method [35], once divided by its diagonal, the eigenvalues further
lie from 0 to 2 with only one zero eigenvalue (for v constant). For
increased efficiency one may sometimes further weigh the two direc-
tions when dividing by the diagonal. Within the multi-grid approach
the computational cost of inverting a Sturm–Liouville operator is
only a few times that of applying the Sturm–Liouville operator itself,
so it is small compared to the cost of taking a time-step for the time-
propagation of the wave function (except in the one-electron case or
for a few orbitals).

14 The first integration of equation (17) gives rise to a boundary
condition dependent integration constant, while the integration con-
stant of the second integration (and of solving Eq. (17) directly) is
the gauge constant of the potential. The first integration constant is
for the even-odd boundary conditions (see Appendix A) fixed by the
requirement that the anti-derivative must be odd. On R, the anti-
derivative must also vanish at±∞ (otherwise the potential we obtain
will approach ±∞ for ±∞ extremely fast). For periodic boundary
conditions the integration constant is fixed by periodicity [10].
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formula also has the advantage that we no longer need to
prescribe j(rt) or to smoothen the potential.15

We finally like to remark that there exists a spe-
cial time-dependent one-orbital inversion formula [6,36]
which is very valuable for comparisons and testing of
our numerical inversion method, especially since there are
multiple ingredients necessary for our method to work
properly. Since the physics of the low density regions can
be intricate it may be worth to first recreate some of
our examples or to compare to this one-electron formula
for some very simple cases when designing a computer
code.

7 Examples

To illustrate the capabilities of our procedure we apply
it to small interacting systems as well as larger non-
interacting systems and use it to construct the exact Hxc
potentials for small systems. We first apply it to a sim-
ple 1D model system in Section 7.1 to illustrate the main
aspects of the method after which we consider 2D and 3D
model systems in Sections 7.2 and 7.3 to confirm that the
method works the same in 2D and 3D.

We note that one can also easily do more realistic
cases like using (soft) Coulomb potentials. Indeed, we have
already performed many such computations. We have also
used zero boundary conditions, handled density changes
of up to 34 orders of magnitude, used potentials and
interactions with kinks (continuous but non-differentiable
functions) and much more. We find it educational to con-
centrate on one simple model here in order to focus on the
method rather than on the systems and to provide other
examples in a follow up paper. For some examples with
soft Coulomb and zero boundary conditions see also [37],
for examples involving scattering processes see [38,39],
and for an example in the context of cavity quantum
electrodynamics see [30].

Also note that all computations were done on a lap-
top for which the cases of two interacting electrons in
2D or 500 non-interacting electrons in 3D are currently
about the limit for a simple real space code. When
using distributed memory two interacting electrons in
3D also becomes possible. Furthermore, one can handle
much larger systems by using approximate representa-
tions which, if precise enough, could still yield nearly exact
results.

The computed potentials of our examples were checked
to closely reproduce the prescribed density and its time-
derivative (by design of the method). We also verified that
they are independent of the size of the time step and the
operator as well as the spatial representation. Some of
the potentials were also tested by means of the analytic
formula available for the single orbital case.

15 In 1D we can determine the current j(rt) up to a constant for
a given density n(rt) using the continuity equation (6). The 3D
analogue of this procedure amounts to the determination of the lon-
gitudinal current which can be done by using relaxation methods.
However, by using ∂tn(rtn) via the continuity equation we do not
even need to prescribe j(rt) at all.

7.1 1D model system

In this part we consider N electrons on a quantum ring
of length L = 10, over a time period of length T = 20.
We start by computing an initial state, |Ψ0〉, which in all
cases is a ground or excited state of a (properly periodic)
Hamiltonian with external potential v0 and interaction w
given by

v0(x) = − cos
(

2πx
L

)
,

w(x1, x2) = λ cos
(

2π(x1−x2)
L

)
,

where λ is the interaction strength. We then construct
the corresponding initial density n0(x), and from it the
(spatially periodic) time-dependent densities n1 and n2:

n1(xt) = n0(x− r(t)), (18)

n2(xt) = 1
2 [n0(x− r(t)) + n0(x+ r(t))], (19)

r(t) = L
2

[
1− cos

(
πt
T

)]
. (20)

The density n1 describes a situation where the initial den-
sity n0 is rigidly translated around the ring exactly once,
while n2 describes a situation where the initial density
n0 is split in equal halves that are rigidly translated in
opposite directions to rejoin at times T

2 and T .16 We used
our algorithm to obtain the potentials that produce these
prescribed densities n1 and n2 via time-propagation of
the initial state |Ψ0〉 by the TDSE. This was done for
interaction strengths λ = 1 and λ = 0, which we will in
the following respectively call the interacting and non-
interacting case. It is worth noting that v(rt0) = v0(r)
only when ∂2

t n(rt0) = 0 if |Ψ0〉 is an eigenstate.17 If we
want v(rt0) = v0(r) we need to prescribe a density with
∂2
t n(rt0) = 0. This is the case for the splitting densities

but not for the translated ones. Our examples are made
to be numerically challenging since the external potential
has to change the density by many orders of magnitude
(for a fixed spatial coordinate), while preserving accuracy.
In the case of the density splitting the external potential
further has to ensure that the wave function splits and
recombines correctly.

7.1.1 One-electron

We consider the case of a single electron and take the ini-
tial state to be one of the (spatially identical) degenerate
spin-up or spin-down ground states. The corresponding
potentials and densities (insets) are shown in Figure 2.
As we have just argued above, v(rt0) = v0(r) for the
split density, but not for the translated one. Moreover the
potentials have some additional properties in this simple
case as we see they are periodic in time, with period 2T for
the translated and T for the split density. The periodicity

16 In practice we use cubic interpolation to evaluate such densities,
or bicubic and tricubic interpolations in 2D and 3D.

17 As we start in a stationary state |Ψ0〉, we have from equation (8)
that −∇ · (n(rt0)∇v0(r)) = q(rt0). Subtracting this from
equation (8) evaluated at t0 yields −∇· (n(rt0)∇ (v(rt0)− v0(r))) =
−∂2

t n(rt0), so indeed v(rt0) = v0(r) up to a gauge constant only if
∂2
t n(rt0) = 0.
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Fig. 2. The potentials that produce the (a) translated and (b)
split one-electron densities (insets). Note that in (a) we plotted
minus the potential for better visibility.

of the densities therefore carries over to the potentials (as
do the other symmetries of the densities).18 Note that for
a translation we move in one direction around the ring
from 0 to T and in the opposite direction from T to 2T to
arrive at the initial position at time 2T . For this simple
case we even end up in the original state, i.e., the final
state |ΨT 〉 and initial state |Ψ0〉 are the same. These prop-
erties are all special to the one-electron case, as we shall
see next.19 Finally note that especially in the translated
case the potential changes most in the low density regions,
which is a common feature of inversions.

7.1.2 Interacting electrons

Here we consider two interacting systems of two and three
electrons respectively. In the first case, we take the initial
state |Ψ0〉 to be the two-electron singlet ground state (with
a spatial part that is symmetric under exchange of the two
spatial coordinates)20 while in the second case we take the
initial state to be the first stationary three-electron state
with all spin up (or down) (with a spatial part which is
anti-symmetric under interchange of the spatial coordi-
nates). The corresponding potentials and densities (insets)
are shown in Figure 3. As expected we again find that
v(rt0) = v0(r) for the split densities, but not for the trans-
lated ones. In contrast to the one-electron case we now see
that none of the potentials have any symmetry in time.
Furthermore we never end up in the original state, i.e.,
|〈ΨT |Ψ0〉|2 < 1 although the final density is again n0 and
the time-derivative of the density vanishes at this time.
This illustrates that such symmetries are indeed special
to the one-electron case (or perhaps also to more special
multi-electron cases).

7.1.3 Non-interacting electrons

In this section we again consider the split densities and
take the initial states to be the four non-interacting

18 These symmetries are v(x, T
2

+ t) = v(−x, T
2
− t) in both cases

while for the splitting further v(x, T
2

+ t) = v(x, T
2
− t).

19 More precisely they apply to non-interacting one-orbital sys-
tems, of which a one-electron system is a special case. They also
apply for two electrons in one orbital (see Sect. 7.1.3).

20 We have already considered this simple example in [10]. How-
ever, since we use it later to benchmark Hxc approximations in
Section 7.1.4 we present it also here.

Fig. 3. The potentials that produce the (a) translated and (b)
split interacting 2-electron densities (insets), and (c) translated
and (d) split interacting 3-electron densities (insets).

2-, 6-, 10- and 14-electron ground states. We omit a dis-
cussion of the translated densities here, since we find
it more interesting to show how much the potential
changes character with the number of electrons for which
the splitting case is sufficient. The many-particle initial
states are constructed out of the orbitals presented in
Figure 4. This allows us to treat large non-interacting
systems since we can compute the ground states by
computing the one-electron eigenstates and use them in
the Aufbau principle, and we subsequently can employ
our inversion procedure in terms of the one-electron
orbitals.

In Figure 5, we show the potentials for a series of the
four mentioned splits. The main feature that we see in
Figure 5 is that the potentials become smoother the more
particles we consider. We further note that v(rt0) = v0(r)
for all the potentials, while only the two-electron potential
is also periodic in time (as it is in fact equivalent with
the single electron potential of Fig. 2b). Curiously, the 14
electron state is almost periodic again. However, for larger
times (repeating the splittings) a more clear aperiodicity
is expected to show up.

7.1.4 Benchmarking exchange-correlation approximations

Let us now give an example of one way to compute
an exact Hxc potential and use it to benchmark the
commonly used exact-exchange approximation [2]. For
simplicity, we again consider the splitting of Figure 3b and
consider our model system for two interacting electrons
and the split density of equation (19).

To compute the exact Hxc potential we compute the
interacting ground state |Ψ0〉 and use it to construct the
prescribed density n2(xt) and to find the exact KS initial
state |Φ0〉 by a time-independent inversion. Then we use
our method to compute the time-dependent potentials
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Fig. 4. The first seven one-electron eigenstates of v0(x).

Fig. 5. The potentials that produce the split (a) 2-, (b) 6-,
(c) 10- and (d) 14-electron densities (insets).

v[Ψ0, n2] and vs[Φ0, n2] and subtract these according
to equation (5) to obtain vHxc. Note that v[Ψ0, n2]
is the potential that we already calculated to obtain
Figure 3b.

Let us now consider the exact-exchange approximation
for the Hxc potential. For two electrons this is particu-
larly simple as it is equal to half the Hartree potential
(the classical interaction contribution), vHx[n] = 1

2vH[n]

with vH[n](rt) =
∫
dr′n(r′t)w(|r − r′|). To evaluate this

approximation we therefore only need to insert the exact
density n2(xt) into the explicit expression for vHx[n]. How
this approximation compares with the exact Hxc potential
is displayed in Figure 6.

We see from this figure that the approximation ini-
tially performs well but that it increasingly deviates more
as time progresses. There is therefore a relation between
the rapidity of the dynamics and the temporal length for

Fig. 6. (a) Approximate (exact-exchange) and (b) exact Hxc
potentials for the exact split 2-electron density (insets).

which the approximation stays accurate. As memory is
an important ingredient of the exact Hxc potential an
adiabatic approximation depending on the instantaneous
density (of which exact-exchange is a special case) will
not reproduce the exact potential at later times. For our
example an adiabatic approximation will always be peri-
odic and symmetric around t = 10 in contrast with the
exact potential. Therefore, if we want to use approxi-
mate functionals to study more rapid density variations, or
dynamics over longer times, then we need to go beyond the
adiabatic approximation and build in memory or maybe
even initial state dependence. For benchmarking and gain-
ing insight in the construction of such new approximations
the ability to construct the exact Hxc potential is very
valuable. It allows us to see precisely what the approxi-
mate Hxc potential is missing and which features the exact
potential possesses.

7.2 2D model system

We now consider the case of interacting and non-
interacting systems in two dimensions. For this purpose
we consider an analogous model system to the one-
dimensional model system that we discussed above. We
use the potential v0 (to obtain n0) and interaction w given
by21

v0(x, y) = − cos
(

2πx
L

)
− cos

(
2πy
L

)
,

w(x1, y1, x2, y2) = λ cos
(

2π(x1−x2)
L

)
+ λ cos

(
2π(y1−y2)

L

)
,

and still take L = 10 (both sides) and T = 20 and
again use periodic boundary conditions. We use these
potentials to compute the initial state and construct a
time-dependent density

n(xyt) =
1

4
[n0(x− r(t), y) + n0(x+ r(t), y)

+ n0(x, y − r(t)) + n0(x, y + r(t))],

which describes a splitting in four fragments (instead of
only two as in the one-dimensional case) and where we

21 This interaction is a bit unusual since it depends not only on
the distance between the particles and therefore is different for
x1 − x2 =

√
2, y1 − y2 = 0 and x1 − x2 = 1, y1 − y2 = 1. However,

the algorithm can also handle such a case.

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 235 Page 13 of 19

have used the same r(t) of equation (20) as in the 1D case.
Finally we again use our algorithm to compute v[Ψ0, n].

Note that in all cases we only provide 6 snapshots of
the potentials though the potentials change much more in
time than this represents. In all cases v(rt0) = v0(r) since
∂2
t n(rt0) = 0 as explained in Section 7.1. As a side remark,

we note that the given v0 and w decouple in x and y com-
ponents, such that the spatial parts of the eigenstates of
the Hamiltonian are products of the individual eigenstates
of the x and y components of this Hamiltonian (which are
still interacting states if w is non-zero). While this sim-
plifies the construction of the initial states it does not
make the inversion easier as the time-dependent external
potential is not separable in the two spatial coordinates.
Finally, we note that we do not explicitly compute an
exact Hxc potential here, as we find it more interesting to
do a non-interacting inversion for a system of 10 electrons
rather than for the two-electron case needed to compute
the Hxc potential (where one could also use the analytic
single electron formula).

7.2.1 One electron

In our first case, we simply consider a single electron and
take as our initial state one of the (spatially identical)
degenerate spin-up or spin-down ground states (whose
spatial part is simply a product of identical functions of
x and y each of which is the one-electron ground state
of the one-dimensional system in Sect. 7.1.1). Snapshots
of the resulting potential are provided in Figure 7. As
expected for a single electron case the potential is peri-
odic in time and the periodicity of the density caries over
to the potential (as do the other symmetries of the den-
sities). Moreover, at the final time we recover the original
state as in the one-dimensional case.

7.2.2 Interacting electrons

In our second case we take the initial state to be the
two-electron singlet ground state (whose spatial part is
simply a product of identical functions of x1, x2 and y1,
y2, that each are the 2-electron ground states of the sys-
tem in Sect. 7.1.2). Snapshots of the resulting potential
are provided in Figure 8. Just like in the one-dimensional
case the potential is now no longer periodic in time and
we no longer recover the original state at the final time.

7.2.3 Non-interacting electrons

We now consider the non-interacting 10-electron ground
state for which the one-particle orbitals can be constructed
as products of the orbitals of Figure 4. Snapshots of the
resulting potential are provided in Figure 9. As expected
the potential is again not periodic in time and we end up
in a different final state at the final time.

7.3 3D model system

To demonstrate that the method also performs well in the
practically relevant three-dimensional case let us finally
consider a 3D system of 14 non-interacting electrons with

Fig. 7. Snapshots of the potential and density (insets) for a
single 2D electron at different times.

an initial one-body potential

v0(xyz) = − cos
(

2πx
L

)
− cos

(
2πy
L

)
− cos

(
2πz
L

)
.

This time we take L = 5 (all sides) and T = 5 to make
the numerical data files smaller for convenience. We again
use periodic boundary conditions and compute the ground
state initial state and density n0 as before. We then
construct a time-dependent density

n(xyzt) =
1

6
[n0(x− r(t), y, z) + n0(x+ r(t), y, z)

+ n0(x, y − r(t), z) + n0(x, y + r(t), z)

+ n0(x, y, z − r(t)) + n0(x, y, z + r(t))],

which describes a fragmentation of the initial density in six
pieces in which r(t) is again given by equation (20). Again
v(rt0) = v0(r), and v0 and w decouples in x, y and z mak-
ing it easier to construct the initial state although it does
not simplify the time-dependent inversion. Snapshots of
the resulting potential are provided in Figure 10 for z = 0.
The x = 0 and y = 0 planes would look the same, while
for example the z = 1 plane would differ, but we restrict
to show z = 0 as it is not our purpose to make a full anal-
ysis of the three dimensional dynamics. As expected the
potential is again not periodic in time and we do not end
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Fig. 8. Snapshots of the potential and density (insets) for 2
interacting 2D electrons at different times.

up back in the initial state. Furthermore the potential has
relatively smooth features as we have many electrons in
this case.

8 Conclusions and outlook

We have extended a recent inversion method [10] to 2D
and 3D systems and presented the first inversions for 2D
and 3D multi-electron systems. We discussed numerical
details that make our method efficient, stable and pre-
cise even for large and rapid density changes (even by 34
orders of magnitude) irrespective of the initial state and
the two-body interaction. We highlighted that we must
treat the low density regions carefully, respect the bound-
ary conditions, use a special time-stepping strategy, and
explicitly enforce both the density and the current den-
sity to be accurate. We further showed that our method
is very efficient, as it is only 5 to 10 times slower than the
employed time-stepping method.

These results open up the possibility of a thorough
investigation of density functionals in general, and the
exact Hxc potential in particular, for realistic systems.
This will be most valuable for the development of den-
sity functionals, and has for example already been used
to study the possibility of using more advanced (multi-
configurational) initial states in the KS approach [37].
In the context of strictly-correlated electron reference

Fig. 9. Snapshots of the potential and density (insets) for 10
non-interacting 2D electrons at different times.

systems [40–42] it may help to open up new possi-
bilities for the study of strongly correlated systems
within a TDDFT framework. Furthermore, as already
shown in, e.g., the context of cavity quantum elec-
trodynamics [30], the method can be straightforwardly
extended to different pairs of conjugate variables such
as time-dependent current DFT or time-dependent dipole
DFT [31].

The method is therefore a way to do rigorous tracking
for the conjugate variables, and not only useful to study
TDDFT. This quantum-control perspective will also be
the subject of future work. Besides combining our method
with many-body methods like TDDFT to predict approx-
imate control fields for large systems we can also combine
it with optimal-control theory. This combination allows
us to search over a restricted set of densities instead of
potentials as usual [43,44].

An important remaining challenge is to develop a com-
plementary black box approach to optionally avoid the
necessity to prescribe the density precisely in the low
density regions. For example by designing artificial poten-
tials for the low density regions that affect the high
density regions minimally (although this is complicated).
This would allow further approximations to be used,
and thereby also to increase performance. Another chal-
lenge even then is to treat the moderately low density
regions reasonable as discussed in Section 4. Many com-
mon approximations and the experience required to use
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Fig. 10. Snapshots of the potential and density (insets) for 14
non-interacting 3D electrons at different times for the z = 0
plane.

them were not developed with these regions in mind. Addi-
tionally the dynamics in the low density regions is often
much stronger than in the high density regions, as we for
example saw in Figure 2a. There we obtained a much
stronger potential in the low density region (sometimes
the boundaries can also be the cause of strong dynamics).
It is surprisingly easy to accidentally ask for a density
change that requires a very strong potential causing our
method to break down. For example, one may require a
large density change or change of character in the wave
function within only a few time-steps.
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Appendix A: Boundary conditions using
analytic functions and finite difference
formulas

The formulas employed in real-space codes, such as for
derivatives or interpolation, usually presume that all func-
tions can be represented by a convergent Taylor series, i.e.,
they assume analyticity of the functions. In this Appendix
we therefore show how to work with analytic functions in
a quantum mechanical context, and how to impose proper
boundary conditions in this context. This allows us to, for
example, derive consistent finite difference formulas using
the analytic properties, and thereby to determine deriva-
tives of wave functions, potentials or other quantities with
high accuracy also at the boundary of the simulation box
(necessary for inversions). It further allows us to make
the boundary conditions a property of the physical quan-
tities, e.g., the wave function or the density.22 This is
desirable, since then we can easily write generic computer
routines, where we, for example, do not need to specify
the boundary conditions for derivatives, but infer them
from the objects. It further ensures an internal consis-
tency when computing eigenstates, performing time-steps,
and doing inversions, where the boundary conditions used
for different routines always match. This is because (in
a given system) densities, for example, always have the
same “boundary conditions” property.

In this Appendix we will focus on the finite differences
technique, but the ideas are equally applicable in other
real space codes, and even to define a basis set. Without
loss of generality, we further only consider a simple 3-point
rule for a first-order derivative in one dimension,

f ′i = 1
2∆x (fi+1 − fi−1),

since the logics trivially generalises to higher-dimensions,
higher-order derivatives or other stencils.23 The only non-
trivial aspect to apply such a derivative is the question
what to do at the outermost points to get f ′first and f ′last.
Consider, for instance, the sine and cosine functions of
Figure A.1, which have a convergent Taylor expansion
f(x) =

∑∞
n=0 cn(x− L

2 )n around x = L/2. If we take the
boundary points at ±L/2 then the derivatives at the last
grid point in the interval are just

f ′last = 1
2∆x (+flast − flast−1), (A.1)

22 We point out that in standard quantum mechanics formulated
on general square-integrable wave functions the boundary conditions
are encoded in the set of allowed wave functions, i.e., the domain of
the kinetic energy operator. Here we therefore determine the form of
analytic wave functions in the domain of the kinetic energy operator.

23 In practise, higher order stencils are generally preferable, espe-
cially in higher dimensions, since the higher precision allows one to
use less grid-points. It thus saves work and memory in total, despite
of the stencil itself being more involved.
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Fig. A.1. The sine and cosine functions. The grid points used
for finite differencing are indicated by small vertical marks on
the horizontal axis and the boundary points ±L/2 are exactly
halfway between two grid points.

f ′last = 1
2∆x (−flast − flast−1), (A.2)

since the neighbouring value to the last value equals itself
in the sine (even with respect to the boundary) case, and
minus itself in the cosine (odd at the boundary) case (see
Fig. A.1). The cosine (odd) case, being the ground-state of
a box of length L with zero boundary conditions, already
gives a hint as how to work with zero boundary conditions.
But let us go through this in a little more detail.

A.1 Periodic boundary conditions

Let us consider the simpler periodic case first. Since
all derivatives are continuous for analytic functions, the
periodic boundary conditions for a function f(x) on
an interval [a, b] imply that ∂nxf(a) = ∂nxf(b) for all
n ∈ N. Indeed, since we know that all eigenfunctions of a
Schrödinger problem with analytic potentials are analytic
again [45], this implies that for periodic analytic potentials
the eigenfunctions obey the above periodicity conditions.
Further, if we perform a time-independent inversion for
an analytic and periodic density the resulting potential
is analytic and periodic as well. Also, if we propagate an
analytic and periodic initial state with an analytic and
periodic midpoint potential the resulting time-dependent
wave function will stay analytic and periodic and we
get the same answer for both time-step operators, i.e.,
equations (9) and (10).24 Finally, given an analytic and
periodic initial state and density a time-dependent inver-
sion will lead to an analytic and periodic potential.25 We
therefore see that in the periodic case, by restriction to
only periodic and analytic functions we gain a nice inter-
nal consistency of all the different components that appear
for inversions (and beyond).

Now, if a quantity is analytic and periodic as in
Figure A.2, the finite differencing at the last point
becomes

f ′last = 1
2∆x (ffirst − flast−1), (A.3)

where we merely use the second last and the very first
point of the interval. For a wave function to stay periodic
and analytic also the applied potentials and interaction

24 Although we do not have a strict proof for this, recent results
in the context of the mathematical formulation of the Runge–Gross
result [23,28] suggest that such a theorem should be possible.

25 Again we have no strict proof, but under certain assumptions
the analyticity of the potentials and wave functions are connected
[20].

Fig. A.2. Example of a periodic function with grid points indi-
cated by small vertical marks and the boundary points ±L/2
exactly halfway between two grid points. For finite differencing
at the last grid point before the boundary at L/2 we can use
equation (A.3).

need to be analytic and periodic. If we, in the continuum
case, prescribe a non-periodic or non-analytic potential
or interaction the above finite differencing will essen-
tially interpret it as a periodic and analytic approximation
that depends on the grid-spacing. This usually works
well as long as the violation of the analyticity and peri-
odicity conditions is not too strong, e.g., the potential
jumps discontinuously. The reason for this is that we can
approximate any square-integrable function by an ana-
lytic function to any accuracy we want. Although the
approximation smoothens the non-analyticities (allowing
the approximation to work in the first place), it will still be
close to a function that yields the right result. However,
if we try to approximate functions that are not differ-
entiable (already in the continuum problems can arise
when acting with the kinetic-energy operator) then also
the discretization becomes problematic.

A.2 Zero boundary conditions

For the zero-boundary situation (hard-wall boundary con-
ditions) we let us be inspired by the example above for the
cosine (odd) and sine (even) cases. To find the same inter-
nal consistency like in the periodic case, we consider wave
functions that are odd across the boundary as they have a
node at the boundary, and hence the derivative is given by
equation (A.2). For the density (proportional to the modu-
lus square of the wave function) we accordingly find that it
is even across the boundary and the derivative is given by
equation (A.1). The current density (being proportional to
the wave function times its first derivative) is odd across
the boundary. To keep the necessary even-odd distinction
of the different physical quantities also the potential and
interaction need to be even across the boundary.

To see why one should require these even-odd restric-
tions, let us first consider the case of free propagation
with the Hamiltonian Ĥ(t) = T̂ and zero boundary con-
ditions. For the wave function to stay zero at the boundary
during the time propagation with equation (10) the wave
function must clearly stay odd in time over the boundary.
If it has any even term in its Taylor expansion around
x = ±L/2 some T̂nΨ will become non-zero at the bound-
ary and so will the wave function after an infinitesimal
time. The odd-ness condition is an important property as
it is not sufficient for the initial state to merely be zero at
the boundary if the zero-boundary condition is supposed
to survive throughout the free propagation.

To ensure that an odd wave function stays zero at
the boundary when propagating with some potential and
interaction these are required to be even. In this case Ĥ
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is even as well such that all ĤnΨ are odd and the wave
function stays odd. If Ĥ also has odd components then
even terms mix into ĤΨ and, like in the case of free prop-
agation, some higher powers ĤnΨ will become non-zero
at the boundary.26

These results establish an internal consistency of odd-
even relations. Wave functions, densities, potentials and
interactions cannot be chosen independently but need
to be consistent with each other. These even-odd rela-
tions are the ones we use in practice. Of course, it is
in principle possible to go beyond these simple consis-
tency relations by, e.g., using an initial state that is not
odd but still zero at the boundaries. To then ensure
that the wave function stays zero when propagating with
equation (10) we need some specially designed poten-
tials.27 Whether a similar explicit characterization of
internal consistency as in the even-odd case is possible also
in this case and the two time-step operators equations (10)
and (9) still agree is the subject of future research. How-
ever, since we can approximate any square-integrable
function by corresponding odd (for wave functions) or
even (for potentials and interactions) analytic functions,
the even-odd analytic functions are general enough to
cover almost all cases of physical interest (the sub-
sequent numerical discretization limits these somewhat
which still encourages interest in other than even-odd
functions). For instance, the soft Coulomb potential in
1D can be easily handled but more pronounced violations
of analyticity conditions, e.g., discontinuous jumps in the
potentials, might lead (as discussed in the periodic case) to
problems.

We finally want to make a few important remarks. The
even and odd analytic functions are periodic on an inter-
val of twice the length as shown in Figure A.3. When
we ignore the even-odd consistency conditions the wave
function tends to become noisy and inaccurate near the
boundary. In standard time-propagation most observables
will essentially be unaffected since the noise usually occurs

26 More strictly, if v(x) =
∑∞
n=0 vnx

n and Ψ(x) =
∑∞
n=0 Ψnx

n are
Taylor expansions at the boundary and v(x) has a lowest odd term

v2n+1 and Ψ(x) is odd, then Ĥn+1Ψ(0) =
(2n)!
(−2)n

v2n−1Ψ1. This term

arises from T̂nV̂ Ψ(0) and is the only term involving an odd vn that
survives, i.e., sufficient derivatives are needed to end at zero order
(x0), which is the only order not to vanish at the boundary (as for
all other xn = 0). All the terms involving only even vn vanish at

the boundary as they are odd. For Ĥn+1Ψ(0) to vanish we therefore
need v2n−1 = 0 and so all odd vn must indeed vanish. Note even if

Ψ1 = 0 one can use Ĥn+2 instead to obtain a similar result with Ψ3,
and similarly one can find higher order expression also, when also
Ψ3 or higher odd powers vanish.

27 If an initial state is not odd, we of course still need ĤnΨ
to vanish at the boundary. Let us consider one electron in one
dimension with Hamiltonian Ĥ = − 1

2
∂2
x + v(x). By Taylor expan-

sion at the boundary, v(x) =
∑∞
n=0 vnx

n and Ψ(x) =
∑∞
n=0 Ψnx

n

this leads to the conditions Ψ(0) = Ψ0 = 0, ĤΨ(0) = −Ψ2 = 0,

Ĥ2Ψ(0) = 6Ψ4 − v1Ψ1 = 0, Ĥ3Ψ(0) = −90Ψ6 + 6v3Ψ1 + 9v1Ψ3 = 0,

Ĥ4Ψ(0) = 2520Ψ8−90v5Ψ1−108v3Ψ3−36v2Ψ4−180v1Ψ5 = 0, and
so on, where we have used the previous relations to simplify the lat-
ter. These equations tell us which potentials are allowed for a given
wave function and vice versa, but they are not very practical and
we do not know whether they provide separate conditions on v(x)
and Ψ(x) (especially for higher orders).

Fig. A.3. All analytic functions which are even or odd with
respect to the boundaries at ±L/2 are periodic on the double
interval [−L/2, 3L/2].

in the low density regions. However, if the density is not
small near the boundaries, as in the case of a reflection,
these small errors affect accuracy and numerical stability.
Further, if all quantities already adhere to the even-odd
conditions, one can mathematically also use zero bound-
ary conditions on the wave function and no boundary
conditions on the potentials, and it will keep the even-
odd conditions. Numerically, this corresponds to using
sided finite differences for the potential and sided finite
differences with the zero value at the boundary build in
for the wave function. Whether this is sufficient to ensure
stability numerically for time-dependent inversion, or one
has to explicitly enforce the even-odd conditions, remains
an interesting open question since these sided finite dif-
ferences are also natural to use in the time-independent
case. Note that we place the boundary points in Figure A.1
halfway between the grid points instead of including them
in the equidistant grid (which is common for the sided
finite differences and sided finite differences with the zero
value build in). This avoids to either store the zero val-
ues for the wave function at the boundary, complicating
division, or to use a different number of grid points for
the potential and wave function (since for the potential
we need to store the values at the boundary to take, for
example, derivatives thereof). In this way we can also use
the same grid for periodic boundary conditions, without
having a “boundary” point that is covered twice, making
re-use of the code more elegant and easier.

Appendix B: Vanishing density regions

In this Appendix we provide the basic ideas that allow us
to also treat vanishing density regions to a high precision.
We stress that one can also treat most cases without these
ideas, but they do allow for a broader class of problems.
Note that all the propagation and inversion methods we
present in the main text allow for vanishing densities, as
long as one computes the initial state and prescribed den-
sity with sufficient precision. Therefore this Appendix is
mainly concerned with the time-independent Schrödinger
equation.

B.1 Vanishing density methods

The time-independent Schrödinger equation is usually
solved iteratively like other large eigenvalue problems. The
typical solvers take a number of trial vectors, {ψi}, and
update them repeatedly until they all (or a desired amount
thereof) converge (it is often faster to use more trial vec-
tors than necessary). To obtain a high accuracy even for
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very low values like 10−27 one needs to use an extremely
strict convergence criterion and a method able to reach
this extreme level of precision.

As convergence criterion we advice to require that
Ĥ|ψi〉 = Ei|ψi〉 pointwise to a high relative precision

where Ei is computed by 〈ψi|Ĥ|ψi〉. To enforce this we

require that |(Ĥ−Ei)ψi(x)|/|ψi(x)| ≤ δ for all x (or for all
space and spin coordinates in general), with for example
δ = 10−8. If fulfilled both eigenstates and energies must
clearly be correct to a high relative precision everywhere,
also for very small values of the order of 10−27 and even
smaller when it is relevant. This is a very natural crite-
rion to use (for the high density region one may require
|(Ĥ − Ei)ψi(x)| ≤ δ instead). For excited states it is gen-
erally advantageous to only require the criterion for a
fraction of the grid-points, such as 0.96, because, due to
nodes and division by ψi in the criterion, there are often
a few points where it is hard to reach as high precision as
everywhere else.

For the solver we recommend polynomial filtering
[46], for which imaginary Euler time-stepping is a very
simple option. In this approach one uses the update
ψi,k+1 = ψi,k −∆tĤψi,k followed by a re-normalization.
Given multiple trial vectors, a few re-orthogonalizations
will also be needed to ensure that each trial vector gives a
different of the lowest eigenstates rather than all the low-
est. We recommend this method as a first method as it
practically always works. However, it is also very slow, and
therefore we also recommend to build a more advanced
polynomial filter for a large performance boost. For high
performance the filters need some fine-tuning to specific
cases, especially when computing many eigenstates, but
are quite special in how they can achieve almost any accu-
racy for almost any system and number of eigenstates. For
a good filter to compute ground states or a number of the
lowest eigenstates we refer to [47].

Note that usual variational methods will generally fail.
When minimizing the energy E0 =< ψ0|Ĥ|ψ0 > the van-
ishing density regions contribute very little and therefore
when E0 is limited to double precision (about 16 digits)
these small contributions are not taken into account and
the noise in the tails of the eigenstates persists. Many stan-
dard methods, including the very popular Lanczos method
for computing eigenstates (which most library solvers use)
and many optimization methods for time-independent
inversion [15], share similar issues. Unless higher floating
point precision is used these methods are not accurate
enough in the vanishing density context. However, we rec-
ommend the Lanczos method in cases where the density is
not vanishing as it is easy to implement and very effective.

Another situation to avoid in the vanishing density con-
text is to take a sum of large values to obtain a very small
value. It is not possible to obtain a value of say 10−20 pre-
cisely, if we perform a sum that involves a value of say 1 to
get it, as the value of 1 is only precise to about 10−16. Even
when not working with vanishing densities we generally
recommend to use a numerically more precise way to sum
values known as a Kahan sum whenever computing inner
products or expectation values. This prevents the individ-
ual truncation errors from accumulating so the sum stays

precise even when it involves billions of terms. For vanish-
ing densities, one should be very careful if not only using
the values at relatively local grid points to for example
compute the derivatives of a wave function, as the global
values may be many orders of magnitude larger. Further-
more one should, for example, not take Fourier transforms
to momentum space and back. While mathematically this
should act as an identity transform, numerically this is
performed by taking a sum of the values at all grid points
which may again involve significantly larger values than
the final value. Such considerations strongly limit the use
of global information in the vanishing density context,
which is one of the largest drawbacks of having vanish-
ing densities as it limits the choice of methods. However,
all of our methods are designed to easily avoid these issues
if one uses local representations such as finite difference
techniques.

B.2 Alternative representations

Of course, an alternative to using special methods that
allow us to go to extremely low values, is to simply change
to a representation where the values never become very
small and thereby circumvent the issue. Indeed, there are
few good reasons not to use a basis representation and
avoid such very low values in the time-independent case.
Using basis functions is also a nice way to deal with the
boundary conditions, or to work on an infinite domain.
However, note that with basis functions it can be hard
to accurately represent the low-density regions. This is
because the coefficients of the basis functions (which have
a fixed form in the low-density region) are mainly fixed
by the high-density region. It is therefore essential that
the basis functions decay in a physical manner in the
low density regions to not become too unphysical (which
is problematic for inversions). In fact the basis functions
should even be rather physical in the high density regions,
or it can lead to artificially oscillating potentials if one is
not cautious [48,49].

In the time-dependent case it may also be easy in given
cases to avoid very low values by changing representation,
although this is much more involved for a general pur-
pose solver. For example, the wave function may change
by orders of magnitude over time at some points which
will complicate the situation considerably. In particular,
we expect that it will be very hard to obtain the tails of
the wave function sufficiently accurately, and errors may
quickly grow and propagate into the relevant region as we
step through time.
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